1
|
Premachandran S, Shreshtha I, Venkatakrishnan K, Das S, Tan B. Detection of brain metastases from blood using Brain nanoMET sensor: Extracellular vesicles as a dynamic marker for metastatic brain tumors. Biosens Bioelectron 2025; 269:116968. [PMID: 39586755 DOI: 10.1016/j.bios.2024.116968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 11/07/2024] [Accepted: 11/18/2024] [Indexed: 11/27/2024]
Abstract
Brain metastases account for a significant number of cancer-related deaths with poor prognosis and limited treatment options. Current diagnostic methods have limitations in resolution, sensitivity, inability to differentiate between primary and metastatic brain tumors, and invasiveness. Liquid biopsy is a promising non-invasive alternative; however, current approaches have shown limited efficacy for diagnosing brain metastases due to biomarker instability and low levels of detectable tumor-specific biomarkers. This study introduces an innovative liquid biopsy technique using extracellular vesicles (EVs) as a biomarker for brain metastases, employing the Brain nanoMET sensor. The sensor was fabricated through an ultrashort femtosecond laser ablation process and provides excellent surface-enhanced Raman Scattering functionality. We developed an in vitro model of metastatic tumors to understand the tumor microenvironment and secretomes influencing brain metastases from breast and lung cancers. Molecular profiling of EVs derived from brain-seeking metastatic tumors revealed unique, brain-specific signatures, which were also validated in the peripheral circulation of brain metastasis patients. Compared to primary brain tumor EVs, we also observed an upregulation of PD-L1 marker in the metastatic EVs. A machine learning model trained on these EV molecular profiles achieved 97% sensitivity in differentiating metastatic brain cancer from primary brain cancer, with 94% accuracy in predicting the primary tissue of origin for breast metastasis and 100% accuracy for lung metastasis. The results from this pilot validation suggest that this technique holds significant potential for improving metastasis diagnosis and targeted treatment strategies for brain metastases, addressing a critical unmet need in neuro-oncology.
Collapse
Affiliation(s)
- Srilakshmi Premachandran
- Institute for Biomedical Engineering, Science and Technology (iBEST), Partnership Between Toronto Metropolitan University (formerly Ryerson University) and St. Michael's Hospital, Toronto, ON, M5B 1W8, Canada; Ultrashort Laser Nanomanufacturing Research Facility, Faculty of Engineering and Architectural Sciences, Toronto Metropolitan University (formerly Ryerson University), 350 Victoria Street, Toronto, ON, M5B 2K3, Canada; Nano Characterization Laboratory, Faculty of Engineering and Architectural Sciences, Toronto Metropolitan University (formerly Ryerson University), 350 Victoria Street, Toronto, ON, M5B 2K3, Canada; Nano-Bio Interface Facility, Faculty of Engineering and Architectural Sciences, Toronto Metropolitan University (formerly Ryerson University), 350 Victoria Street, Toronto, ON, M5B 2K3, Canada
| | - Ishita Shreshtha
- Institute for Biomedical Engineering, Science and Technology (iBEST), Partnership Between Toronto Metropolitan University (formerly Ryerson University) and St. Michael's Hospital, Toronto, ON, M5B 1W8, Canada; Ultrashort Laser Nanomanufacturing Research Facility, Faculty of Engineering and Architectural Sciences, Toronto Metropolitan University (formerly Ryerson University), 350 Victoria Street, Toronto, ON, M5B 2K3, Canada; Nano Characterization Laboratory, Faculty of Engineering and Architectural Sciences, Toronto Metropolitan University (formerly Ryerson University), 350 Victoria Street, Toronto, ON, M5B 2K3, Canada; Nano-Bio Interface Facility, Faculty of Engineering and Architectural Sciences, Toronto Metropolitan University (formerly Ryerson University), 350 Victoria Street, Toronto, ON, M5B 2K3, Canada
| | - Krishnan Venkatakrishnan
- Keenan Research Center for Biomedical Science, Unity Health Toronto, Toronto, Ontario, M5B 1W8, Canada; Institute for Biomedical Engineering, Science and Technology (iBEST), Partnership Between Toronto Metropolitan University (formerly Ryerson University) and St. Michael's Hospital, Toronto, ON, M5B 1W8, Canada; Ultrashort Laser Nanomanufacturing Research Facility, Faculty of Engineering and Architectural Sciences, Toronto Metropolitan University (formerly Ryerson University), 350 Victoria Street, Toronto, ON, M5B 2K3, Canada; Nano-Bio Interface Facility, Faculty of Engineering and Architectural Sciences, Toronto Metropolitan University (formerly Ryerson University), 350 Victoria Street, Toronto, ON, M5B 2K3, Canada
| | - Sunit Das
- St. Michael's Hospital, Toronto, Ontario, M5B 1W8, Canada; Institute of Medical Sciences, Neurosurgery, University of Toronto, Toronto, Ontario, M5T 1P5, Canada
| | - Bo Tan
- Keenan Research Center for Biomedical Science, Unity Health Toronto, Toronto, Ontario, M5B 1W8, Canada; Institute for Biomedical Engineering, Science and Technology (iBEST), Partnership Between Toronto Metropolitan University (formerly Ryerson University) and St. Michael's Hospital, Toronto, ON, M5B 1W8, Canada; Nano Characterization Laboratory, Faculty of Engineering and Architectural Sciences, Toronto Metropolitan University (formerly Ryerson University), 350 Victoria Street, Toronto, ON, M5B 2K3, Canada; Nano-Bio Interface Facility, Faculty of Engineering and Architectural Sciences, Toronto Metropolitan University (formerly Ryerson University), 350 Victoria Street, Toronto, ON, M5B 2K3, Canada.
| |
Collapse
|
2
|
Kinkade JA, Seetharam AS, Sachdev S, Bivens NJ, Phinney BS, Grigorean G, Roberts RM, Tuteja G, Rosenfeld CS. Extracellular vesicles from mouse trophoblast cells: Effects on neural progenitor cells and potential participants in the placenta-brain axis†. Biol Reprod 2024; 110:310-328. [PMID: 37883444 PMCID: PMC10873279 DOI: 10.1093/biolre/ioad146] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 10/12/2023] [Accepted: 10/21/2023] [Indexed: 10/28/2023] Open
Abstract
The fetal brain of the mouse is thought to be dependent upon the placenta as a source of serotonin (5-hydroxytryptamine; 5-HT) and other factors. How factors reach the developing brain remains uncertain but are postulated here to be part of the cargo carried by placental extracellular vesicles (EV). We have analyzed the protein, catecholamine, and small RNA content of EV from mouse trophoblast stem cells (TSC) and TSC differentiated into parietal trophoblast giant cells (pTGC), potential primary purveyors of 5-HT. Current studies examined how exposure of mouse neural progenitor cells (NPC) to EV from either TSC or pTGC affect their transcriptome profiles. The EV from trophoblast cells contained relatively high amounts of 5-HT, as well as dopamine and norepinephrine, but there were no significant differences between EV derived from pTGC and from TSC. Content of miRNA and small nucleolar (sno)RNA, however, did differ according to EV source, and snoRNA were upregulated in EV from pTGC. The primary inferred targets of the microRNA (miRNA) from both pTGC and TSC were mRNA enriched in the fetal brain. NPC readily internalized EV, leading to changes in their transcriptome profiles. Transcripts regulated were mainly ones enriched in neural tissues. The transcripts in EV-treated NPC that demonstrated a likely complementarity with miRNA in EV were mainly up- rather than downregulated, with functions linked to neuronal processes. Our results are consistent with placenta-derived EV providing direct support for fetal brain development and being an integral part of the placenta-brain axis.
Collapse
Affiliation(s)
- Jessica A Kinkade
- Biomedical Sciences, University of Missouri, Columbia, MO, USA
- Division of Animal Sciences, University of Missouri, Columbia, MO, USA
| | - Arun S Seetharam
- Department of Ecology, Evolution and Organismal Biology, Iowa State University, Ames, IA, USA
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, IA, USA
| | - Shrikesh Sachdev
- Division of Animal Sciences, University of Missouri, Columbia, MO, USA
| | - Nathan J Bivens
- Genomics Technology Core Facility, University of Missouri, Columbia, MO, USA
| | - Brett S Phinney
- Proteomics Core UC Davis Genome Center, University of California, Davis, CA, USA
| | - Gabriela Grigorean
- Proteomics Core UC Davis Genome Center, University of California, Davis, CA, USA
| | - R Michael Roberts
- Division of Animal Sciences, University of Missouri, Columbia, MO, USA
| | - Geetu Tuteja
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, IA, USA
| | - Cheryl S Rosenfeld
- Biomedical Sciences, University of Missouri, Columbia, MO, USA
- MU Institute of Data Science and Informatics, University of Missouri, Columbia, MO, USA
- Genetics Area Program, University of Missouri, Columbia, MO, USA
- Thompson Center for Autism and Neurobehavioral Disorders, University of Missouri, Columbia, MO, USA
| |
Collapse
|
3
|
Abhange K, Kitata RB, Zhang J, Wang YT, Gaffrey MJ, Liu T, Gunchick V, Khaykin V, Sahai V, Cuneo KC, Parikh ND, Shi T, Lubman DM. In-Depth Proteome Profiling of Small Extracellular Vesicles Isolated from Cancer Cell Lines and Patient Serum. J Proteome Res 2024; 23:386-396. [PMID: 38113368 PMCID: PMC10947532 DOI: 10.1021/acs.jproteome.3c00614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2023]
Abstract
Extracellular vesicle (EV) secretion has been observed in many types of both normal and tumor cells. EVs contain a variety of distinctive cargoes, allowing tumor-derived serum proteins in EVs to act as a minimally invasive method for clinical monitoring. We have undertaken a comprehensive study of the protein content of the EVs from several cancer cell lines using direct data-independent analysis. Several thousand proteins were detected, including many classic EV markers such as CD9, CD81, CD63, TSG101, and Syndecan-1, among others. We detected many distinctive cancer-specific proteins, including several known markers used in cancer detection and monitoring. We further studied the protein content of EVs from patient serum for both normal controls and pancreatic cancer and hepatocellular carcinoma. The EVs for these studies have been isolated by various methods for comparison, including ultracentrifugation and CD9 immunoaffinity column. Typically, 500-1000 proteins were identified, where most of them overlapped with the EV proteins identified from the cell lines studied. We were able to identify many of the cell-line EV protein markers in the serum EVs, in addition to the large numbers of proteins specific to pancreatic and HCC cancers.
Collapse
Affiliation(s)
- Komal Abhange
- Department of Surgery, University of Michigan Medical Center, Ann Arbor, Michigan 48109, United States
| | - Reta Birhanu Kitata
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Jie Zhang
- Department of Surgery, University of Michigan Medical Center, Ann Arbor, Michigan 48109, United States
| | - Yi-Ting Wang
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Matthew J Gaffrey
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Tao Liu
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Valerie Gunchick
- Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Valerie Khaykin
- Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Vaibhav Sahai
- Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Kyle C Cuneo
- Department of Radiation Oncology, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Neehar D Parikh
- Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Tujin Shi
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - David M Lubman
- Department of Surgery, University of Michigan Medical Center, Ann Arbor, Michigan 48109, United States
| |
Collapse
|
4
|
Irani K, Siampour H, Allahverdi A, Moshaii A, Naderi-Manesh H. Lung Cancer Cell-Derived Exosome Detection Using Electrochemical Approach towards Early Cancer Screening. Int J Mol Sci 2023; 24:17225. [PMID: 38139054 PMCID: PMC10743818 DOI: 10.3390/ijms242417225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 09/27/2023] [Accepted: 09/28/2023] [Indexed: 12/24/2023] Open
Abstract
Lung cancer is one of the deadliest cancers worldwide due to the inability of existing methods for early diagnosis. Tumor-derived exosomes are nano-scale vesicles released from tumor cells to the extracellular environment, and their investigation can be very useful in both biomarkers for early cancer screening and treatment assessment. This research detected the exosomes via an ultrasensitive electrochemical biosensor containing gold nano-islands (Au-NIs) structures. This way, a high surface-area-to-volume ratio of nanostructures was embellished on the FTO electrodes to increase the chance of immobilizing the CD-151 antibody. In this way, a layer of gold was first deposited on the electrode by physical vapor deposition (PVD), followed by thermal annealing to construct primary gold seeds on the surface of the electrode. Then, gold seeds were grown by electrochemical deposition through gold salt. The cell-derived exosomes were successfully immobilized on the FTO electrode through the CD-151 antibody, and cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS) methods were used in this research. In the CV method, the change in the current passing through the working electrode is measured so that the connection of exosomes causes the current to decrease. In the EIS method, surface resistance changes were investigated so that the binding of exosomes increased the surface resistance. Various concentrations of exosomes in both cell culture and blood serum samples were measured to test the sensitivity of the biosensor, which makes our biosensor capable of detecting 20 exosomes per milliliter.
Collapse
Affiliation(s)
- Koosha Irani
- Department of Biophysics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran P.O. Box 14115-154, Iran; (K.I.); (H.N.-M.)
| | - Hossein Siampour
- Biosensor Research Center (BRC), Isfahan University of Medical Sciences, Isfahan P.O. Box 81746-73461, Iran;
| | - Abdollah Allahverdi
- Department of Biophysics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran P.O. Box 14115-154, Iran; (K.I.); (H.N.-M.)
| | - Ahmad Moshaii
- Department of Physics, Tarbiat Modares University, Tehran P.O. Box 14115-175, Iran;
| | - Hossein Naderi-Manesh
- Department of Biophysics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran P.O. Box 14115-154, Iran; (K.I.); (H.N.-M.)
| |
Collapse
|
5
|
Murillo Carrasco AG, Otake AH, Macedo-da-Silva J, Feijoli Santiago V, Palmisano G, Andrade LNDS, Chammas R. Deciphering the Functional Status of Breast Cancers through the Analysis of Their Extracellular Vesicles. Int J Mol Sci 2023; 24:13022. [PMID: 37629204 PMCID: PMC10455604 DOI: 10.3390/ijms241613022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 08/10/2023] [Accepted: 08/18/2023] [Indexed: 08/27/2023] Open
Abstract
Breast cancer (BC) accounts for the highest incidence of tumor-related mortality among women worldwide, justifying the growing search for molecular tools for the early diagnosis and follow-up of BC patients under treatment. Circulating extracellular vesicles (EVs) are membranous nanocompartments produced by all human cells, including tumor cells. Since minimally invasive methods collect EVs, which represent reservoirs of signals for cell communication, these particles have attracted the interest of many researchers aiming to improve BC screening and treatment. Here, we analyzed the cargoes of BC-derived EVs, both proteins and nucleic acids, which yielded a comprehensive list of potential markers divided into four distinct categories, namely, (i) modulation of aggressiveness and growth; (ii) preparation of the pre-metastatic niche; (iii) epithelial-to-mesenchymal transition; and (iv) drug resistance phenotype, further classified according to their specificity and sensitivity as vesicular BC biomarkers. We discuss the therapeutic potential of and barriers to the clinical implementation of EV-based tests, including the heterogeneity of EVs and the available technologies for analyzing their content, to present a consistent, reproducible, and affordable set of markers for further evaluation.
Collapse
Affiliation(s)
- Alexis Germán Murillo Carrasco
- Center for Translational Research in Oncology (LIM24), Instituto do Cancer do Estado de Sao Paulo (ICESP), Hospital das Clinicas da Faculdade de Medicina da Universidade de Sao Paulo (HCFMUSP), São Paulo 01246-000, Brazil; (A.G.M.C.); (A.H.O.); (L.N.d.S.A.)
- Comprehensive Center for Precision Oncology, Universidade de São Paulo, São Paulo 01246-000, Brazil
| | - Andreia Hanada Otake
- Center for Translational Research in Oncology (LIM24), Instituto do Cancer do Estado de Sao Paulo (ICESP), Hospital das Clinicas da Faculdade de Medicina da Universidade de Sao Paulo (HCFMUSP), São Paulo 01246-000, Brazil; (A.G.M.C.); (A.H.O.); (L.N.d.S.A.)
- Comprehensive Center for Precision Oncology, Universidade de São Paulo, São Paulo 01246-000, Brazil
| | - Janaina Macedo-da-Silva
- Departamento de Parasitologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo 05508-000, Brazil; (J.M.-d.-S.); (V.F.S.); (G.P.)
| | - Veronica Feijoli Santiago
- Departamento de Parasitologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo 05508-000, Brazil; (J.M.-d.-S.); (V.F.S.); (G.P.)
| | - Giuseppe Palmisano
- Departamento de Parasitologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo 05508-000, Brazil; (J.M.-d.-S.); (V.F.S.); (G.P.)
- School of Natural Sciences, Macquarie University, Macquarie Park, NSW 2109, Australia
| | - Luciana Nogueira de Sousa Andrade
- Center for Translational Research in Oncology (LIM24), Instituto do Cancer do Estado de Sao Paulo (ICESP), Hospital das Clinicas da Faculdade de Medicina da Universidade de Sao Paulo (HCFMUSP), São Paulo 01246-000, Brazil; (A.G.M.C.); (A.H.O.); (L.N.d.S.A.)
- Comprehensive Center for Precision Oncology, Universidade de São Paulo, São Paulo 01246-000, Brazil
| | - Roger Chammas
- Center for Translational Research in Oncology (LIM24), Instituto do Cancer do Estado de Sao Paulo (ICESP), Hospital das Clinicas da Faculdade de Medicina da Universidade de Sao Paulo (HCFMUSP), São Paulo 01246-000, Brazil; (A.G.M.C.); (A.H.O.); (L.N.d.S.A.)
- Comprehensive Center for Precision Oncology, Universidade de São Paulo, São Paulo 01246-000, Brazil
| |
Collapse
|
6
|
Roy JW, Wajnberg G, Ouellette A, Boucher JE, Lacroix J, Chacko S, Ghosh A, Ouellette RJ, Lewis SM. Small RNA sequencing analysis of peptide-affinity isolated plasma extracellular vesicles distinguishes pancreatic cancer patients from non-affected individuals. Sci Rep 2023; 13:9251. [PMID: 37286718 DOI: 10.1038/s41598-023-36370-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Accepted: 06/02/2023] [Indexed: 06/09/2023] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) has a high fatality rate, mainly due to its asymptomatic nature until late-stage disease and therefore delayed diagnosis that leads to a lack of timely treatment intervention. Consequently, there is a significant need for better methods to screen populations that are at high risk of developing PDAC. Such advances would result in earlier diagnosis, more treatment options, and ultimately better outcomes for patients. Several recent studies have applied the concept of liquid biopsy, which is the sampling of a biofluid (such as blood plasma) for the presence of disease biomarkers, to develop screening approaches for PDAC; several of these studies have focused on analysis of extracellular vesicles (EVs) and their cargoes. While these studies have identified many potential biomarkers for PDAC that are present within EVs, their application to clinical practice is hindered by the lack of a robust, reproducible method for EV isolation and analysis that is amenable to a clinical setting. Our previous research has shown that the Vn96 synthetic peptide is indeed a robust and reproducible method for EV isolation that has the potential to be used in a clinical setting. We have therefore chosen to investigate the utility of the Vn96 synthetic peptide for this isolation of EVs from human plasma and the subsequent detection of small RNA biomarkers of PDAC by Next-generation sequencing (NGS) analysis. We find that analysis of small RNA from Vn96-isolated EVs permits the discrimination of PDAC patients from non-affected individuals. Moreover, analyses of all small RNA species, miRNAs, and lncRNA fragments are most effective at segregating PDAC patients from non-affected individuals. Several of the identified small RNA biomarkers have been previously associated with and/or characterized in PDAC, indicating the validity of our findings, whereas other identified small RNA biomarkers may have novel roles in PDAC or cancer in general. Overall, our results provide a basis for a clinically-amendable detection and/or screening strategy for PDAC using a liquid biopsy approach that relies on Vn96-mediated isolation of EVs from plasma.
Collapse
Affiliation(s)
- Jeremy W Roy
- Atlantic Cancer Research Institute, Moncton, NB, Canada
- Beatrice Hunter Cancer Research Institute, Halifax, NS, Canada
| | | | | | | | | | - Simi Chacko
- Atlantic Cancer Research Institute, Moncton, NB, Canada
| | - Anirban Ghosh
- Atlantic Cancer Research Institute, Moncton, NB, Canada
| | - Rodney J Ouellette
- Atlantic Cancer Research Institute, Moncton, NB, Canada
- Beatrice Hunter Cancer Research Institute, Halifax, NS, Canada
- Department of Chemistry and Biochemistry, Université de Moncton, Moncton, NB, Canada
- Dr. Georges-L.-Dumont University Hospital Centre, Moncton, NB, Canada
| | - Stephen M Lewis
- Atlantic Cancer Research Institute, Moncton, NB, Canada.
- Beatrice Hunter Cancer Research Institute, Halifax, NS, Canada.
- Department of Chemistry and Biochemistry, Université de Moncton, Moncton, NB, Canada.
| |
Collapse
|
7
|
Jalaludin I, Lubman DM, Kim J. A guide to mass spectrometric analysis of extracellular vesicle proteins for biomarker discovery. MASS SPECTROMETRY REVIEWS 2023; 42:844-872. [PMID: 34747512 DOI: 10.1002/mas.21749] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 10/21/2021] [Accepted: 10/27/2021] [Indexed: 06/13/2023]
Abstract
Exosomes (small extracellular vesicles) in living organisms play an important role in processes such as cell proliferation or intercellular communication. Recently, exosomes have been extensively investigated for biomarker discoveries for various diseases. An important aspect of exosome analysis involves the development of enrichment methods that have been introduced for successful isolation of exosomes. These methods include ultracentrifugation, size exclusion chromatography, polyethylene glycol-based precipitation, immunoaffinity-based enrichment, ultrafiltration, and asymmetric flow field-flow fractionation among others. To confirm the presence of exosomes, various characterization methods have been utilized such as Western blot analysis, atomic force microscopy, electron microscopy, optical methods, zeta potential, visual inspection, and mass spectrometry. Recent advances in high-resolution separations, high-performance mass spectrometry and comprehensive proteome databases have all contributed to the successful analysis of exosomes from patient samples. Herein we review various exosome enrichment methods, characterization methods, and recent trends of exosome investigations using mass spectrometry-based approaches for biomarker discovery.
Collapse
Affiliation(s)
- Iqbal Jalaludin
- Department of Chemistry, Chungnam National University, Daejeon, Republic of Korea
| | - David M Lubman
- Department of Surgery, University of Michigan Medical Center, Ann Arbor, Michigan, USA
| | - Jeongkwon Kim
- Department of Chemistry, Chungnam National University, Daejeon, Republic of Korea
- Graduate School of New Drug Discovery and Development, Chungnam National University, Daejeon, Republic of Korea
| |
Collapse
|
8
|
Kowalski RG, Ledreux A, Violette JE, Neumann RT, Ornelas D, Yu X, Griffiths SG, Lewis S, Nash P, Monte AA, Coughlan CM, Deighan C, Grotta JC, Jones WJ, Graner MW. Rapid Activation of Neuroinflammation in Stroke: Plasma and Extracellular Vesicles Obtained on a Mobile Stroke Unit. Stroke 2023; 54:e52-e57. [PMID: 36727508 PMCID: PMC10052772 DOI: 10.1161/strokeaha.122.041422] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 12/16/2022] [Indexed: 02/03/2023]
Abstract
BACKGROUND Neuroinflammation is ubiquitous in acute stroke and worsens outcome. However, the precise timing of the inflammatory response is unknown, hindering the design of acute anti-inflammatory therapeutic interventions. We sought to identify the onset of the neuroinflammatory cascade using a mobile stroke unit. METHODS The study is a proof-of-concept, cohort investigation of ultra-early blood- and extracellular vesicle-derived markers of neuroinflammation and outcome in acute stroke. Blood was obtained, prehospital, on an mobile stroke unit. Outcomes were biomarker concentrations, modified Rankin Scale score, and National Institutes of Health Stroke Scale score. RESULTS Forty-one adults were analyzed, including 15 patients treated on the mobile stroke unit between August 2021 and April 2022, and 26 healthy controls to establish biomarker reference levels. Median patient age was 74 (range, 36-97) years, 60% were female, and 80% White. Ten (67%) were diagnosed as stroke, with 8 (53%) confirmed and 2 likely transient ischemic attack or stroke averted by thrombolysis; 5 were stroke mimics. For strokes, median initial National Institutes of Health Stroke Scale score was 11 (range, 4-19) and 6 (75%) received tPA (tissue-type plasminogen activator). Blood was obtained a median of 58 (range, 36-133) minutes after symptom onset. Within 36 minutes after stroke, plasma IL-6 (interleukin-6), neurofilament light chain, UCH-L1 (ubiquitin C-terminal hydrolase L1), and GFAP (glial fibrillary acidic protein) were elevated by as much as 10 times normal. In EVs, MMP-9 (matrix metalloproteinase-9), CXCL4 (chemokine (C-X-C motif) ligand 4), CRP (C-reactive protein), IL-6, OPN (osteopontin), and PECAM1 (platelet and endothelial cell adhesion molecule 1) were elevated. Inflammatory markers increased rapidly in the first 2 hours and continued rising for 24 hours. CONCLUSIONS The neuroinflammatory cascade was found to be activated within 36 to 133 minutes after stroke and progresses rapidly. This is earlier than observed previously in humans and suggests injury from neuroinflammation occurs faster than had been surmised. These findings could inform development of acute immunomodulatory stroke therapies and lead to new diagnostic tools and improved outcomes.
Collapse
Affiliation(s)
- Robert G Kowalski
- Department of Neurosurgery (R.G.K., A.L., R.T.N., X.Y., M.W.G.)
- Department of Neurology (RGK, CMC, WJJ)
| | - Aurélie Ledreux
- Department of Neurosurgery (R.G.K., A.L., R.T.N., X.Y., M.W.G.)
| | - John E Violette
- UCHealth, University of Colorado Hospital, Aurora (J.E.V., D.O.)
| | | | - David Ornelas
- UCHealth, University of Colorado Hospital, Aurora (J.E.V., D.O.)
| | - Xiaoli Yu
- Department of Neurosurgery (R.G.K., A.L., R.T.N., X.Y., M.W.G.)
| | | | | | | | - Andrew A Monte
- Department of Emergency Medicine (A.A.M.)
- University of Colorado School of Medicine, Aurora (A.A.M.)
| | | | | | - James C Grotta
- Memorial Hermann Hospital-Texas Medical Center, Houston (J.C.G.)
| | | | | |
Collapse
|
9
|
Burton JB, Carruthers NJ, Stemmer PM. Enriching extracellular vesicles for mass spectrometry. MASS SPECTROMETRY REVIEWS 2023; 42:779-795. [PMID: 34632607 DOI: 10.1002/mas.21738] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Revised: 09/19/2021] [Accepted: 09/24/2021] [Indexed: 06/13/2023]
Abstract
Extracellular vesicles from plasma, other body fluids and cell culture media hold great promise in the search for biomarkers. Exosomes in particular, the vesicle type that is secreted after being produced in the endocytic pathway and having a diameter of 30-150 nm, are considered to be a conveyance for signaling molecules and, therefore, to hold valuable information regarding the health and activity status of the cells from which they are released. The vesicular nature of exosomes is central to all methods used to separate them from the highly abundant proteins in plasma and other fluids. The enrichment of the vesicles is essential for mass spectrometry-based analysis as they represent only a very small component of all plasma proteins. The progression of isolation techniques for exosomes from ultracentrifugation through chromatographic separation using hydrophobic packing materials shows that effective enrichment is possible and that high throughput approaches to exosome enrichment are achievable.
Collapse
Affiliation(s)
- Jordan B Burton
- Institute of Environmental Health Sciences, Wayne State University, Detroit, Michigan, USA
| | | | - Paul M Stemmer
- Institute of Environmental Health Sciences, Wayne State University, Detroit, Michigan, USA
| |
Collapse
|
10
|
Zhu J, Tan Z, Zhang J, An M, Khaykin VM, Cuneo KC, Parikh ND, Lubman DM. Sequential Method for Analysis of CTCs and Exosomes from the Same Sample of Patient Blood. ACS OMEGA 2022; 7:37581-37588. [PMID: 36312392 PMCID: PMC9609053 DOI: 10.1021/acsomega.2c04428] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 09/29/2022] [Indexed: 06/16/2023]
Abstract
Circulating tumor cells (CTCs) and exosomes, both released from the primary tumor into peripheral blood, are a promising source of cancer biomarkers. They are detectable in the blood and carry a large diversity of biological molecules, which can be used for the diagnosis and monitoring of minimally invasive cancers. However, due to their intrinsic differences in counts, size, and molecular contents, studies have focused on only one type of vesicle. Herein, we have developed an integrated system to sequentially isolate CTCs and exosomes from a single patient blood sample for further profiling and analysis. The CTCs are isolated using a commercial filtration method and then the remaining blood is processed using multiple cycles of ultracentrifugation to isolate the exosomes. The method uses two available technologies where the eluent from CTC isolation is usually discarded and interfaces them, so that the eluent can be interfaced to exosome isolation methods. The CTCs are identified based on fluorescence staining of their surface markers, while the exosomes are analyzed using transmission electron microscopy, nanosight tracking analysis, and mass spec proteomic analysis. This analysis showed CTCs detected by their surface markers for metastatic hepatocellular carcinoma (HCC), while essentially none were detected for cirrhosis. The exosome analysis resulted in the identification of ∼500-1000 exosome proteins per sample confirmed by detection of exosome surface markers CD9, CD63, CD81, and TSG101 in addition to proteins related to cancer progression. Proteins enriched in HCC exosomes were shown to be involved in the immune response, metastasis, and proliferation.
Collapse
Affiliation(s)
- Jianhui Zhu
- Department
of Surgery, The University of Michigan, 1150 West Medical Center Drive, Ann Arbor, Michigan 48109, United States
| | - Zhijing Tan
- Department
of Surgery, The University of Michigan, 1150 West Medical Center Drive, Ann Arbor, Michigan 48109, United States
| | - Jie Zhang
- Department
of Surgery, The University of Michigan, 1150 West Medical Center Drive, Ann Arbor, Michigan 48109, United States
| | - Mingrui An
- Department
of Surgery, The University of Michigan, 1150 West Medical Center Drive, Ann Arbor, Michigan 48109, United States
| | - Valerie M. Khaykin
- Division
of Gastroenterology and Hepatology, University
of Michigan Medical Center, Ann
Arbor, Michigan 48109, United States
| | - Kyle C. Cuneo
- Department
of Radiation Oncology, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Neehar D. Parikh
- Division
of Gastroenterology and Hepatology, University
of Michigan Medical Center, Ann
Arbor, Michigan 48109, United States
| | - David M. Lubman
- Department
of Surgery, The University of Michigan, 1150 West Medical Center Drive, Ann Arbor, Michigan 48109, United States
| |
Collapse
|
11
|
Hisey CL, Artuyants A, Guo G, Chang V, Reshef G, Middleditch M, Jacob B, Chamley LW, Blenkiron C. Investigating the consistency of extracellular vesicle production from breast cancer subtypes using CELLine adherent bioreactors. JOURNAL OF EXTRACELLULAR BIOLOGY 2022; 1:e60. [PMID: 38938775 PMCID: PMC11080891 DOI: 10.1002/jex2.60] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 08/24/2022] [Accepted: 09/05/2022] [Indexed: 06/29/2024]
Abstract
Extracellular vesicle (EV) research has grown rapidly in recent years, largely due to the potential use of EVs as liquid biopsy biomarkers or therapeutics. However, in-depth characterisation and validation of EVs produced using conventional in vitro cultures can be challenging due to the large area of cell monolayers and volumes of culture media required. To overcome this obstacle, multiple bioreactor designs have been tested for EV production with varying success, but the consistency of EVs produced over time in these systems has not been reported previously. In this study, we demonstrate that several breast cancer cell lines of different subtypes can be cultured simultaneously in space, resource, and time efficient manner using CELLine AD 1000 systems, allowing the consistent production of vast amounts of EVs for downstream experimentation. We report an improved workflow used for inoculating, maintaining, and monitoring the bioreactors, their EV production, and the characterisation of the EVs produced. Lastly, our proteomic analyses of the EVs produced throughout the lifetime of the bioreactors show that core EV-associated proteins are relatively consistent, with few minor variations over time, but that tracking the production of EVs is a convenient method to indirectly monitor the bioreactor and consistency of the yielded EVs. These findings will aid future studies requiring the simultaneous production of large amounts of EVs from several cell lines of different subtypes of a disease and other EV biomanufacturing applications.
Collapse
Affiliation(s)
- Colin L. Hisey
- Hub for Extracellular Vesicle InvestigationsUniversity of AucklandAucklandNew Zealand
- Department of Obstetrics and GynaecologyUniversity of AucklandAucklandNew Zealand
| | - Anastasiia Artuyants
- Hub for Extracellular Vesicle InvestigationsUniversity of AucklandAucklandNew Zealand
- Auckland Cancer Society Research CentreUniversity of AucklandAucklandNew Zealand
| | - George Guo
- Department of PhysiologySchool of Medical SciencesUniversity of AucklandAucklandNew Zealand
| | - Vanessa Chang
- Hub for Extracellular Vesicle InvestigationsUniversity of AucklandAucklandNew Zealand
- Department of Obstetrics and GynaecologyUniversity of AucklandAucklandNew Zealand
| | - Gabrielle Reshef
- Department of Molecular Medicine and PathologyUniversity of AucklandAucklandNew Zealand
| | | | - Bincy Jacob
- School of Biological SciencesUniversity of AucklandAucklandNew Zealand
| | - Lawrence W. Chamley
- Hub for Extracellular Vesicle InvestigationsUniversity of AucklandAucklandNew Zealand
- Department of Obstetrics and GynaecologyUniversity of AucklandAucklandNew Zealand
| | - Cherie Blenkiron
- Hub for Extracellular Vesicle InvestigationsUniversity of AucklandAucklandNew Zealand
- Auckland Cancer Society Research CentreUniversity of AucklandAucklandNew Zealand
- Department of Molecular Medicine and PathologyUniversity of AucklandAucklandNew Zealand
| |
Collapse
|
12
|
Liu H, Liang J, Ye X, Huang M, Ma L, Xie X, Liu D, Cao H, Simal-Gandara J, Rengasamy KRR, Wang Q, Xiao G, Xiao J. The potential role of extracellular vesicles in bioactive compound-based therapy: A review of recent developments. Crit Rev Food Sci Nutr 2022; 63:10959-10973. [PMID: 35648042 DOI: 10.1080/10408398.2022.2081667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Recent studies have explored the field of extracellular vesicles (EVs), driving an increasing interest in their application to human health. EVs have unique physicochemical traits to participate in intercellular communication, thus fostering the idea of using EVs to yield synergistic, preventive, and therapeutic effects. Many reports have shown that EVs contain natural bioactive compounds, such as lipids, proteins, RNA, and other active components that regulate biological processes, thereby contributing to human health. Therefore, in this review, we comprehensively elucidate various facets of the relationship between EVs and bioactive compounds that modulate EVs contents, including RNAs and proteins, discussing different forms of biological regulation. The use of EVs for cargo-loading bioactive compounds to exert biological functions and methods to load bioactive compounds into EVs are also discussed. This review highlighted the effect of EV-delivered bioactive compounds on several therapeutic mechanisms and applications, providing new insight into nutrition and pharmacology.
Collapse
Affiliation(s)
- Huifan Liu
- College of Light Industry and Food, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Lingnan Specialty Food Science and Technology, Guangzhou, Guangdong, China
| | - Jiaxi Liang
- College of Light Industry and Food, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong, China
| | - Xia Ye
- College of Light Industry and Food, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong, China
| | - Miaoru Huang
- College of Light Industry and Food, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong, China
| | - Lukai Ma
- College of Light Industry and Food, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Lingnan Specialty Food Science and Technology, Guangzhou, Guangdong, China
| | - Xi Xie
- College of Light Industry and Food, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Lingnan Specialty Food Science and Technology, Guangzhou, Guangdong, China
| | - Dongjie Liu
- College of Light Industry and Food, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Lingnan Specialty Food Science and Technology, Guangzhou, Guangdong, China
| | - Hui Cao
- Universidade de Vigo, Nutrition and Bromatology Group, Department of Analytical and Food Chemistry, Faculty of Sciences, Ourense, Spain
| | - Jesus Simal-Gandara
- Universidade de Vigo, Nutrition and Bromatology Group, Department of Analytical and Food Chemistry, Faculty of Sciences, Ourense, Spain
| | - Kannan R R Rengasamy
- Center for Transdisciplinary Research, Department of Pharmacology, Saveetha Dental College, Saveetha Institute of Medical and Technical Science, Saveetha University, Chennai, India
| | - Qin Wang
- College of Light Industry and Food, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Lingnan Specialty Food Science and Technology, Guangzhou, Guangdong, China
| | - Gengsheng Xiao
- College of Light Industry and Food, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Lingnan Specialty Food Science and Technology, Guangzhou, Guangdong, China
| | - Jianbo Xiao
- Universidade de Vigo, Nutrition and Bromatology Group, Department of Analytical and Food Chemistry, Faculty of Sciences, Ourense, Spain
- International Research Center for Food Nutrition and Safety, Jiangsu University, Zhenjiang, China
| |
Collapse
|
13
|
Chang LC, Chiu HM, Wu MS, Shen TL. The Role of Small Extracellular Vesicles in the Progression of Colorectal Cancer and Its Clinical Applications. Int J Mol Sci 2022; 23:1379. [PMID: 35163305 PMCID: PMC8835972 DOI: 10.3390/ijms23031379] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2022] [Revised: 01/17/2022] [Accepted: 01/24/2022] [Indexed: 02/01/2023] Open
Abstract
Colorectal cancer (CRC) is one of the most common cancers worldwide and a longstanding critical challenge for public health. Screening has been suggested to effectively reduce both the incidence and mortality of CRC. However, the drawback of the current screening modalities, both stool-based tests and colonoscopies, is limited screening adherence, which reduces the effectiveness of CRC screening. Blood tests are more acceptable than stool tests or colonoscopy as a first-line screening approach. Therefore, identifying blood biomarkers for detecting CRC and its precancerous neoplasms is urgently needed to fulfill the unmet clinical need. Currently, many kinds of blood contents, such as circulating tumor cells, circulating tumor nucleic acids, and extracellular vesicles, have been investigated as biomarkers for CRC detection. Among these, small extracellular vesicles (sEVs) have been demonstrated to detect CRC effectively in recent reports. sEVs enable intercellular shuttling-for instance, trafficking between recipient cancer cells and stromal cells-which can affect tumor initiation, proliferation, angiogenesis, immune regulation; metastasis, the cancer-specific molecules, such as proteins, microRNAs, long noncoding RNAs, and circular RNAs, loaded into cancer-derived sEVs may serve as biomarkers for the detection of cancers, including CRC. Indeed, accumulating evidence has shown that nucleic acids and proteins contained in CRC-derived sEVs are effective as blood biomarkers for CRC detection. However, investigations of the performance of sEVs for diagnosing CRC in clinical trials remains limited. Thus, the effectiveness of sEV biomarkers for diagnosing CRC needs further validation in clinical trials.
Collapse
Affiliation(s)
- Li-Chun Chang
- Department of Internal Medicine, National Taiwan University Hospital, Taipei 100, Taiwan; (L.-C.C.); (H.-M.C.); (M.-S.W.)
- Health Management Center, National Taiwan University Hospital, Taipei 100, Taiwan
| | - Han-Mo Chiu
- Department of Internal Medicine, National Taiwan University Hospital, Taipei 100, Taiwan; (L.-C.C.); (H.-M.C.); (M.-S.W.)
- Health Management Center, National Taiwan University Hospital, Taipei 100, Taiwan
| | - Ming-Shiang Wu
- Department of Internal Medicine, National Taiwan University Hospital, Taipei 100, Taiwan; (L.-C.C.); (H.-M.C.); (M.-S.W.)
| | - Tang-Long Shen
- Department of Plant Pathology and Microbiology, National Taiwan University, Taipei 100, Taiwan
- Center for Biotechnology, National Taiwan University, Taipei 100, Taiwan
- Genome and Systems Biology Degree Program, National Taiwan University, Taipei 100, Taiwan
| |
Collapse
|
14
|
Zhu J, Zhang J, Ji X, Tan Z, Lubman DM. Column-based Technology for CD9-HPLC Immunoaffinity Isolation of Serum Extracellular Vesicles. J Proteome Res 2021; 20:4901-4911. [PMID: 34473505 DOI: 10.1021/acs.jproteome.1c00549] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Serum-derived extracellular vesicles (EVs) are a promising source of biomarkers; however, major challenges in EV separation and proteomic profiling remain for isolating EVs from a small amount, that is, on the microliter scale, of human serum while minimizing the contamination of blood proteins and lipoprotein particles coeluting in EV preparations. Herein we have developed a column-based CD9-antibody-immobilized high-performance liquid chromatography immunoaffinity chromatography(CD9-HPLC-IAC) technology for EV isolation from a microliter scale of serum for downstream proteomic analysis. The CD9-HPLC-IAC method achieved EV isolation from 40 μL of serum in 30 min with a yield of 8.0 × 109 EVs, where EVs were further processed with a postcolumn cleaning step using the 50 kDa molecular weight cut-off filter for the buffer exchange, concentration, and reduction of potentially coeluting serum proteins. In total, 482 proteins were identified in EVs by using liquid chromatography tandem mass spectrometry, including the common exosomal markers such as CD63, CD81, CD82, Alix, and TSG101. The statistical analysis of EV protein content showed that the top 10 serum proteins in EVs were significantly decreased by using the CD9-HPLC-IAC method compared with the use of ultracentrifugation (p = 0.001) and size exclusion chromatography (p = 0.009), and apolipoproteins were significantly reduced 4.8-fold compared with the SEC method (p < 0.001). The result demonstrates the potential of the CD9-HPLC-IAC method for the efficient isolation and proteomic characterization of EVs from a microscale volume of serum.
Collapse
Affiliation(s)
- Jianhui Zhu
- Department of Surgery, University of Michigan Medical Center, Ann Arbor, Michigan 48109, United States
| | - Jie Zhang
- Department of Surgery, University of Michigan Medical Center, Ann Arbor, Michigan 48109, United States
| | - Xiaohui Ji
- Department of Surgery, University of Michigan Medical Center, Ann Arbor, Michigan 48109, United States.,Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Chongqing University Cancer Hospital, Chongqing 400030, China
| | - Zhijing Tan
- Department of Surgery, University of Michigan Medical Center, Ann Arbor, Michigan 48109, United States
| | - David M Lubman
- Department of Surgery, University of Michigan Medical Center, Ann Arbor, Michigan 48109, United States
| |
Collapse
|
15
|
Amrollahi P, Zheng W, Monk C, Li CZ, Hu TY. Nanoplasmonic Sensor Approaches for Sensitive Detection of Disease-Associated Exosomes. ACS APPLIED BIO MATERIALS 2021; 4:6589-6603. [PMID: 35006963 PMCID: PMC9130051 DOI: 10.1021/acsabm.1c00113] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Exosomes are abundantly secreted by most cells that carry membrane and cytosolic factors that can reflect the physiologic state of their source cells and thus have strong potential to serve as biomarkers for early diagnosis, disease staging, and treatment monitoring. However, traditional diagnostic or prognostic applications that might use exosomes are hindered by the lack of rapid and sensitive assays that can exploit their biological information. An array of assay approaches have been developed to address this deficit, including those that integrate immunoassays with nanoplasmonic sensors to measure changes in optical refractive indexes in response to the binding of low concentrations of their targeted molecules. These sensors take advantage of enhanced and tunable interactions between the electron clouds of nanoplasmonic particles and structures and incident electromagnetic radiation to enable isolation-free and ultrasensitive quantification of disease-associated exosome biomarkers present in complex biological samples. These unique advantages make nanoplasmonic sensing one of the most competitive approaches available for clinical applications and point-of-care tests that evaluate exosome-based biomarkers. This review will briefly summarize the origin and clinical utility of exosomes and the limitations of current isolation and analysis approaches before reviewing the specific advantages and limitations of nanoplasmonic sensing devices and indicating what additional developments are necessary to allow the translation of these approaches into clinical applications.
Collapse
Affiliation(s)
- Pouya Amrollahi
- Center of Cellular and Molecular Diagnosis, Tulane University, New Orleans, Louisiana 70118, United States
- School of Biological and Health Systems Engineering, Arizona State University, Tempe, Arizona 85281, United States
| | - Wenshu Zheng
- Center of Cellular and Molecular Diagnosis, Tulane University, New Orleans, Louisiana 70118, United States
| | - Chandler Monk
- Center of Cellular and Molecular Diagnosis, Tulane University, New Orleans, Louisiana 70118, United States
| | - Chen-Zhong Li
- Center of Cellular and Molecular Diagnosis, Tulane University, New Orleans, Louisiana 70118, United States
| | - Tony Ye Hu
- Center of Cellular and Molecular Diagnosis, Tulane University, New Orleans, Louisiana 70118, United States
| |
Collapse
|
16
|
Production of Extracellular Vesicles Using a CELLine Adherent Bioreactor Flask. METHODS IN MOLECULAR BIOLOGY (CLIFTON, N.J.) 2021; 2436:183-192. [PMID: 34490596 DOI: 10.1007/7651_2021_413] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
The efficient production of extracellular vesicles (EVs) from adherent cells in vitro can be challenging when using conventional culture flasks. Issues such as low cell density leading to low EV yield, and the inability to completely remove bovine serum EVs without starvation contribute to this challenge. By comparison, the two-chamber CELLine adherent bioreactor can produce significantly more EVs with improved time, space, and resource efficiency. Furthermore, it is highly accessible and can continually produce EVs using long term cultures without the need for passaging. Lastly, the 10 kDa semipermeable, cellulose acetate membrane separating the cell and media chambers allows for the continual use of bovine serum in the media chamber while preventing bovine EVs from contaminating the conditioned media.
Collapse
|
17
|
Erozenci LA, Piersma SR, Pham TV, Bijnsdorp IV, Jimenez CR. Longitudinal stability of urinary extracellular vesicle protein patterns within and between individuals. Sci Rep 2021; 11:15629. [PMID: 34341426 PMCID: PMC8329217 DOI: 10.1038/s41598-021-95082-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Accepted: 06/29/2021] [Indexed: 02/07/2023] Open
Abstract
The protein content of urinary extracellular vesicles (EVs) is considered to be an attractive non-invasive biomarker source. However, little is known about the consistency and variability of urinary EV proteins within and between individuals over a longer time-period. Here, we evaluated the stability of the urinary EV proteomes of 8 healthy individuals at 9 timepoints over 6 months using data-independent-acquisition mass spectrometry. The 1802 identified proteins had a high correlation amongst all samples, with 40% of the proteome detected in every sample and 90% detected in more than 1 individual at all timepoints. Unsupervised analysis of top 10% most variable proteins yielded person-specific profiles. The core EV-protein-interaction network of 516 proteins detected in all measured samples revealed sub-clusters involved in the biological processes of G-protein signaling, cytoskeletal transport, cellular energy metabolism and immunity. Furthermore, gender-specific expression patterns were detected in the urinary EV proteome. Our findings indicate that the urinary EV proteome is stable in longitudinal samples of healthy subjects over a prolonged time-period, further underscoring its potential for reliable non-invasive diagnostic/prognostic biomarkers.
Collapse
Affiliation(s)
- Leyla A Erozenci
- Department of Medical Oncology, OncoProteomics Laboratory, Cancer Center Amsterdam, Amsterdam UMC, Location VUMC, Amsterdam, The Netherlands
- Department of Urology, Amsterdam UMC, Location VUMC, Amsterdam, The Netherlands
| | - Sander R Piersma
- Department of Medical Oncology, OncoProteomics Laboratory, Cancer Center Amsterdam, Amsterdam UMC, Location VUMC, Amsterdam, The Netherlands
| | - Thang V Pham
- Department of Medical Oncology, OncoProteomics Laboratory, Cancer Center Amsterdam, Amsterdam UMC, Location VUMC, Amsterdam, The Netherlands
| | - Irene V Bijnsdorp
- Department of Medical Oncology, OncoProteomics Laboratory, Cancer Center Amsterdam, Amsterdam UMC, Location VUMC, Amsterdam, The Netherlands.
- Department of Urology, Amsterdam UMC, Location VUMC, Amsterdam, The Netherlands.
| | - Connie R Jimenez
- Department of Medical Oncology, OncoProteomics Laboratory, Cancer Center Amsterdam, Amsterdam UMC, Location VUMC, Amsterdam, The Netherlands.
| |
Collapse
|
18
|
Schneider J, Pultar M, Oesterreicher J, Bobbili MR, Mühleder S, Priglinger E, Redl H, Spittler A, Grillari J, Holnthoner W. Cre mRNA Is Not Transferred by EVs from Endothelial and Adipose-Derived Stromal/Stem Cells during Vascular Network Formation. Int J Mol Sci 2021; 22:ijms22084050. [PMID: 33919955 PMCID: PMC8070972 DOI: 10.3390/ijms22084050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 04/02/2021] [Accepted: 04/12/2021] [Indexed: 11/16/2022] Open
Abstract
Coculture systems employing adipose tissue-derived mesenchymal stromal/stem cells (ASC) and endothelial cells (EC) represent a widely used technique to model vascularization. Within this system, cell-cell communication is crucial for the achievement of functional vascular network formation. Extracellular vesicles (EVs) have recently emerged as key players in cell communication by transferring bioactive molecules between cells. In this study we aimed to address the role of EVs in ASC/EC cocultures by discriminating between cells, which have received functional EV cargo from cells that have not. Therefore, we employed the Cre-loxP system, which is based on donor cells expressing the Cre recombinase, whose mRNA was previously shown to be packaged into EVs and reporter cells containing a construct of floxed dsRed upstream of the eGFP coding sequence. The evaluation of Cre induced color switch in the reporter system via EVs indicated that there is no EV-mediated RNA transmission either between EC themselves or EC and ASC. However, since Cre mRNA was not found present in EVs, it remains unclear if Cre mRNA is generally not packaged into EVs or if EVs are not taken up by the utilized cell types. Our data indicate that this technique may not be applicable to evaluate EV-mediated cell-to-cell communication in an in vitro setting using EC and ASC. Further investigations will require a functional system showing efficient and specific loading of Cre mRNA or protein into EVs.
Collapse
Affiliation(s)
- Jaana Schneider
- AUVA Research Centre, Ludwig Boltzmann Institute for Experimental and Clinical Traumatology, 1200 Vienna, Austria; (J.S.); (M.P.); (J.O.); (M.R.B.); (E.P.); (H.R.); (J.G.)
- Austrian Cluster for Tissue Regeneration, 1200 Vienna, Austria;
| | - Marianne Pultar
- AUVA Research Centre, Ludwig Boltzmann Institute for Experimental and Clinical Traumatology, 1200 Vienna, Austria; (J.S.); (M.P.); (J.O.); (M.R.B.); (E.P.); (H.R.); (J.G.)
- Austrian Cluster for Tissue Regeneration, 1200 Vienna, Austria;
| | - Johannes Oesterreicher
- AUVA Research Centre, Ludwig Boltzmann Institute for Experimental and Clinical Traumatology, 1200 Vienna, Austria; (J.S.); (M.P.); (J.O.); (M.R.B.); (E.P.); (H.R.); (J.G.)
- Austrian Cluster for Tissue Regeneration, 1200 Vienna, Austria;
| | - Madhusudhan Reddy Bobbili
- AUVA Research Centre, Ludwig Boltzmann Institute for Experimental and Clinical Traumatology, 1200 Vienna, Austria; (J.S.); (M.P.); (J.O.); (M.R.B.); (E.P.); (H.R.); (J.G.)
- Austrian Cluster for Tissue Regeneration, 1200 Vienna, Austria;
| | - Severin Mühleder
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Molecular Genetics of Angiogenesis Group, 28029 Madrid, Spain;
| | - Eleni Priglinger
- AUVA Research Centre, Ludwig Boltzmann Institute for Experimental and Clinical Traumatology, 1200 Vienna, Austria; (J.S.); (M.P.); (J.O.); (M.R.B.); (E.P.); (H.R.); (J.G.)
- Austrian Cluster for Tissue Regeneration, 1200 Vienna, Austria;
| | - Heinz Redl
- AUVA Research Centre, Ludwig Boltzmann Institute for Experimental and Clinical Traumatology, 1200 Vienna, Austria; (J.S.); (M.P.); (J.O.); (M.R.B.); (E.P.); (H.R.); (J.G.)
- Austrian Cluster for Tissue Regeneration, 1200 Vienna, Austria;
| | - Andreas Spittler
- Austrian Cluster for Tissue Regeneration, 1200 Vienna, Austria;
- Department of Surgery, Research Labs & Core Facility Flow Cytometry, Medical University of Vienna, 1090 Vienna, Austria
| | - Johannes Grillari
- AUVA Research Centre, Ludwig Boltzmann Institute for Experimental and Clinical Traumatology, 1200 Vienna, Austria; (J.S.); (M.P.); (J.O.); (M.R.B.); (E.P.); (H.R.); (J.G.)
- Austrian Cluster for Tissue Regeneration, 1200 Vienna, Austria;
- Department of Biotechnology, Intitute of Molecular Biotechnology, BOKU-University of Natural Resources and Life Sciences, 1180 Vienna, Austria
| | - Wolfgang Holnthoner
- AUVA Research Centre, Ludwig Boltzmann Institute for Experimental and Clinical Traumatology, 1200 Vienna, Austria; (J.S.); (M.P.); (J.O.); (M.R.B.); (E.P.); (H.R.); (J.G.)
- Austrian Cluster for Tissue Regeneration, 1200 Vienna, Austria;
- Correspondence: ; Tel.: +43-(0)-5-93-93-41961
| |
Collapse
|
19
|
Roy JW, Taylor CA, Beauregard AP, Dhadi SR, Ayre DC, Fry S, Chacko S, Wajnberg G, Joy AP, Mai-Thi NN, Crapoulet N, Barnett DA, Ghosh A, Lewis SM, Ouellette RJ. A multiparametric extraction method for Vn96-isolated plasma extracellular vesicles and cell-free DNA that enables multi-omic profiling. Sci Rep 2021; 11:8085. [PMID: 33850235 PMCID: PMC8044196 DOI: 10.1038/s41598-021-87526-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Accepted: 03/22/2021] [Indexed: 12/13/2022] Open
Abstract
Extracellular vesicles (EVs) have been recognized as a rich material for the analysis of DNA, RNA, and protein biomarkers. A remaining challenge for the deployment of EV-based diagnostic and prognostic assays in liquid biopsy testing is the development of an EV isolation method that is amenable to a clinical diagnostic lab setting and is compatible with multiple types of biomarker analyses. We have previously designed a synthetic peptide, known as Vn96 (ME kit), which efficiently isolates EVs from multiple biofluids in a short timeframe without the use of specialized lab equipment. Moreover, it has recently been shown that Vn96 also facilitates the co-isolation of cell-free DNA (cfDNA) along with EVs. Herein we describe an optimized method for Vn96 affinity-based EV and cfDNA isolation from plasma samples and have developed a multiparametric extraction protocol for the sequential isolation of DNA, RNA, and protein from the same plasma EV and cfDNA sample. We are able to isolate sufficient material by the multiparametric extraction protocol for use in downstream analyses, including ddPCR (DNA) and 'omic profiling by both small RNA sequencing (RNA) and mass spectrometry (protein), from a minimum volume (4 mL) of plasma. This multiparametric extraction protocol should improve the ability to analyse multiple biomarker materials (DNA, RNA and protein) from the same limited starting material, which may improve the sensitivity and specificity of liquid biopsy tests that exploit EV-based and cfDNA biomarkers for disease detection and monitoring.
Collapse
Affiliation(s)
- Jeremy W Roy
- Atlantic Cancer Research Institute, 35 Providence St., Moncton, NB, E1C 8X3, Canada
| | - Catherine A Taylor
- Atlantic Cancer Research Institute, 35 Providence St., Moncton, NB, E1C 8X3, Canada
| | - Annie P Beauregard
- Atlantic Cancer Research Institute, 35 Providence St., Moncton, NB, E1C 8X3, Canada
- Fisheries and Oceans Canada, Aquatic Animal Health, Moncton, NB, Canada
| | - Surendar R Dhadi
- Atlantic Cancer Research Institute, 35 Providence St., Moncton, NB, E1C 8X3, Canada
| | - D Craig Ayre
- Atlantic Cancer Research Institute, 35 Providence St., Moncton, NB, E1C 8X3, Canada
- Immunology, Genetics and Molecular Sciences, University of Medicine and Health Sciences, Basseterre, St. Kitts and Nevis
| | - Sheena Fry
- Atlantic Cancer Research Institute, 35 Providence St., Moncton, NB, E1C 8X3, Canada
- Specialized Health Services Directorate, Health Canada, Ottawa, ON, Canada
| | - Simi Chacko
- Atlantic Cancer Research Institute, 35 Providence St., Moncton, NB, E1C 8X3, Canada
| | - Gabriel Wajnberg
- Atlantic Cancer Research Institute, 35 Providence St., Moncton, NB, E1C 8X3, Canada
| | - Andrew P Joy
- Atlantic Cancer Research Institute, 35 Providence St., Moncton, NB, E1C 8X3, Canada
| | - Ngoc-Nu Mai-Thi
- Atlantic Cancer Research Institute, 35 Providence St., Moncton, NB, E1C 8X3, Canada
| | - Nicolas Crapoulet
- Atlantic Cancer Research Institute, 35 Providence St., Moncton, NB, E1C 8X3, Canada
| | - David A Barnett
- Atlantic Cancer Research Institute, 35 Providence St., Moncton, NB, E1C 8X3, Canada
| | - Anirban Ghosh
- Atlantic Cancer Research Institute, 35 Providence St., Moncton, NB, E1C 8X3, Canada
- Department of Chemistry and Biochemistry, Université de Moncton, Moncton, NB, Canada
| | - Stephen M Lewis
- Atlantic Cancer Research Institute, 35 Providence St., Moncton, NB, E1C 8X3, Canada
- Department of Chemistry and Biochemistry, Université de Moncton, Moncton, NB, Canada
- Beatrice Hunter Cancer Research Institute, Halifax, NS, Canada
| | - Rodney J Ouellette
- Atlantic Cancer Research Institute, 35 Providence St., Moncton, NB, E1C 8X3, Canada.
- Department of Chemistry and Biochemistry, Université de Moncton, Moncton, NB, Canada.
| |
Collapse
|
20
|
Beltraminelli T, Perez CR, De Palma M. Disentangling the complexity of tumor-derived extracellular vesicles. Cell Rep 2021; 35:108960. [PMID: 33826890 DOI: 10.1016/j.celrep.2021.108960] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Revised: 02/21/2021] [Accepted: 03/16/2021] [Indexed: 12/11/2022] Open
Abstract
The tumor microenvironment encompasses an intertwined ensemble of both transformed cancer cells and non-transformed host cells, which together establish a signaling network that regulates tumor progression. By conveying both homo- and heterotypic cell-to-cell communication cues, tumor-derived extracellular vesicles (tEVs) modulate several cancer-associated processes, such as immunosuppression, angiogenesis, invasion, and metastasis. Herein we discuss how recent methodological advances in the isolation and characterization of tEVs may help to broaden our understanding of their functions in tumor biology and, potentially, establish their utility as cancer biomarkers.
Collapse
Affiliation(s)
- Tim Beltraminelli
- Swiss Institute for Experimental Cancer Research (ISREC), School of Life Sciences, Swiss Federal Institute of Technology in Lausanne (EPFL), 1015 Lausanne, Switzerland; Swiss Cancer Center Léman (SCCL), Lausanne, Switzerland
| | - Caleb R Perez
- Swiss Institute for Experimental Cancer Research (ISREC), School of Life Sciences, Swiss Federal Institute of Technology in Lausanne (EPFL), 1015 Lausanne, Switzerland; Swiss Cancer Center Léman (SCCL), Lausanne, Switzerland; Koch Institute for Integrative Cancer Research, Cambridge, MA, USA; Department of Biological Engineering, Massachusetts Institute of Technology (MIT), Cambridge, MA, USA
| | - Michele De Palma
- Swiss Institute for Experimental Cancer Research (ISREC), School of Life Sciences, Swiss Federal Institute of Technology in Lausanne (EPFL), 1015 Lausanne, Switzerland; Swiss Cancer Center Léman (SCCL), Lausanne, Switzerland.
| |
Collapse
|
21
|
Simeone P, Tacconi S, Longo S, Lanuti P, Bravaccini S, Pirini F, Ravaioli S, Dini L, Giudetti AM. Expanding Roles of De Novo Lipogenesis in Breast Cancer. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:3575. [PMID: 33808259 PMCID: PMC8036647 DOI: 10.3390/ijerph18073575] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 03/12/2021] [Accepted: 03/27/2021] [Indexed: 12/23/2022]
Abstract
In recent years, lipid metabolism has gained greater attention in several diseases including cancer. Dysregulation of fatty acid metabolism is a key component in breast cancer malignant transformation. In particular, de novo lipogenesis provides the substrate required by the proliferating tumor cells to maintain their membrane composition and energetic functions during enhanced growth. However, it appears that not all breast cancer subtypes depend on de novo lipogenesis for fatty acid replenishment. Indeed, while breast cancer luminal subtypes rely on de novo lipogenesis, the basal-like receptor-negative subtype overexpresses genes involved in the utilization of exogenous-derived fatty acids, in the synthesis of triacylglycerols and lipid droplets, and fatty acid oxidation. These metabolic differences are specifically associated with genomic and proteomic changes that can perturb lipogenic enzymes and related pathways. This behavior is further supported by the observation that breast cancer patients can be stratified according to their molecular profiles. Moreover, the discovery that extracellular vesicles act as a vehicle of metabolic enzymes and oncometabolites may provide the opportunity to noninvasively define tumor metabolic signature. Here, we focus on de novo lipogenesis and the specific differences exhibited by breast cancer subtypes and examine the functional contribution of lipogenic enzymes and associated transcription factors in the regulation of tumorigenic processes.
Collapse
Affiliation(s)
- Pasquale Simeone
- Department of Medicine and Aging Sciences, University “G. d’Annunzio”, Chieti-Pescara, 66100 Chieti, Italy; (P.S.); (P.L.)
- Center for Advanced Studies and Technology (CAST), University “G. d’Annunzio”, Chieti-Pescara, 66100 Chieti, Italy
| | - Stefano Tacconi
- Department of Biological and Environmental Sciences and Technologies, University of Salento, Via Prov.le Lecce-Monteroni, 73100 Lecce, Italy; (S.T.); (S.L.)
| | - Serena Longo
- Department of Biological and Environmental Sciences and Technologies, University of Salento, Via Prov.le Lecce-Monteroni, 73100 Lecce, Italy; (S.T.); (S.L.)
| | - Paola Lanuti
- Department of Medicine and Aging Sciences, University “G. d’Annunzio”, Chieti-Pescara, 66100 Chieti, Italy; (P.S.); (P.L.)
- Center for Advanced Studies and Technology (CAST), University “G. d’Annunzio”, Chieti-Pescara, 66100 Chieti, Italy
| | - Sara Bravaccini
- IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, 47014 Meldola, Italy; (S.B.); (F.P.); (S.R.)
| | - Francesca Pirini
- IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, 47014 Meldola, Italy; (S.B.); (F.P.); (S.R.)
| | - Sara Ravaioli
- IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, 47014 Meldola, Italy; (S.B.); (F.P.); (S.R.)
| | - Luciana Dini
- Department of Biology and Biotechnology “C. Darwin”, Sapienza University of Rome, 00185 Rome, Italy;
- CNR Nanotec, 73100 Lecce, Italy
| | - Anna M. Giudetti
- Department of Biological and Environmental Sciences and Technologies, University of Salento, Via Prov.le Lecce-Monteroni, 73100 Lecce, Italy; (S.T.); (S.L.)
| |
Collapse
|
22
|
Hisey CL, Tomek P, Nursalim YNS, Chamley LW, Leung E. Towards establishing extracellular vesicle-associated RNAs as biomarkers for HER2+ breast cancer. F1000Res 2020; 9:1362. [PMID: 33447385 PMCID: PMC7780337 DOI: 10.12688/f1000research.27393.3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/23/2021] [Indexed: 12/11/2022] Open
Abstract
Extracellular vesicles (EVs) are emerging as key players in breast cancer progression and hold immense promise as cancer biomarkers. However, difficulties in obtaining sufficient quantities of EVs for the identification of potential biomarkers hampers progress in this area. To circumvent this obstacle, we cultured BT-474 breast cancer cells in a two-chambered bioreactor with CDM-HD serum replacement to significantly improve the yield of cancer cell-associated EVs and eliminate bovine EV contamination. Cancer-relevant mRNAs
BIRC5 (Survivin) and
YBX1,
as well as long-noncoding RNAs
HOTAIR,
ZFAS1, and
AGAP2-AS1 were detected in BT-474 EVs by quantitative RT-PCR. Bioinformatics meta-analyses showed that
BIRC5 and
HOTAIR RNAs were substantially upregulated in breast tumours compared to non-tumour breast tissue, warranting further studies to explore their usefulness as biomarkers in patient EV samples. We envision this effective procedure for obtaining large amounts of cancer-specific EVs will accelerate discovery of EV-associated RNA biomarkers for cancers including HER2+ breast cancer.
Collapse
Affiliation(s)
- Colin L Hisey
- Department of Obstetrics and Gynaecology, University of Auckland, Auckland, New Zealand.,Hub for Extracellular Vesicle Investigations, University of Auckland, Auckland, New Zealand
| | - Petr Tomek
- Auckland Cancer Society Research Centre, University of Auckland, Auckland, New Zealand
| | - Yohanes N S Nursalim
- Department of Obstetrics and Gynaecology, University of Auckland, Auckland, New Zealand
| | - Lawrence W Chamley
- Department of Obstetrics and Gynaecology, University of Auckland, Auckland, New Zealand.,Hub for Extracellular Vesicle Investigations, University of Auckland, Auckland, New Zealand
| | - Euphemia Leung
- Auckland Cancer Society Research Centre, University of Auckland, Auckland, New Zealand.,Maurice Wilkins Centre for Molecular Biodiscovery, University of Auckland, Auckland, New Zealand
| |
Collapse
|
23
|
Quan M, Kuang S. Exosomal Secretion of Adipose Tissue during Various Physiological States. Pharm Res 2020; 37:221. [PMID: 33063193 PMCID: PMC7953939 DOI: 10.1007/s11095-020-02941-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 09/28/2020] [Indexed: 02/06/2023]
Abstract
Exosomes are secreted extracellular vesicles containing a wide array of biologically active components. Recent studies have demonstrated that exosomes serve as an important vehicle for extracellular communication and exert systemic effects on the physiology of organisms. Adipose tissues (ATs) play a key role in balancing systemic energy homeostasis as a central hub for fatty acid metabolism. At the same time, proper endocrine function of ATs has also been shown to be crucial for regulating physiological and metabolic health. The endocrine function of ATs is partially mediated by AT-derived exosomes that regulate metabolic homeostasis, such as insulin signaling, lipolysis, and inflammation. During the pathogenesis of obesity, metabolic syndrome, and cancer, exosomes shed by the resident cells in ATs may also have a role in regulating the progression of these diseases along with associated pathologies. In this review, we summarize the contents of AT-derived exosomes and their effects on various cell populations along with possible underlying molecular mechanisms. We further discuss the potential applications of exosomes as a drug delivery tool and therapeutic target.
Collapse
Affiliation(s)
- Menchus Quan
- Department of Biological Sciences, Purdue University, West Lafayette, Indiana, USA
| | - Shihuan Kuang
- Department of Animal Sciences, Purdue University, West Lafayette, Indiana, USA.
- Center for Cancer Research, Purdue University, West Lafayette, Indiana, USA.
| |
Collapse
|
24
|
Extracellular vesicles as natural therapeutic agents and innate drug delivery systems for cancer treatment: Recent advances, current obstacles, and challenges for clinical translation. Semin Cancer Biol 2020; 80:340-355. [DOI: 10.1016/j.semcancer.2020.08.007] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2020] [Revised: 08/11/2020] [Accepted: 08/12/2020] [Indexed: 12/13/2022]
|
25
|
Jackson KK, Powell RR, Bruce TF, Marcus RK. Solid-phase extraction of exosomes from diverse matrices via a polyester capillary-channeled polymer (C-CP) fiber stationary phase in a spin-down tip format. Anal Bioanal Chem 2020; 412:4713-4724. [PMID: 32468278 PMCID: PMC8825614 DOI: 10.1007/s00216-020-02728-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 05/12/2020] [Accepted: 05/19/2020] [Indexed: 12/17/2022]
Abstract
Exosomes, a subset of the extracellular vesicle (EV) group of organelles, hold great potential for biomarker detection, therapeutics, disease diagnosis, and personalized medicine applications. The promise and potential of these applications are hindered by the lack of an efficient means of isolation, characterization, and quantitation. Current methods for exosome and EV isolation (including ultracentrifugation, microfiltration, and affinity-based techniques) result in impure recoveries with regard to remnant matrix species (e.g., proteins, genetic material) and are performed on clinically irrelevant time and volume scales. To address these issues, a polyethylene terephthalate (PET) capillary-channeled polymer (C-CP) fiber stationary phase is employed for the solid-phase extraction (SPE) of EVs from various matrices using a micropipette tip-based format. The hydrophobic interaction chromatography (HIC) processing and a spin-down workflow are carried out using a table-top centrifuge. Capture and subsequent elution of intact, biologically active exosomes are verified via electron microscopy and bioassays. The performance of this method was evaluated by capture and elution of exosome standards from buffer solution and three biologically relevant matrices: mock urine, reconstituted non-fat milk, and exosome-depleted fetal bovine serum (FBS). Recoveries were evaluated using UV-Vis absorbance spectrophotometry and ELISA assay. The dynamic binding capacity (50%) for the 1-cm-long (~ 5 μL bed volume) tips was determined using a commercial exosome product, yielding a value of ~ 7 × 1011 particles. The novel C-CP fiber spin-down tip approach holds promise for the isolation of exosomes and other EVs from various matrices with high throughput, low cost, and high efficiency. Graphical abstract.
Collapse
Affiliation(s)
- Kaylan K Jackson
- Department of Chemistry, Clemson University, Clemson, SC, 29634, USA
| | - Rhonda R Powell
- Clemson Light Imaging Facility, Clemson University, Clemson, SC, 29634, USA
| | - Terri F Bruce
- Department of Bioengineering, Clemson University, Clemson, SC, 29634, USA
| | - R Kenneth Marcus
- Department of Chemistry, Clemson University, Clemson, SC, 29634, USA.
| |
Collapse
|
26
|
Brocco D, Lanuti P, Simeone P, Bologna G, Pieragostino D, Cufaro MC, Graziano V, Peri M, Di Marino P, De Tursi M, Grassadonia A, Rapposelli IG, Pierdomenico L, Ercolino E, Ciccocioppo F, Del Boccio P, Marchisio M, Natoli C, Miscia S, Tinari N. Circulating Cancer Stem Cell-Derived Extracellular Vesicles as a Novel Biomarker for Clinical Outcome Evaluation. JOURNAL OF ONCOLOGY 2019; 2019:5879616. [PMID: 31827511 PMCID: PMC6885781 DOI: 10.1155/2019/5879616] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Accepted: 09/13/2019] [Indexed: 12/26/2022]
Abstract
The recent introduction of the "precision medicine" concept in oncology pushed cancer research to focus on dynamic measurable biomarkers able to predict responses to novel anticancer therapies in order to improve clinical outcomes. Recently, the involvement of extracellular vesicles (EVs) in cancer pathophysiology has been described, and given their release from all cell types under specific stimuli, EVs have also been proposed as potential biomarkers in cancer. Among the techniques used to study EVs, flow cytometry has a high clinical potential. Here, we have applied a recently developed and simplified flow cytometry method for circulating EV enumeration, subtyping, and isolation from a large cohort of metastatic and locally advanced nonhaematological cancer patients (N = 106); samples from gender- and age-matched healthy volunteers were also analysed. A large spectrum of cancer-related markers was used to analyse differences in terms of peripheral blood circulating EV phenotypes between patients and healthy volunteers, as well as their correlation to clinical outcomes. Finally, EVs from patients and controls were isolated by fluorescence-activated cell sorting, and their protein cargoes were analysed by proteomics. Results demonstrated that EV counts were significantly higher in cancer patients than in healthy volunteers, as previously reported. More interestingly, results also demonstrated that cancer patients presented higher concentrations of circulating CD31+ endothelial-derived and tumour cancer stem cell-derived CD133 + CD326- EVs, when compared to healthy volunteers. Furthermore, higher levels of CD133 + CD326- EVs showed a significant correlation with a poor overall survival. Additionally, proteomics analysis of EV cargoes demonstrated disparities in terms of protein content and function between circulating EVs in cancer patients and healthy controls. Overall, our data strongly suggest that blood circulating cancer stem cell-derived EVs may have a role as a diagnostic and prognostic biomarker in cancer.
Collapse
Affiliation(s)
- D. Brocco
- Clinical Oncology Unit, SS Annunziata Hospital, Chieti, Italy
| | - P. Lanuti
- Department of Medicine and Aging Sciences, University “G. d'Annunzio” of Chieti-Pescara, Chieti, Italy
- Centre on Aging Sciences and Translational Medicine (Ce.S.I.-Me.T.), University “G. D'Annunzio” of Chieti-Pescara, Chieti, Italy
| | - P. Simeone
- Department of Medicine and Aging Sciences, University “G. d'Annunzio” of Chieti-Pescara, Chieti, Italy
- Centre on Aging Sciences and Translational Medicine (Ce.S.I.-Me.T.), University “G. D'Annunzio” of Chieti-Pescara, Chieti, Italy
| | - G. Bologna
- Department of Medicine and Aging Sciences, University “G. d'Annunzio” of Chieti-Pescara, Chieti, Italy
- Centre on Aging Sciences and Translational Medicine (Ce.S.I.-Me.T.), University “G. D'Annunzio” of Chieti-Pescara, Chieti, Italy
| | - D. Pieragostino
- Centre on Aging Sciences and Translational Medicine (Ce.S.I.-Me.T.), University “G. D'Annunzio” of Chieti-Pescara, Chieti, Italy
- Department of Medical, Oral and Biotechnological Sciences, University “G. D'Annunzio” of Chieti-Pescara, Analytical Biochemistry and Proteomics Laboratory, Chieti, Italy
| | - M. C. Cufaro
- Centre on Aging Sciences and Translational Medicine (Ce.S.I.-Me.T.), University “G. D'Annunzio” of Chieti-Pescara, Chieti, Italy
- Department of Medical, Oral and Biotechnological Sciences, University “G. D'Annunzio” of Chieti-Pescara, Analytical Biochemistry and Proteomics Laboratory, Chieti, Italy
| | - V. Graziano
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge CB2 0RE, UK
- Department of Medical, Oral and Biotechnological Sciences, Gabriele D'Annunzio University, Chieti, Italy
| | - M. Peri
- Clinical Oncology Unit, SS Annunziata Hospital, Chieti, Italy
| | - P. Di Marino
- Clinical Oncology Unit, SS Annunziata Hospital, Chieti, Italy
| | - M. De Tursi
- Department of Medical, Oral and Biotechnological Sciences, Gabriele D'Annunzio University, Chieti, Italy
| | - A. Grassadonia
- Department of Medical, Oral and Biotechnological Sciences, Gabriele D'Annunzio University, Chieti, Italy
| | - I. G. Rapposelli
- Department of Medical Oncology, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, Meldola, Italy
| | - L. Pierdomenico
- Department of Medicine and Aging Sciences, University “G. d'Annunzio” of Chieti-Pescara, Chieti, Italy
- Centre on Aging Sciences and Translational Medicine (Ce.S.I.-Me.T.), University “G. D'Annunzio” of Chieti-Pescara, Chieti, Italy
| | - E. Ercolino
- Department of Medicine and Aging Sciences, University “G. d'Annunzio” of Chieti-Pescara, Chieti, Italy
- Centre on Aging Sciences and Translational Medicine (Ce.S.I.-Me.T.), University “G. D'Annunzio” of Chieti-Pescara, Chieti, Italy
| | - F. Ciccocioppo
- Department of Medicine and Aging Sciences, University “G. d'Annunzio” of Chieti-Pescara, Chieti, Italy
- Centre on Aging Sciences and Translational Medicine (Ce.S.I.-Me.T.), University “G. D'Annunzio” of Chieti-Pescara, Chieti, Italy
| | - P. Del Boccio
- Centre on Aging Sciences and Translational Medicine (Ce.S.I.-Me.T.), University “G. D'Annunzio” of Chieti-Pescara, Chieti, Italy
- Department of Medical, Oral and Biotechnological Sciences, University “G. D'Annunzio” of Chieti-Pescara, Analytical Biochemistry and Proteomics Laboratory, Chieti, Italy
| | - M. Marchisio
- Department of Medicine and Aging Sciences, University “G. d'Annunzio” of Chieti-Pescara, Chieti, Italy
- Centre on Aging Sciences and Translational Medicine (Ce.S.I.-Me.T.), University “G. D'Annunzio” of Chieti-Pescara, Chieti, Italy
| | - C. Natoli
- Department of Medical, Oral and Biotechnological Sciences, Gabriele D'Annunzio University, Chieti, Italy
| | - S. Miscia
- Department of Medicine and Aging Sciences, University “G. d'Annunzio” of Chieti-Pescara, Chieti, Italy
- Centre on Aging Sciences and Translational Medicine (Ce.S.I.-Me.T.), University “G. D'Annunzio” of Chieti-Pescara, Chieti, Italy
| | - N. Tinari
- Department of Medical, Oral and Biotechnological Sciences, Gabriele D'Annunzio University, Chieti, Italy
| |
Collapse
|
27
|
Mao X, Jin F. The Exosome And Breast Cancer Cell Plasticity. Onco Targets Ther 2019; 12:9817-9825. [PMID: 31819481 PMCID: PMC6874230 DOI: 10.2147/ott.s214133] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Accepted: 10/05/2019] [Indexed: 12/12/2022] Open
Abstract
Cancer cell plasticity is the ability of cancer cells to reversibly interchange between distinct cell status, which plays a key role in cancer progression. Cancer cell plasticity is now known to be shaped by the secreted nanoparticles termed exosomes which transport proteins and lipids as well as nucleic acids. These aspects have emerged as key determinants of tumor progression and targeting, with approaches such as immunotherapy showing promise in the clinic. While significant strides have been made in this research area, some very interesting questions still warrant more and deeper investigation. We provide a review of the interplay between exosomes and breast cancer cell plasticity, and the potential implication in metastases and drug-resistance.
Collapse
Affiliation(s)
- Xiaoyun Mao
- Department of Breast Surgery, The First Affiliated Hospital of China Medical University, Shenyang City, Liaoning Province, People's Republic of China
| | - Feng Jin
- Department of Breast Surgery, The First Affiliated Hospital of China Medical University, Shenyang City, Liaoning Province, People's Republic of China
| |
Collapse
|
28
|
Griffiths SG, Ezrin A, Jackson E, Dewey L, Doucette AA. A robust strategy for proteomic identification of biomarkers of invasive phenotype complexed with extracellular heat shock proteins. Cell Stress Chaperones 2019; 24:1197-1209. [PMID: 31650515 PMCID: PMC6882979 DOI: 10.1007/s12192-019-01041-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Revised: 10/03/2019] [Accepted: 10/09/2019] [Indexed: 12/17/2022] Open
Abstract
As an extension of their orchestration of intracellular pathways, secretion of extracellular heat shock proteins (HSPs) is an emerging paradigm of homeostasis imperative to multicellular organization. Extracellular HSP is axiomatic to the survival of cells during tumorigenesis; proportional representation of specific HSP family members is indicative of invasive potential and prognosis. Further significance has been added by the knowledge that all cancer-derived exosomes have surface-exposed HSPs that reflect the membrane topology of cells that secrete them. Extracellular HSPs are also characteristic of chronic inflammation and sepsis. Accordingly, interrogation of extracellular HSPs secreted from cell culture models may represent a facile means of identifying translational biomarker signatures for targeting in situ. In the current study, we evaluated a simple peptide-based multivalent HSP affinity approach using the Vn96 peptide for low speed pelleting of HSP complexes from bioreactor cultures of cell lines with varying invasive phenotype in xenotransplant models: U87 (glioblastoma multiforme; invasive); HELA (choriocarcinoma; minimally invasive); HEK293T (virally transformed immortalized; embryonic). Proteomic profiling by bottom-up mass spectrometry revealed a comprehensive range of candidate biomarkers including primary HSP ligands. HSP complexes were associated with additional chaperones of prognostic significance such as protein disulfide isomerases, as well as pleiotropic metabolic enzymes, established as proportionally reflective of invasive phenotype. Biomarkers of inflammatory and mechanotransductive phenotype were restricted to the most invasive cell model U87, including chitinase CHI3L1, lamin C, amyloid derivatives, and histone isoforms.
Collapse
Affiliation(s)
| | - Alan Ezrin
- NX Development Corporation, Louisville, KY, USA
| | - Emily Jackson
- David H. Murdock Research Institute, Kannapolis, NC, USA
| | - Lisa Dewey
- David H. Murdock Research Institute, Kannapolis, NC, USA
| | | |
Collapse
|
29
|
Kim H, Kim DW, Cho JY. Exploring the key communicator role of exosomes in cancer microenvironment through proteomics. Proteome Sci 2019; 17:5. [PMID: 31686989 PMCID: PMC6820930 DOI: 10.1186/s12953-019-0154-z] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Accepted: 10/15/2019] [Indexed: 12/25/2022] Open
Abstract
There have been many attempts to fully understand the mechanism of cancer behavior. Yet, how cancers develop and metastasize still remain elusive. Emerging concepts of cancer biology in recent years have focused on the communication of cancer with its microenvironment, since cancer cannot grow and live alone. Cancer needs to communicate with other cells for survival, and thus they secrete various messengers, including exosomes that contain many proteins, miRNAs, mRNAs, etc., for construction of the tumor microenvironment. Moreover, these intercellular communications between cancer and its microenvironment, including stromal cells or distant cells, can promote tumor growth, metastasis, and escape from immune surveillance. In this review, we summarized the role of proteins in the exosome as communicators between cancer and its microenvironment. Consequently, we present cancer specific exosome proteins and their unique roles in the interaction between cancer and its microenvironment. Clinically, these exosomes might provide useful biomarkers for cancer diagnosis and therapeutic tools for cancer treatment.
Collapse
Affiliation(s)
- HuiSu Kim
- 1Department of Biochemistry, BK21 Plus and Research Institute for Veterinary Science, School of Veterinary Medicine, Seoul National University, Seoul, South Korea
| | - Dong Wook Kim
- 1Department of Biochemistry, BK21 Plus and Research Institute for Veterinary Science, School of Veterinary Medicine, Seoul National University, Seoul, South Korea
| | - Je-Yoel Cho
- 1Department of Biochemistry, BK21 Plus and Research Institute for Veterinary Science, School of Veterinary Medicine, Seoul National University, Seoul, South Korea.,2Department of Biochemistry, College of Veterinary Medicine, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826 Korea
| |
Collapse
|
30
|
Khawar MB, Abbasi MH, Siddique Z, Arif A, Sheikh N. An Update on Novel Therapeutic Warfronts of Extracellular Vesicles (EVs) in Cancer Treatment: Where We Are Standing Right Now and Where to Go in the Future. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:9702562. [PMID: 31428232 PMCID: PMC6683766 DOI: 10.1155/2019/9702562] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 06/03/2019] [Accepted: 07/04/2019] [Indexed: 02/07/2023]
Abstract
Extracellular vesicles (EVs) are a heterogeneous group of membrane-bounded vesicles that are believed to be produced and secreted by presumably all cell types under physiological and pathological conditions, including tumors. EVs are very important vehicles in intercellular communications for both shorter and longer distances and are able to deliver a wide range of cargos including proteins, lipids, and various species of nucleic acids effectively. EVs have been emerging as a novel biotherapeutic platform to efficiently deliver therapeutic cargos to treat a broad range of diseases including cancer. This vast potential of drug delivery lies in their abilities to carry a variety of cargos and their ease in crossing the biological membranes. Similarly, their presence in a variety of body fluids makes them a potential biomarker for early diagnosis, prognostication, and surveillance of cancer. Here, we discuss the relatively least and understudied aspects of EV biology and tried to highlight the obstacles and limitations in their clinical applications and also described most of the new warfronts to beat cancer at multiple stages. However, much more challenges still remain to evaluate EV-based therapeutics, and we are very much hopeful that the current work prompts further discovery.
Collapse
Affiliation(s)
- Muhammad Babar Khawar
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Cell & Molecular Biology Lab, Department of Zoology, University of the Punjab, Lahore, Pakistan
| | - Muddasir Hassan Abbasi
- Cell & Molecular Biology Lab, Department of Zoology, University of the Punjab, Lahore, Pakistan
- Department of Zoology, University of Okara, Okara, Pakistan
| | - Zerwa Siddique
- Centre for Applied Molecular Biology (CAMB), University of the Punjab, Lahore, Pakistan
| | - Amin Arif
- Cell & Molecular Biology Lab, Department of Zoology, University of the Punjab, Lahore, Pakistan
| | - Nadeem Sheikh
- Cell & Molecular Biology Lab, Department of Zoology, University of the Punjab, Lahore, Pakistan
| |
Collapse
|
31
|
Gudbergsson JM, Jønsson K, Simonsen JB, Johnsen KB. Systematic review of targeted extracellular vesicles for drug delivery – Considerations on methodological and biological heterogeneity. J Control Release 2019; 306:108-120. [DOI: 10.1016/j.jconrel.2019.06.006] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Revised: 06/03/2019] [Accepted: 06/03/2019] [Indexed: 12/20/2022]
|
32
|
Bandu R, Oh JW, Kim KP. Mass spectrometry-based proteome profiling of extracellular vesicles and their roles in cancer biology. Exp Mol Med 2019; 51:1-10. [PMID: 30872566 PMCID: PMC6418213 DOI: 10.1038/s12276-019-0218-2] [Citation(s) in RCA: 95] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Accepted: 12/12/2018] [Indexed: 01/19/2023] Open
Abstract
Over the past three decades, extracellular vesicles (EVs) have arisen as important mediators of intercellular communication that are involved in the transmission of biological signals between cells to regulate various biological processes. EVs are largely responsible for intercellular communication through the delivery of bioactive molecules, such as proteins, messenger RNAs (mRNAs), microRNAs (miRNAs), DNAs, lipids, and metabolites. EVs released from cancer cells play a significant role in signal transduction between cancer cells and the surrounding cells, which contributes to the formation of tumors and metastasis in the tumor microenvironment. In addition, EVs released from cancer cells migrate to blood vessels and flow into various biological fluids, including blood and urine. EVs and EV-loaded functional cargoes, including proteins and miRNAs, found in these biological fluids are important biomarkers for cancer diagnosis. Therefore, EV proteomics greatly contributes to the understanding of carcinogenesis and tumor progression and is critical for the development of biomarkers for the early diagnosis of cancer. To explore the potential use of EVs as a gateway to understanding cancer biology and to develop cancer biomarkers, we discuss the mass spectrometric identification and characterization of EV proteins from different cancers. Information provided in this review may help in understanding recent progress regarding EV biology and the potential roles of EVs as new noninvasive biomarkers and therapeutic targets. Tumor cells release tiny membrane-encapsulated packages known as extracellular vesicles containing proteins which could serve as prognostic disease biomarkers or therapeutic targets. Kwang Pyo Kim and colleagues from Kyung Hee University in Yongin, South Korea, review the use of mass spectrometry to profile the diversity of proteins found in these tumor-derived packages. The proteins found in these vesicles help mediate communication between cancer cells and their surrounding tissues. Different tumor types share many of these proteins in common, but there are differences in the protein profile related to cancer-associated biological processes such as metastasis and cell proliferation. Tests based on the proteins contained in these vesicles could help clinicians better identify, diagnose and treat specific cancers, although large, multicenter studies are needed to validate such strategies.
Collapse
Affiliation(s)
- Raju Bandu
- Department of Applied Chemistry, Institute of Natural Science, Global Center for Pharmaceutical Ingredient Materials, Kyung Hee University, Yongin, Republic of Korea
| | - Jae Won Oh
- Department of Applied Chemistry, Institute of Natural Science, Global Center for Pharmaceutical Ingredient Materials, Kyung Hee University, Yongin, Republic of Korea
| | - Kwang Pyo Kim
- Department of Applied Chemistry, Institute of Natural Science, Global Center for Pharmaceutical Ingredient Materials, Kyung Hee University, Yongin, Republic of Korea. .,Department of Biomedical Science and Technology, Kyung Hee Medical Science Research Institute, Kyung Hee University, Seoul, Republic of Korea.
| |
Collapse
|
33
|
Wu CH, Silvers CR, Messing EM, Lee YF. Bladder cancer extracellular vesicles drive tumorigenesis by inducing the unfolded protein response in endoplasmic reticulum of nonmalignant cells. J Biol Chem 2018; 294:3207-3218. [PMID: 30593508 DOI: 10.1074/jbc.ra118.006682] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Revised: 12/27/2018] [Indexed: 12/21/2022] Open
Abstract
The field cancerization effect has been proposed to explain bladder cancer's multifocal and recurrent nature, yet the mechanisms of this effect remain unknown. In this work, using cell biology, flow cytometry, and qPCR analyses, along with a xenograft mouse tumor model, we show that chronic exposure to tumor-derived extracellular vesicles (TEVs) results in the neoplastic transformation of nonmalignant human SV-HUC urothelial cells. Inhibition of EV uptake prevented this transformation. Transformed cells not only possessed several oncogenic properties, such as increased genome instability, loss of cell-cell contact inhibition, and invasiveness, but also displayed altered morphology and cell structures, such as an enlarged cytoplasm with disrupted endoplasmic reticulum (ER) alignment and the accumulation of smaller mitochondria. Exposure of SV-HUC cells to TEVs provoked the unfolded protein response in the endoplasmic reticulum (UPRER). Prolonged induction of UPRER signaling activated the survival branch of the UPRER pathway, in which cells had elevated expression of inositol-requiring enzyme 1 (IRE1), NF-κB, and the inflammatory cytokine leptin, and incurred loss of the pro-apoptotic protein C/EBP homologous protein (CHOP). More importantly, inhibition of ER stress by docosahexaenoic acid prevented TEV-induced transformation. We propose that TEVs promote malignant transformation of predisposed cells by inhibiting pro-apoptotic signals and activating tumor-promoting ER stress-induced unfolded protein response and inflammation. This study provides detailed insight into the mechanisms underlying the bladder cancer field effect and tumor recurrence.
Collapse
Affiliation(s)
- Chia-Hao Wu
- From the Departments of Pathology & Laboratory Medicine and
| | | | - Edward M Messing
- Urology, University of Rochester Medical Center, Rochester, New York 14642
| | - Yi-Fen Lee
- From the Departments of Pathology & Laboratory Medicine and .,Urology, University of Rochester Medical Center, Rochester, New York 14642
| |
Collapse
|
34
|
Chiriacò MS, Bianco M, Nigro A, Primiceri E, Ferrara F, Romano A, Quattrini A, Furlan R, Arima V, Maruccio G. Lab-on-Chip for Exosomes and Microvesicles Detection and Characterization. SENSORS (BASEL, SWITZERLAND) 2018; 18:E3175. [PMID: 30241303 PMCID: PMC6210978 DOI: 10.3390/s18103175] [Citation(s) in RCA: 93] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Revised: 09/05/2018] [Accepted: 09/16/2018] [Indexed: 12/11/2022]
Abstract
Interest in extracellular vesicles and in particular microvesicles and exosomes, which are constitutively produced by cells, is on the rise for their huge potential as biomarkers in a high number of disorders and pathologies as they are considered as carriers of information among cells, as well as being responsible for the spreading of diseases. Current methods of analysis of microvesicles and exosomes do not fulfill the requirements for their in-depth investigation and the complete exploitation of their diagnostic and prognostic value. Lab-on-chip methods have the potential and capabilities to bridge this gap and the technology is mature enough to provide all the necessary steps for a completely automated analysis of extracellular vesicles in body fluids. In this paper we provide an overview of the biological role of extracellular vesicles, standard biochemical methods of analysis and their limits, and a survey of lab-on-chip methods that are able to meet the needs of a deeper exploitation of these biological entities to drive their use in common clinical practice.
Collapse
Affiliation(s)
| | - Monica Bianco
- CNR NANOTEC Institute of Nanotechnology, via Monteroni, 73100 Lecce, Italy.
| | - Annamaria Nigro
- Institute of Experimental Neurology, Division of Neuroscience, San Raffaele Scientific Institute, 20132 Milan, Italy.
| | | | - Francesco Ferrara
- CNR NANOTEC Institute of Nanotechnology, via Monteroni, 73100 Lecce, Italy.
- STMicroelectronics, Via Monteroni, I-73100 Lecce, Italy.
| | - Alessandro Romano
- Institute of Experimental Neurology, Division of Neuroscience, San Raffaele Scientific Institute, 20132 Milan, Italy.
| | - Angelo Quattrini
- Institute of Experimental Neurology, Division of Neuroscience, San Raffaele Scientific Institute, 20132 Milan, Italy.
| | - Roberto Furlan
- Institute of Experimental Neurology, Division of Neuroscience, San Raffaele Scientific Institute, 20132 Milan, Italy.
| | - Valentina Arima
- CNR NANOTEC Institute of Nanotechnology, via Monteroni, 73100 Lecce, Italy.
| | - Giuseppe Maruccio
- CNR NANOTEC Institute of Nanotechnology, via Monteroni, 73100 Lecce, Italy.
- Department of Mathematics and Physics, University of Salento, via Monteroni, 73100 Lecce, Italy.
| |
Collapse
|
35
|
Graner MW. Extracellular vesicles in cancer immune responses: roles of purinergic receptors. Semin Immunopathol 2018; 40:465-475. [PMID: 30209547 DOI: 10.1007/s00281-018-0706-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Accepted: 09/04/2018] [Indexed: 12/24/2022]
Abstract
Extracellular vesicles (EVs) are nano- to micro-scale membrane-enclosed vesicles that are released from presumably all cell types. Tumor cells and immune cells are prodigious generators of EVs often with competing phenotypes in terms of immune suppression versus immune stimulation. Purinergic receptors, proteins that bind diverse purine nucleotides and nucleosides (ATP, ADP, AMP, adenosine), are widely expressed across tissues and cell types, and are prominent players in immune and tumor cell nucleotide metabolism. The effects of purinergic receptor stimulation or agonism tend to produce inflammatory responses that may aid immune stimulation but may also provoke various immune suppression mechanisms, particularly in the tumor microenvironment. EVs released by cells following receptor stimulation are frequently pro-inflammatory, but often also pro-thrombolytic; these EVs may generate an environment that favors tumor progression at the cost of an effective immune response. Purinergic signaling pathways are becoming more recognized as valuable targets in various therapeutic scenarios, including cancer. It is possible that some of those clinically relevant compounds might also impact EV secretion and/or phenotype, which would hopefully capitalize on the immune stimulatory properties of purinergic signaling while minimizing the immune suppressive consequences. This review covers a relatively understudied area in EV biology, but even so, focuses almost exclusively on the purinergic receptors in a very limited capacity. There is much more to evaluate and incorporate into our understanding of extracellular nucleotides in EV biology, and we hope this work prompts further discovery.
Collapse
Affiliation(s)
- Michael W Graner
- Department of Neurosurgery, University of Colorado Denver, Anschutz Medical Campus, RC2, 12700 E 19th Ave, Room 5125, Aurora, CO, 80045, USA.
| |
Collapse
|
36
|
Buzás EI, Tóth EÁ, Sódar BW, Szabó-Taylor KÉ. Molecular interactions at the surface of extracellular vesicles. Semin Immunopathol 2018; 40:453-464. [PMID: 29663027 PMCID: PMC6208672 DOI: 10.1007/s00281-018-0682-0] [Citation(s) in RCA: 222] [Impact Index Per Article: 31.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Accepted: 03/26/2018] [Indexed: 12/21/2022]
Abstract
Extracellular vesicles such as exosomes, microvesicles, apoptotic bodies, and large oncosomes have been shown to participate in a wide variety of biological processes and are currently under intense investigation in many different fields of biomedicine. One of the key features of extracellular vesicles is that they have relatively large surface compared to their volume. Some extracellular vesicle surface molecules are shared with those of the plasma membrane of the releasing cell, while other molecules are characteristic for extracellular vesicular surfaces. Besides proteins, lipids, glycans, and nucleic acids are also players of extracellular vesicle surface interactions. Being secreted and present in high number in biological samples, collectively extracellular vesicles represent a uniquely large interactive surface area which can establish contacts both with cells and with molecules in the extracellular microenvironment. Here, we provide a brief overview of known components of the extracellular vesicle surface interactome and highlight some already established roles of the extracellular vesicle surface interactions in different biological processes in health and disease.
Collapse
Affiliation(s)
- Edit I Buzás
- Department of Genetics, Cell- and Immunobiology, Semmelweis University, Budapest, Hungary.
- MTA-SE Immune-Proteogenomics Research Group, Budapest, Hungary.
| | - Eszter Á Tóth
- Department of Genetics, Cell- and Immunobiology, Semmelweis University, Budapest, Hungary
| | - Barbara W Sódar
- Department of Genetics, Cell- and Immunobiology, Semmelweis University, Budapest, Hungary
| | - Katalin É Szabó-Taylor
- Department of Genetics, Cell- and Immunobiology, Semmelweis University, Budapest, Hungary
| |
Collapse
|
37
|
Haraszti RA, Miller R, Didiot MC, Biscans A, Alterman JF, Hassler MR, Roux L, Echeverria D, Sapp E, DiFiglia M, Aronin N, Khvorova A. Optimized Cholesterol-siRNA Chemistry Improves Productive Loading onto Extracellular Vesicles. Mol Ther 2018; 26:1973-1982. [PMID: 29937418 DOI: 10.1016/j.ymthe.2018.05.024] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Revised: 05/27/2018] [Accepted: 05/30/2018] [Indexed: 01/01/2023] Open
Abstract
Extracellular vesicles are promising delivery vesicles for therapeutic RNAs. Small interfering RNA (siRNA) conjugation to cholesterol enables efficient and reproducible loading of extracellular vesicles with the therapeutic cargo. siRNAs are typically chemically modified to fit an application. However, siRNA chemical modification pattern has not been specifically optimized for extracellular vesicle-mediated delivery. Here we used cholesterol-conjugated, hydrophobically modified asymmetric siRNAs (hsiRNAs) to evaluate the effect of backbone, 5'-phosphate, and linker chemical modifications on productive hsiRNA loading onto extracellular vesicles. hsiRNAs with a combination of 5'-(E)-vinylphosphonate and alternating 2'-fluoro and 2'-O-methyl backbone modifications outperformed previously used partially modified siRNAs in extracellular vesicle-mediated Huntingtin silencing in neurons. Between two commercially available linkers (triethyl glycol [TEG] and 2-aminobutyl-1-3-propanediol [C7]) widely used to attach cholesterol to siRNAs, TEG is preferred compared to C7 for productive exosomal loading. Destabilization of the linker completely abolished silencing activity of loaded extracellular vesicles. The loading of cholesterol-conjugated siRNAs was saturated at ∼3,000 siRNA copies per extracellular vesicle. Overloading impaired the silencing activity of extracellular vesicles. The data reported here provide an optimization scheme for the successful use of hydrophobic modification as a strategy for productive loading of RNA cargo onto extracellular vesicles.
Collapse
Affiliation(s)
- Reka Agnes Haraszti
- RNA Therapeutics Institute, University of Massachusetts Medical School, Worcester, MA, USA; Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA, USA
| | - Rachael Miller
- RNA Therapeutics Institute, University of Massachusetts Medical School, Worcester, MA, USA; Department of Medicine, University of Massachusetts Medical School, Worcester, MA, USA
| | - Marie-Cecile Didiot
- RNA Therapeutics Institute, University of Massachusetts Medical School, Worcester, MA, USA; Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA, USA
| | - Annabelle Biscans
- RNA Therapeutics Institute, University of Massachusetts Medical School, Worcester, MA, USA; Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA, USA
| | - Julia F Alterman
- RNA Therapeutics Institute, University of Massachusetts Medical School, Worcester, MA, USA; Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA, USA
| | - Matthew R Hassler
- RNA Therapeutics Institute, University of Massachusetts Medical School, Worcester, MA, USA; Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA, USA
| | - Loic Roux
- RNA Therapeutics Institute, University of Massachusetts Medical School, Worcester, MA, USA; Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA, USA
| | - Dimas Echeverria
- RNA Therapeutics Institute, University of Massachusetts Medical School, Worcester, MA, USA; Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA, USA
| | - Ellen Sapp
- Mass General Institute for Neurodegenerative Disease, Boston, MA, USA
| | - Marian DiFiglia
- Mass General Institute for Neurodegenerative Disease, Boston, MA, USA
| | - Neil Aronin
- RNA Therapeutics Institute, University of Massachusetts Medical School, Worcester, MA, USA; Department of Medicine, University of Massachusetts Medical School, Worcester, MA, USA.
| | - Anastasia Khvorova
- RNA Therapeutics Institute, University of Massachusetts Medical School, Worcester, MA, USA; Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA, USA.
| |
Collapse
|
38
|
Biscans A, Haraszti RA, Echeverria D, Miller R, Didiot MC, Nikan M, Roux L, Aronin N, Khvorova A. Hydrophobicity of Lipid-Conjugated siRNAs Predicts Productive Loading to Small Extracellular Vesicles. Mol Ther 2018; 26:1520-1528. [PMID: 29699940 DOI: 10.1016/j.ymthe.2018.03.019] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Revised: 03/28/2018] [Accepted: 03/28/2018] [Indexed: 12/28/2022] Open
Abstract
Small extracellular vesicles (sEVs) show promise as natural nano-devices for delivery of therapeutic RNA, but efficient loading of therapeutic RNA remains a challenge. We have recently shown that the attachment of cholesterol to small interfering RNAs (siRNAs) enables efficient and productive loading into sEVs. Here, we systematically explore the ability of lipid conjugates-fatty acids, sterols, and vitamins-to load siRNAs into sEVs and support gene silencing in primary neurons. Hydrophobicity of the conjugated siRNAs defined loading efficiency and the silencing activity of siRNA-sEVs complexes. Vitamin-E-conjugated siRNA supported the best loading into sEVs and productive RNA delivery to neurons.
Collapse
Affiliation(s)
- Annabelle Biscans
- RNA Therapeutics Institute, University of Massachusetts Medical School, Worcester, MA 01605, USA; Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Reka A Haraszti
- RNA Therapeutics Institute, University of Massachusetts Medical School, Worcester, MA 01605, USA; Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Dimas Echeverria
- RNA Therapeutics Institute, University of Massachusetts Medical School, Worcester, MA 01605, USA; Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Rachael Miller
- RNA Therapeutics Institute, University of Massachusetts Medical School, Worcester, MA 01605, USA; Department of Medicine, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Marie-Cecile Didiot
- RNA Therapeutics Institute, University of Massachusetts Medical School, Worcester, MA 01605, USA; Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | | | - Loic Roux
- RNA Therapeutics Institute, University of Massachusetts Medical School, Worcester, MA 01605, USA; Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Neil Aronin
- RNA Therapeutics Institute, University of Massachusetts Medical School, Worcester, MA 01605, USA; Department of Medicine, University of Massachusetts Medical School, Worcester, MA 01605, USA.
| | - Anastasia Khvorova
- RNA Therapeutics Institute, University of Massachusetts Medical School, Worcester, MA 01605, USA; Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01605, USA.
| |
Collapse
|
39
|
Schwich E, Rebmann V. The Inner and Outer Qualities of Extracellular Vesicles for Translational Purposes in Breast Cancer. Front Immunol 2018; 9:584. [PMID: 29632535 PMCID: PMC5879062 DOI: 10.3389/fimmu.2018.00584] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Accepted: 03/08/2018] [Indexed: 12/14/2022] Open
Abstract
Breast cancer (BC) is the second most common cause of cancer mortality of women worldwide. BC is a systemic disease with a highly heterogeneous course of disease. Therefore, prognostic and diagnostic biomarkers are required to improve the clinical risk management. Cancer-derived or cancer-associated extracellular vesicles (EVs) procured from the bloodstream of BC patients offer a novel platform for the qualitative and quantitative screening and establishment of biomarkers. Here, we focus on common aspects of EVs, on the function of BC-derived EVs and their translational potential considering the EV abundancy, intravesicular as well as outer membrane-anchored composition and current challenges of implementation in clinical practice.
Collapse
Affiliation(s)
- Esther Schwich
- Institute for Transfusion Medicine, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Vera Rebmann
- Institute for Transfusion Medicine, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| |
Collapse
|
40
|
Joy AP, Ayre DC, Chute IC, Beauregard AP, Wajnberg G, Ghosh A, Lewis SM, Ouellette RJ, Barnett DA. Proteome profiling of extracellular vesicles captured with the affinity peptide Vn96: comparison of Laemmli and TRIzol© protein-extraction methods. J Extracell Vesicles 2018; 7:1438727. [PMID: 29511462 PMCID: PMC5827780 DOI: 10.1080/20013078.2018.1438727] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Accepted: 01/30/2018] [Indexed: 12/21/2022] Open
Abstract
Sample amount is often a limiting factor for multi-parametric analyses that encompass at least three areas of '-omics' research: genomics, transcriptomics and proteomics. Limited sample amounts are also an important consideration when these multi-parametric analyses are performed on extracellular vesicles (EVs), as the amount of EVs (and EV cargo) that can be isolated is often very low. It is well understood that a monophasic solution of phenol and guanidine isothiocyanate (i.e. TRIzol©) can simultaneously isolate DNA, RNA and proteins from biological samples; however, it is most commonly used for the extraction of RNA. Validation of this reagent for the isolation of multiple classes of biological molecules from EVs would provide a widely applicable method for performing multi-parametric analyses of EV material. In this report, we describe a comparison of proteins identified from EVs processed with either TRIzol© or the conventional Laemmli buffer protein-extraction reagents. EVs were isolated from 3 mL of cell-culture supernatant derived from MCF-10A, MCF-7 and MDA-MB-231 cells using the Vn96 EV capture technology. For the TRIzol© extraction protocol, proteins were precipitated with acetone from the organic phase and then re-solubilized in a mixture of 8M urea, 0.2% SDS and 1 M Tris-HCl pH 6.8, followed by dilution in 5× loading buffer prior to fractionation with 1D SDS-PAGE. NanoLC-MS/MS of the trypsin-digested proteins was used to generate proteomic profiles from EV protein samples extracted with each method. Of the identified proteins, 57.7%, 69.2% and 57.0% were common to both extraction methods for EVs from MCF-10A, MCF-7 and MDA-MB-231, respectively. Our results suggest that TRIzol© extraction of proteins from EVs has significant equivalence to the traditional Laemmli method. The advantage of using TRIzol
Collapse
Affiliation(s)
| | | | - Ian C. Chute
- Atlantic Cancer Research Institute, Moncton, Canada
| | | | | | - Anirban Ghosh
- Atlantic Cancer Research Institute, Moncton, Canada
- Département de Chimie et Biochimie, Université de Moncton, Pavillon Rémi-Rossignol, Moncton, Canada
| | - Stephen M. Lewis
- Atlantic Cancer Research Institute, Moncton, Canada
- Department of Microbiology and Immunology, Dalhousie University, Halifax, Canada
- Department of Biology, University of New Brunswick, Saint John, Canada
| | - Rodney J. Ouellette
- Atlantic Cancer Research Institute, Moncton, Canada
- Département de Chimie et Biochimie, Université de Moncton, Pavillon Rémi-Rossignol, Moncton, Canada
| | - David A. Barnett
- Atlantic Cancer Research Institute, Moncton, Canada
- Département de Chimie et Biochimie, Université de Moncton, Pavillon Rémi-Rossignol, Moncton, Canada
| |
Collapse
|
41
|
Bebelman MP, Smit MJ, Pegtel DM, Baglio SR. Biogenesis and function of extracellular vesicles in cancer. Pharmacol Ther 2018; 188:1-11. [PMID: 29476772 DOI: 10.1016/j.pharmthera.2018.02.013] [Citation(s) in RCA: 549] [Impact Index Per Article: 78.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Extracellular vesicles (EVs) are heterogeneous multi-signal messengers that support cancer growth and dissemination by mediating the tumor-stroma crosstalk. Exosomes are a subtype of EVs that originate from the limiting membrane of late endosomes, and as such contain information linked to both the intrinsic cell "state" and the extracellular signals cells received from their environment. Resolving the signals affecting exosome biogenesis, cargo sorting and release will increase our understanding of tumorigenesis. In this review we highlight key cell biological processes that couple exosome biogenesis to cargo sorting in cancer cells. Moreover, we discuss how the bidirectional communication between tumor and non-malignant cells affect cancer growth and metastatic behavior.
Collapse
Affiliation(s)
- Maarten P Bebelman
- Department of Pathology, Cancer Center Amsterdam, VU University Medical Center, Amsterdam, The Netherlands; Division of Medicinal Chemistry, Amsterdam Institute for Molecules Medicines and Systems, VU University, Amsterdam, The Netherlands
| | - Martine J Smit
- Division of Medicinal Chemistry, Amsterdam Institute for Molecules Medicines and Systems, VU University, Amsterdam, The Netherlands
| | - D Michiel Pegtel
- Department of Pathology, Cancer Center Amsterdam, VU University Medical Center, Amsterdam, The Netherlands
| | - S Rubina Baglio
- Department of Pathology, Cancer Center Amsterdam, VU University Medical Center, Amsterdam, The Netherlands.
| |
Collapse
|
42
|
Bathini S, Raju D, Badilescu S, Kumar A, Ouellette RJ, Ghosh A, Packirisamy M. Nano-Bio Interactions of Extracellular Vesicles with Gold Nanoislands for Early Cancer Diagnosis. RESEARCH (WASHINGTON, D.C.) 2018; 2018:3917986. [PMID: 31549028 PMCID: PMC6750071 DOI: 10.1155/2018/3917986] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Accepted: 09/19/2018] [Indexed: 12/31/2022]
Abstract
Extracellular vesicles or exosomes are membrane encapsulated biological nanometric particles secreted virtually by all types of cells throughout the animal kingdom. They carry a cargo of active molecules to proximal and distal cells of the body as mechanism of physiological communication, to maintain natural homeostasis as well as pathological responses. Exosomes carry a tremendous potential for liquid biopsy and therapeutic applications. Thus, there is a global demand for simple and robust exosome isolation methods amenable to point-of-care diagnosis and quality control of therapeutic exosome manufacturing. This can be achieved by molecular profiling of the exosomes for use with specific sets of molecular-markers for diagnosis and quality control. Liquid biopsy is undoubtedly the most promising diagnosis process to advance "personalized medicine." Currently, liquid biopsy is based on circulating cancer cells, cell free-DNA, or exosomes. Exosomes potentially provide promise for early-stage diagnostic possibility; in order to facilitate superior diagnosis and isolation of exosomes, a novel platform is developed to detect and capture them, based on localized surface plasmon resonance (LSPR) of gold nanoislands, through strong affinity between exosomes and peptide called Venceremin or Vn96. Physical modeling, based on the characteristics of the gold nanoislands and the bioentities involved in the sensing, is also developed to determine the detection capability of the platform, which is optimized experimentally at each stage. Preliminary results and modeling present a relationship between the plasmonic shift and the concentration of exosomes and, essentially, indicate possibilities for label-free early diagnosis.
Collapse
Affiliation(s)
- S. Bathini
- 1Optical Bio-Microsystems Laboratory, Department of Mechanical Industrial and Aerospace Engineering, Concordia University, Montreal, Canada
| | - D. Raju
- 1Optical Bio-Microsystems Laboratory, Department of Mechanical Industrial and Aerospace Engineering, Concordia University, Montreal, Canada
| | - S. Badilescu
- 1Optical Bio-Microsystems Laboratory, Department of Mechanical Industrial and Aerospace Engineering, Concordia University, Montreal, Canada
| | - A. Kumar
- 2Atlantic Cancer Research Institute, Moncton, New Brunswick, Canada
| | - R. J. Ouellette
- 2Atlantic Cancer Research Institute, Moncton, New Brunswick, Canada
| | - A. Ghosh
- 2Atlantic Cancer Research Institute, Moncton, New Brunswick, Canada
| | - M. Packirisamy
- 1Optical Bio-Microsystems Laboratory, Department of Mechanical Industrial and Aerospace Engineering, Concordia University, Montreal, Canada
| |
Collapse
|