1
|
Zioga E, Holdt SL, Gröndahl F, Bang-Berthelsen CH. Screening approaches and potential of isolated lactic acid bacteria for improving fermentation of Saccharina latissima. BMC Biotechnol 2025; 25:2. [PMID: 39757166 DOI: 10.1186/s12896-024-00926-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Accepted: 11/21/2024] [Indexed: 01/07/2025] Open
Abstract
BACKGROUND With the growing interest in applying fermentation to seaweed biomasses, there is a need for fast and efficient selection of microbial strains that have the ability to 1) acidify quickly, 2) utilize seaweed constituents and c) exhibit some proteolytic activity. The present study aims to provide a fast methodology to screen large bacterial collections for potential applications in optimized seaweed fermentations, as well as investigate and assess the performance of a selected bacterial collection of the National Food Institute Culture Collection (NFICC) in seaweed fermentation. This approach is directed toward high-throughput (HT) methodologies, employing microwell assays for different phenotypical characteristics of lactic acid bacteria isolated from different sources. The overarching aim is the deeper understanding of the selection criteria when designing starter cultures for seaweed fermentation. RESULTS By employing high-throughput analytical workflows, the screening processing time is minimized, and among the different strains from a well-characterized strain collection, it was possible to distinguish between strong acidifiers and to replicate similar results when the volumes were scaled from 96-well plates to lab-scale fermentations (40 mL) of whole seaweed. Lactiplantibacillus plantarum, Lacticaseibacillus paracasei and, to a lesser extent, Lacticaseibacillus rhamnosus were among the fastest strains to reach the lowest endpoint pH values (< 4.5) in less than 48 h. Although the results regarding proteolytic capacity were not sufficient to prove that the candidates can also provide some flavor generation by the cleavage of proteins, NFICC1746 and NFICC2041 exhibited potential in releasing free alanine, glutamate and asparate as free amino acids. CONCLUSIONS With the described methodology, a large number of terrestrial lactic acid bacteria (LAB) isolates were screened for their performance and possible application for fermentation of brown sewaeeds. With a a fast conversion of sugars to organic acids, three potential new plant-isolated strains from NFICC, specifically Lactiplantibacillus plantarum ssp. argentoratensis (NFICC983), Lacticaseibacillus paracasei (NFICC1746) and Lacticaseibacillus rhamnosus (NFICC2041), were identified as promising candidates for future synthetic consortia aimed at application in bioprocessed seaweed. The combination of such strains will be the future focus to further optimize robust seaweed fermentations.
Collapse
Affiliation(s)
- Evangelia Zioga
- Department of Sustainable Development, Environmental Science and Engineering, KTH Royal Institute of Technology, Stockholm, 114 28, Sweden.
- National Food Institute, Technical University of Denmark, Kgs. Lyngby, 2800, Denmark.
| | - Susan Løvstad Holdt
- National Food Institute, Technical University of Denmark, Kgs. Lyngby, 2800, Denmark
| | - Fredrik Gröndahl
- Department of Sustainable Development, Environmental Science and Engineering, KTH Royal Institute of Technology, Stockholm, 114 28, Sweden
| | | |
Collapse
|
2
|
Cotas J, Lomartire S, Pereira L, Valado A, Marques JC, Gonçalves AMM. Seaweeds as Nutraceutical Elements and Drugs for Diabetes Mellitus: Future Perspectives. Mar Drugs 2024; 22:168. [PMID: 38667785 PMCID: PMC11051413 DOI: 10.3390/md22040168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 03/26/2024] [Accepted: 03/27/2024] [Indexed: 04/28/2024] Open
Abstract
Diabetes mellitus is a chronic metabolic condition marked by high blood glucose levels caused by inadequate insulin synthesis or poor insulin use. This condition affects millions of individuals worldwide and is linked to a variety of consequences, including cardiovascular disease, neuropathy, nephropathy, and retinopathy. Diabetes therapy now focuses on controlling blood glucose levels through lifestyle changes, oral medicines, and insulin injections. However, these therapies have limits and may not successfully prevent or treat diabetic problems. Several marine-derived chemicals have previously demonstrated promising findings as possible antidiabetic medicines in preclinical investigations. Peptides, polyphenols, and polysaccharides extracted from seaweeds, sponges, and other marine species are among them. As a result, marine natural products have the potential to be a rich source of innovative multitargeted medications for diabetes prevention and treatment, as well as associated complications. Future research should focus on the chemical variety of marine creatures as well as the mechanisms of action of marine-derived chemicals in order to find new antidiabetic medicines and maximize their therapeutic potential. Based on preclinical investigations, this review focuses on the next step for seaweed applications as potential multitargeted medicines for diabetes, highlighting the bioactivities of seaweeds in the prevention and treatment of this illness.
Collapse
Affiliation(s)
- João Cotas
- Marine Resources, Conservation and Technology, Marine Algae Lab, CFE—Centre for Functional Ecology: Science for People & Planet, Department of Life Sciences, University of Coimbra, 3000-456 Coimbra, Portugal; (J.C.); (S.L.); (L.P.)
| | - Silvia Lomartire
- Marine Resources, Conservation and Technology, Marine Algae Lab, CFE—Centre for Functional Ecology: Science for People & Planet, Department of Life Sciences, University of Coimbra, 3000-456 Coimbra, Portugal; (J.C.); (S.L.); (L.P.)
| | - Leonel Pereira
- Marine Resources, Conservation and Technology, Marine Algae Lab, CFE—Centre for Functional Ecology: Science for People & Planet, Department of Life Sciences, University of Coimbra, 3000-456 Coimbra, Portugal; (J.C.); (S.L.); (L.P.)
| | - Ana Valado
- Polytechnic Institute of Coimbra, Coimbra Health School, Biomedical Laboratory Sciences, Rua 5 de Outubro—SM Bispo, Apartado 7006, 3046-854 Coimbra, Portugal;
- Research Centre for Natural Resources, Environment and Society—CERNAS, Escola Superior Agrária de Coimbra Bencanta, 3045-601 Coimbra, Portugal
| | - João Carlos Marques
- MARE—Marine and Environmental Sciences Centre/ARNET-Aquatic Research Network, Department of Life Sciences, University of Coimbra, Calçada Martim de Freitas, 3000-456 Coimbra, Portugal;
| | - Ana M. M. Gonçalves
- Marine Resources, Conservation and Technology, Marine Algae Lab, CFE—Centre for Functional Ecology: Science for People & Planet, Department of Life Sciences, University of Coimbra, 3000-456 Coimbra, Portugal; (J.C.); (S.L.); (L.P.)
- Department of Biology and CESAM, University of Aveiro, 3810-193 Aveiro, Portugal
| |
Collapse
|
3
|
Babich O, Ivanova S, Michaud P, Budenkova E, Kashirskikh E, Anokhova V, Sukhikh S. Fermentation of micro- and macroalgae as a way to produce value-added products. BIOTECHNOLOGY REPORTS (AMSTERDAM, NETHERLANDS) 2024; 41:e00827. [PMID: 38234329 PMCID: PMC10793092 DOI: 10.1016/j.btre.2023.e00827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 12/12/2023] [Accepted: 12/29/2023] [Indexed: 01/19/2024]
Abstract
Fermentation of both microalgae and macroalgae is one of the most efficient methods of obtaining valuable value-added products due to the minimal environmental pollution and the availability of economic benefits, as algae do not require arable land and drift algae and algal bloom biomass are considered waste and must be recycled and their fermentation waste utilized. The compounds found in algae can be effectively used in the fuel, food, cosmetic, and pharmaceutical industries, depending on the type of fermentation used. Products such as methane and hydrogen can be produced by anaerobic digestion and dark fermentation of algae, and lactic acid and its polymers can be produced by lactic acid fermentation of algae. Article aims to provide an overview of the different types potential of micro- and macroalgae fermentation, the advantages and disadvantages of each type considered, and the economic feasibility of algal fermentation for the production of various value-added products.
Collapse
Affiliation(s)
- Olga Babich
- SEC “Applied Biotechnologies”, Immanuel Kant BFU, Kaliningrad, Russia
| | - Svetlana Ivanova
- Natural Nutraceutical Biotesting Laboratory, Kemerovo State University, Krasnaya Street 6, Kemerovo, 650043, Russia
- Department of TNSMD Theory and Methods, Kemerovo State University, Krasnaya Street, 6, Kemerovo 650043, Russia
| | - Philippe Michaud
- Institut Pascal, Université Clermont Auvergne, CNRS, Clermont Auvergne INP, F-63000 Clermont-Ferrand, France
| | | | - Egor Kashirskikh
- SEC “Applied Biotechnologies”, Immanuel Kant BFU, Kaliningrad, Russia
| | - Veronika Anokhova
- SEC “Applied Biotechnologies”, Immanuel Kant BFU, Kaliningrad, Russia
| | - Stanislav Sukhikh
- SEC “Applied Biotechnologies”, Immanuel Kant BFU, Kaliningrad, Russia
| |
Collapse
|
4
|
Kuo CH, Xu ZY, Hsiao PZ, Liao PC, Liu CH, Hong MC, Chiu K. Utilizing fish wastewater in aquaponic systems to enhance anti-inflammatory and antioxidant bioactive compounds in Sarcodia suae. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 914:169958. [PMID: 38211863 DOI: 10.1016/j.scitotenv.2024.169958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Revised: 01/02/2024] [Accepted: 01/04/2024] [Indexed: 01/13/2024]
Abstract
Aquaculture wastewater, rich in organic nutrients, is an essential environmental factor. When applied to seaweed cultivation systems, this wastewater holds the potential to notably increase the growth rate and carbon capture of Sarcodia suae. Sarcodia suae has the potential to be a healthy food due to its various biological activities; however, its chemical composition has yet to be completely defined. In this study, we applied a UHPLC-HRMS-based foodomics strategy to determine and classify possible bioactive metabolites in S. suae. From pooled seaweed samples (S. suae cultured in filtered running, FR, aquaponic recirculation, AR systems), we identified 179 and 146 compounds in POS and NEG modes, respectively. These compounds were then classified based on their structures using the Classyfire classification. Results show that S. suae in AR exhibited higher growth performance, and ten upregulated metabolites were determined. We also validated the anti-inflammatory and antioxidative bioactivities of some selected compounds. Our study provided important insights into the potential use of fish wastewater in aquaponic systems to profile and produce bioactive compounds in S. suae comprehensively. This has significant implications for the development of sustainable food and the promotion of environmental health.
Collapse
Affiliation(s)
- Chiu-Hui Kuo
- Institute of Aquatic Science and Technology, National Kaohsiung University of Science and Technology, Kaohsiung 811, Taiwan
| | - Zi-Yan Xu
- Tungkang Aquaculture Research Center, Fisheries Research Institute, MOA, Taiwan
| | - Ping-Zu Hsiao
- Department of Environmental and Occupational Health, College of Medicine, National Cheng Kung University, Tainan 704, Taiwan
| | - Pao-Chi Liao
- Department of Environmental and Occupational Health, College of Medicine, National Cheng Kung University, Tainan 704, Taiwan; Department of Food Safety/Hygiene and Risk Management, College of Medicine, National Cheng Kung University, Tainan 704, Taiwan.
| | - Chun-Hung Liu
- Department of Aquaculture, National Pingtung University of Science and Technology, Pingtung 91201, Taiwan
| | - Ming-Chang Hong
- Department and Graduate Institute of Aquaculture, National Kaohsiung University of Science and Technology, Kaohsiung 811, Taiwan
| | - Kuohsun Chiu
- Department and Graduate Institute of Aquaculture, National Kaohsiung University of Science and Technology, Kaohsiung 811, Taiwan; Department of Oceanography, National Sun Yat-sen University, Kaohsiung 804, Taiwan.
| |
Collapse
|
5
|
Siddiqui SA, Erol Z, Rugji J, Taşçı F, Kahraman HA, Toppi V, Musa L, Di Giacinto G, Bahmid NA, Mehdizadeh M, Castro-Muñoz R. An overview of fermentation in the food industry - looking back from a new perspective. BIORESOUR BIOPROCESS 2023; 10:85. [PMID: 38647968 PMCID: PMC10991178 DOI: 10.1186/s40643-023-00702-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Accepted: 10/25/2023] [Indexed: 04/25/2024] Open
Abstract
Fermentation is thought to be born in the Fertile Crescent, and since then, almost every culture has integrated fermented foods into their dietary habits. Originally used to preserve foods, fermentation is now applied to improve their physicochemical, sensory, nutritional, and safety attributes. Fermented dairy, alcoholic beverages like wine and beer, fermented vegetables, fruits, and meats are all highly valuable due to their increased storage stability, reduced risk of food poisoning, and enhanced flavor. Over the years, scientific research has associated the consumption of fermented products with improved health status. The fermentation process helps to break down compounds into more easily digestible forms. It also helps to reduce the amount of toxins and pathogens in food. Additionally, fermented foods contain probiotics, which are beneficial bacteria that help the body to digest food and absorb nutrients. In today's world, non-communicable diseases such as cardiovascular disease, type 2 diabetes, cancer, and allergies have increased. In this regard, scientific investigations have demonstrated that shifting to a diet that contains fermented foods can reduce the risk of non-communicable diseases. Moreover, in the last decade, there has been a growing interest in fermentation technology to valorize food waste into valuable by-products. Fermentation of various food wastes has resulted in the successful production of valuable by-products, including enzymes, pigments, and biofuels.
Collapse
Affiliation(s)
- Shahida Anusha Siddiqui
- Technical University of Munich, Campus Straubing for Biotechnology and Sustainability, Essigberg 3, 94315, Straubing, Germany.
- German Institute of Food Technologies (DIL E.V.), Prof.-Von-Klitzing Str. 7, 49610, Quakenbrück, Germany.
| | - Zeki Erol
- Department of Food Hygiene and Technology, Faculty of Veterinary Medicine, Burdur Mehmet Akif Ersoy University, İstiklal Campus, 15030, Burdur, Turkey
| | - Jerina Rugji
- Department of Food Hygiene and Technology, Faculty of Veterinary Medicine, Burdur Mehmet Akif Ersoy University, İstiklal Campus, 15030, Burdur, Turkey
| | - Fulya Taşçı
- Department of Food Hygiene and Technology, Faculty of Veterinary Medicine, Burdur Mehmet Akif Ersoy University, İstiklal Campus, 15030, Burdur, Turkey
| | - Hatice Ahu Kahraman
- Department of Food Hygiene and Technology, Faculty of Veterinary Medicine, Burdur Mehmet Akif Ersoy University, İstiklal Campus, 15030, Burdur, Turkey
| | - Valeria Toppi
- Department of Veterinary Medicine, University of Perugia, 06126, Perugia, Italy
| | - Laura Musa
- Department of Veterinary Medicine and Animal Sciences, University of Milan, 26900, Lodi, Italy
| | - Giacomo Di Giacinto
- Department of Veterinary Medicine, University of Perugia, 06126, Perugia, Italy
| | - Nur Alim Bahmid
- Research Center for Food Technology and Processing, National Research and Innovation Agency (BRIN), Gading, Playen, Gunungkidul, 55861, Yogyakarta, Indonesia
| | - Mohammad Mehdizadeh
- Faculty of Agriculture and Natural Resources, University of Mohaghegh Ardabili, Ardabil, Iran
- Ilam Science and Technology Park, Ilam, Iran
| | - Roberto Castro-Muñoz
- Tecnologico de Monterrey, Campus Toluca, Av. Eduardo Monroy Cárdenas 2000, San Antonio Buenavista, 50110, Toluca de Lerdo, Mexico.
- Department of Sanitary Engineering, Faculty of Civil and Environmental Engineering, Gdansk University of Technology, G. Narutowicza St. 11/12, 80-233, Gdansk, Poland.
| |
Collapse
|
6
|
González-Meza GM, Elizondo-Luevano JH, Cuellar-Bermudez SP, Sosa-Hernández JE, Iqbal HMN, Melchor-Martínez EM, Parra-Saldívar R. New Perspective for Macroalgae-Based Animal Feeding in the Context of Challenging Sustainable Food Production. PLANTS (BASEL, SWITZERLAND) 2023; 12:3609. [PMID: 37896072 PMCID: PMC10610262 DOI: 10.3390/plants12203609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Revised: 10/14/2023] [Accepted: 10/16/2023] [Indexed: 10/29/2023]
Abstract
Food production is facing challenging times due to the pandemic, and climate change. With production expected to double by 2050, there is a need for a new paradigm in sustainable animal feed supply. Seaweeds offer a highly valuable opportunity in this regard. Seaweeds are classified into three categories: brown (Phaeophyceae), red (Rhodophyceae), and green (Chlorophyceae). While they have traditionally been used in aquafeed, their demand in the feed market is growing, parallelly increasing according to the food demand. Additionally, seaweeds are being promoted for their nutritional benefits, which contribute to the health, growth, and performance of animals intended for human consumption. Moreover, seaweeds contain biologically active compounds such as polyunsaturated fatty acids, antioxidants (polyphenols), and pigments (chlorophylls and carotenoids), which possess beneficial properties, including antibacterial, antifungal, antiviral, antioxidant, and anti-inflammatory effects and act as prebiotics. This review offers a new perspective on the valorization of macroalgae biomass due to their nutritional profile and bioactive components, which have the potential to play a crucial role in animal growth and making possible new sources of healthy food ingredients.
Collapse
Affiliation(s)
- Georgia M. González-Meza
- Tecnologico de Monterrey, Institute of Advanced Materials for Sustainable Manufacturing, Monterrey 64849, Mexico; (G.M.G.-M.); (J.H.E.-L.); (J.E.S.-H.); (H.M.N.I.)
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey 64849, Mexico
| | - Joel H. Elizondo-Luevano
- Tecnologico de Monterrey, Institute of Advanced Materials for Sustainable Manufacturing, Monterrey 64849, Mexico; (G.M.G.-M.); (J.H.E.-L.); (J.E.S.-H.); (H.M.N.I.)
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey 64849, Mexico
| | - Sara P. Cuellar-Bermudez
- Tecnologico de Monterrey, Institute of Advanced Materials for Sustainable Manufacturing, Monterrey 64849, Mexico; (G.M.G.-M.); (J.H.E.-L.); (J.E.S.-H.); (H.M.N.I.)
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey 64849, Mexico
| | - Juan Eduardo Sosa-Hernández
- Tecnologico de Monterrey, Institute of Advanced Materials for Sustainable Manufacturing, Monterrey 64849, Mexico; (G.M.G.-M.); (J.H.E.-L.); (J.E.S.-H.); (H.M.N.I.)
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey 64849, Mexico
| | - Hafiz M. N. Iqbal
- Tecnologico de Monterrey, Institute of Advanced Materials for Sustainable Manufacturing, Monterrey 64849, Mexico; (G.M.G.-M.); (J.H.E.-L.); (J.E.S.-H.); (H.M.N.I.)
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey 64849, Mexico
| | - Elda M. Melchor-Martínez
- Tecnologico de Monterrey, Institute of Advanced Materials for Sustainable Manufacturing, Monterrey 64849, Mexico; (G.M.G.-M.); (J.H.E.-L.); (J.E.S.-H.); (H.M.N.I.)
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey 64849, Mexico
| | - Roberto Parra-Saldívar
- Tecnologico de Monterrey, Institute of Advanced Materials for Sustainable Manufacturing, Monterrey 64849, Mexico; (G.M.G.-M.); (J.H.E.-L.); (J.E.S.-H.); (H.M.N.I.)
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey 64849, Mexico
| |
Collapse
|
7
|
Gupta A, Sanwal N, Bareen MA, Barua S, Sharma N, Joshua Olatunji O, Prakash Nirmal N, Sahu JK. Trends in functional beverages: Functional ingredients, processing technologies, stability, health benefits, and consumer perspective. Food Res Int 2023; 170:113046. [PMID: 37316029 DOI: 10.1016/j.foodres.2023.113046] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 04/20/2023] [Accepted: 05/22/2023] [Indexed: 06/16/2023]
Abstract
The World Health Organization's emphasis on the health benefits of functional foods and beverages that has contributed to the rise in its popularity globally. Besides these consumers have become more aware of the importance of their food composition and nutrition. Among the fastest-growing market segments within the functional food industries, the functional drinks market focuses on fortified beverages or products that are novel with improved bioavailability of bioactive compounds, and their implicated health benefits. The bioactive ingredients in functional beverages include phenolic compounds, minerals, vitamins, amino acids, peptides, unsaturated fatty acids, etc. which can be obtained from plant, animal and microorganisms. The types of functional beverages which are globally intensifying the markets are pre-/pro-biotics, beauty drinks, cognitive and immune system enhancers, energy and sports drink produced via several thermal and non-thermal processes. Researchers are focusing on improving the stability of the active compounds by encapsulation, emulsion, and high-pressure homogenization techniques to strengthen the positive consumer perspective in functional beverages. However, more research is needed in terms of bioavailability, consumer safety, and sustainability of the process. Hence, product development, storage stability, and sensory properties of these products are vital for consumer acceptance. This review focuses on the recent trends and developments in the functional beverages industry. The review provides a critical discussion on diverse functional ingredients, bioactive sources, production processes, emerging process technologies, improvement in the stability of ingredients and bioactive compounds. This review also outlines the global market and consumer perception of functional beverages with the future perspective and scope.
Collapse
Affiliation(s)
- Achala Gupta
- Food and Bioprocess Engineering Lab, Centre for Rural Development and Technology, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| | - Nikita Sanwal
- Food and Bioprocess Engineering Lab, Centre for Rural Development and Technology, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| | - Mohammed A Bareen
- Food and Bioprocess Engineering Lab, Centre for Rural Development and Technology, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India; The University of Queensland-Indian Institute of Technology Delhi Academy of Research, New Delhi 110016, India; School of Agriculture and Food Sciences, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Sreejani Barua
- Agricultural and Food Engineering Department, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal 721302, India
| | - Nitya Sharma
- Food and Bioprocess Engineering Lab, Centre for Rural Development and Technology, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| | - Opeyemi Joshua Olatunji
- Traditional Thai Medical Research and Innovation Center, Faculty of Traditional Thai Medicine, Prince of Songkla University, Hat Yai 90110, Thailand; African Genome Center, Mohammed VI Polytechnic University, Ben Guerir 43150, Morocco
| | - Nilesh Prakash Nirmal
- Institute of Nutrition, Mahidol University, 999 Phutthamonthon 4 Rd., Salaya, Nakhon Pathom 73170, Thailand.
| | - Jatindra K Sahu
- Food and Bioprocess Engineering Lab, Centre for Rural Development and Technology, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India.
| |
Collapse
|
8
|
Maiorano G, Ramires FA, Durante M, Palamà IE, Blando F, De Rinaldis G, Perbellini E, Patruno V, Gadaleta Caldarola C, Vitucci S, Mita G, Bleve G. The Controlled Semi-Solid Fermentation of Seaweeds as a Strategy for Their Stabilization and New Food Applications. Foods 2022; 11:2811. [PMID: 36140940 PMCID: PMC9497830 DOI: 10.3390/foods11182811] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 08/31/2022] [Accepted: 09/08/2022] [Indexed: 11/17/2022] Open
Abstract
For centuries, macroalgae, or seaweeds, have been a significant part of East Asian diets. In Europe, seaweeds are not considered traditional foods, even though they are increasingly popular in Western diets in human food applications. In this study, a biological processing method based on semi-solid fermentation was optimized for the treatment of the seaweed Gracilaria gracilis. For the first time, selected lactic acid bacteria and non-conventional coagulase-negative staphylococci were used as starter preparations for driving a bio-processing and bio-stabilization of raw macroalga material to obtain new seaweed-based food prototypes for human consumption. Definite food safety and process hygiene criteria were identified and successfully applied. The obtained fermented products did not show any presence of pathogenic or spoilage microorganisms, thereby indicating safety and good shelf life. Lactobacillus acidophilus-treated seaweeds revealed higher α-amylase, protease, lipase, endo-cellulase, and endo-xylanase activity than in the untreated sample. This fermented sample showed a balanced n-6/n-3 fatty acid ratio. SBM-11 (Lactobacillus sakei, Staphylococcus carnosus and Staphylococcus xylosus) and PROMIX 1 (Staphylococcus xylosus) treated samples showed fatty acid compositions that were considered of good nutritional quality and contained relevant amounts of isoprenoids (vitamin E and A). All the starters improved the nutritional value of the seaweeds by significantly reducing the insoluble indigestible fractions. Preliminary data were obtained on the cytocompatibility of G. gracilis fermented products by in vitro tests. This approach served as a valid strategy for the easy bio-stabilization of this valuable but perishable food resource and could boost its employment for newly designed seaweed-based food products.
Collapse
Affiliation(s)
- Gabriele Maiorano
- Istituto di Nanotecnologie, Consiglio Nazionale delle Ricerche, 73100 Lecce, Italy
| | - Francesca Anna Ramires
- Unità Operativa di Lecce, Istituto di Scienze delle Produzioni Alimentari, Consiglio Nazionale delle Ricerche, 73100 Lecce, Italy
| | - Miriana Durante
- Unità Operativa di Lecce, Istituto di Scienze delle Produzioni Alimentari, Consiglio Nazionale delle Ricerche, 73100 Lecce, Italy
| | - Ilaria Elena Palamà
- Istituto di Nanotecnologie, Consiglio Nazionale delle Ricerche, 73100 Lecce, Italy
| | - Federica Blando
- Unità Operativa di Lecce, Istituto di Scienze delle Produzioni Alimentari, Consiglio Nazionale delle Ricerche, 73100 Lecce, Italy
| | - Gianluca De Rinaldis
- Istituto di Nanotecnologie, Consiglio Nazionale delle Ricerche, 73100 Lecce, Italy
| | | | - Valeria Patruno
- Agenzia Regionale per la Tecnologia e l’Innovazione (ARTI)—Regione Puglia, 70124 Bari, Italy
| | | | - Santa Vitucci
- Struttura Speciale Cooperazione Territoriale, Regione Puglia, 70100 Bari, Italy
| | - Giovanni Mita
- Istituto di Nanotecnologie, Consiglio Nazionale delle Ricerche, 73100 Lecce, Italy
| | - Gianluca Bleve
- Unità Operativa di Lecce, Istituto di Scienze delle Produzioni Alimentari, Consiglio Nazionale delle Ricerche, 73100 Lecce, Italy
| |
Collapse
|
9
|
Effects of Fermented Seaweed Fertilizer Treatment on Paddy Amino Acid Content and Rhizosphere Microbiome Community. FERMENTATION-BASEL 2022. [DOI: 10.3390/fermentation8090420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Seaweed has often been reported on for it potential bioresources for fertilizers to improve crop productivity and reduce the use of chemical fertilizers (CF). However, little is known about the nutritional status of the crop grown with the implementation of seaweed fertilizers (SF). In this study, the amino acid content of rice produced by SF implementation was evaluated. Furthermore, the rhizosphere bacterial community was also investigated. The paddy seedlings were divided into five groups, control (C0), chemical fertilizer (CF), seaweed fertilizer (SF), chemical and seaweed fertilizer combination 25:75 (CFSF1), and chemical and fertilizer combination 50:50 (CFSF2). The CFSF2 group shown significantly better growth characteristics compared to other groups. Based on the concentration of macronutrients (N, P, K) in paddy leaf, CFSF2 also shown the best results. This also correlates with the abundant amino acid composition in CFSF2 in almost all tested amino acids, namely, serine, phenylalanine, isoleucine, valine, glycine, tyrosine, proline, threonine, histidine, and arginine. Interestingly, beneficial bacteria Rhizobiales were significantly higher in CFSF2-treated soil (58%) compared to CF (29%). Another important group, Vicinamibacterales, was also significantly higher in CFSF2 (58%) compared to CF (7%). Hence, these potentially contributed to the high rice amino acid content and yield in the CFSF2-treated paddy. However, further field-scale studies are needed to confirm the bioindustrial application of seaweed in agricultural systems.
Collapse
|
10
|
Pérez-García F, Klein VJ, Brito LF, Brautaset T. From Brown Seaweed to a Sustainable Microbial Feedstock for the Production of Riboflavin. Front Bioeng Biotechnol 2022; 10:863690. [PMID: 35497351 PMCID: PMC9049185 DOI: 10.3389/fbioe.2022.863690] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 03/09/2022] [Indexed: 12/11/2022] Open
Abstract
The increasing global demand for food and energy production encourages the development of new production strategies focused on sustainability. Often, microbial bioprocesses rely on food or feed competitive feedstocks; hence, there is a trending need for green substrates. Here, we have proven the potential of brown seaweed biomass as microbial feedstock on account of its content of mannitol and the glucose polymer laminarin. Our host, Corynebacterium glutamicum, was engineered to enable access to mannitol as a carbon source through the heterologous expression of the mannitol-specific phosphotransferase system and the mannitol-1-phosphate-5-dehydrogenase from Bacillus subtilis. Overproduction of riboflavin was coupled with mannitol and glucose consumption via constitutive overexpression of the biosynthetic riboflavin operon ribGCAH from C. glutamicum. Brown seaweed extract and brown seaweed hydrolysate from Laminaria hyperborea, containing mannitol and glucose, were used as a carbon source for flask and bioreactor fermentations. In a seaweed-based fed-batch fermentation, the riboflavin final titer, yield, and volumetric productivity values of 1,291.2 mg L−1, 66.1 mg g−1, and 17.2 mg L−1 h−1, respectively, were achieved.
Collapse
|
11
|
A Review on Factors Influencing the Fermentation Process of Teff (Eragrostis teff) and Other Cereal-Based Ethiopian Injera. INTERNATIONAL JOURNAL OF FOOD SCIENCE 2022; 2022:4419955. [PMID: 35368804 PMCID: PMC8970856 DOI: 10.1155/2022/4419955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 02/22/2022] [Accepted: 02/26/2022] [Indexed: 11/17/2022]
Abstract
Fermented foods and beverages are the product of the enzymaticcally transformed food components which are acived by different microorganisms. Fermented foods have grown in popularity in recent years because of their alleged health benefits. Biogenic amines, bioactive peptides, antinutrient reduction, and polyphenol conversion to physiologically active chemicals are all possible health benefits of fermentation process products. In Ethiopian-fermented foods, which are mostly processed using spontaneous fermentation process. Injera is one of the fermented food products consumed in all corners of the country which sourdough fermentation could be achieved using different LAB and yeast strains. Moreover, the kind and concentration of the substrate and the type of microbial flora, as well as temperature, air supply, and pH, all influence the fermentation process of injera. This review article gives an overview of factors influencing the fermentation process of teff ('Eragrostis tef.') and other cereal-based Ethiopian injera.
Collapse
|
12
|
Seaweed Fertilizer Prepared by EM-Fermentation Increases Abundance of Beneficial Soil Microbiome in Paddy (Oryza sativa L.) during Vegetative Stage. FERMENTATION 2022. [DOI: 10.3390/fermentation8020046] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Excessive use of chemical fertilizer could potentially decrease soil productivity by decreasing soil microbiome diversity. In this study, we evaluated the effects of fermented seaweed fertilizer in the soil microbial community of paddy plants (Oryza sativa L.). The paddy seedlings were divided into five groups, control (C0), chemical fertilizer (CF), seaweed fertilizer (SF), chemical and seaweed fertilizer combination 50:50 (CFSF1), and chemical and fertilizer combination 75:25 (CFSF2). The CFSF1 combination showed to be the most effective in inducing plant height (83.99 ± 3.70 cm) and number of tillers (24.20 ± 4.08). After 8 weeks after transplantation, the isolated DNA from each soil treatment were subjected to 16S rRNA (v3–v4 region) next-generation sequencing. The beneficial Acidobacteriota was most abundant in CFSF1. At genus level, the nitrifying bacteria MND1 was seen to be abundant in CFSF1 and also present in other SF treatments. The genus Chujaibacter is highly abundant in CF, which potentially plays a role in denitrification resulting in soil degradation. In addition, the CFSF1-treated soils show significantly higher diversity of ammonia-oxidizing bacteria (AOB) and ammonia-oxidizing archaea (AOA). The current results could potentially contribute to the utilization of SF as a bioremediator and promoting green agriculture practice by reducing the amount of CF usage.
Collapse
|