1
|
Climate-Resilient Microbial Biotechnology: A Perspective on Sustainable Agriculture. SUSTAINABILITY 2022. [DOI: 10.3390/su14095574] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
We designed this review to describe a compilation of studies to enlighten the concepts of plant–microbe interactions, adopted protocols in smart crop farming, and biodiversity to reaffirm sustainable agriculture. The ever-increasing use of agrochemicals to boost crop production has created health hazards to humans and the environment. Microbes can bring up the hidden strength of plants, augmenting disease resistance and yield, hereafter, crops could be grown without chemicals by harnessing microbes that live in/on plants and soil. This review summarizes an understanding of the functions and importance of indigenous microbial communities; host–microbial and microbial–microbial interactions; simplified experimentally controlled synthetic flora used to perform targeted operations; maintaining the molecular mechanisms; and microbial agent application technology. It also analyzes existing problems and forecasts prospects. The real advancement of microbiome engineering requires a large number of cycles to obtain the necessary ecological principles, precise manipulation of the microbiome, and predictable results. To advance this approach, interdisciplinary collaboration in the areas of experimentation, computation, automation, and applications is required. The road to microbiome engineering seems to be long; however, research and biotechnology provide a promising approach for proceeding with microbial engineering and address persistent social and environmental issues.
Collapse
|
2
|
Roy R, Ray S, Chowdhury A, Anand R. Tunable Multiplexed Whole-Cell Biosensors as Environmental Diagnostics for ppb-Level Detection of Aromatic Pollutants. ACS Sens 2021; 6:1933-1939. [PMID: 33973468 DOI: 10.1021/acssensors.1c00329] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Aromatics such as phenols, benzene, and toluene are carcinogenic xenobiotics which are known to pollute water resources. By employing synthetic biology approaches combined with a structure-guided design, we created a tunable array of whole-cell biosensors (WCBs). The MopR genetic system that has the natural ability to sense and degrade phenol was adapted to detect phenol down to ∼1 ppb, making this sensor capable of directly detecting phenol in permissible limits in drinking water. Importantly, by using a single WCB design, we engineered mutations into the MopR gene that enabled generation of a battery of sensors for a wide array of pollutants. The engineered WCBs were able to sense inert compounds like benzene and xylene which lack active functional groups, without any loss in sensitivity. Overall, this universal programmable biosensor platform can be used to create WCBs that can be deployed on field for rapid testing and screening of suitable drinking water sources.
Collapse
Affiliation(s)
- Rohita Roy
- Department of Chemistry, Indian Institute of Technology Bombay Powai, Mumbai 400076, India
| | - Shamayeeta Ray
- Department of Chemistry, Indian Institute of Technology Bombay Powai, Mumbai 400076, India
| | - Arindam Chowdhury
- Department of Chemistry, Indian Institute of Technology Bombay Powai, Mumbai 400076, India
| | - Ruchi Anand
- Department of Chemistry, Indian Institute of Technology Bombay Powai, Mumbai 400076, India
- DBT-Welcome Trust India Alliance Senior Fellow, Mumbai 400076, India
| |
Collapse
|
3
|
Ali SA, Mittal D, Kaur G. In-situ monitoring of xenobiotics using genetically engineered whole-cell-based microbial biosensors: recent advances and outlook. World J Microbiol Biotechnol 2021; 37:81. [PMID: 33843020 DOI: 10.1007/s11274-021-03024-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Accepted: 02/25/2021] [Indexed: 02/07/2023]
Abstract
Industrialisation, directly or indirectly, exposes humans to various xenobiotics. The increased magnitude of chemical pesticides and toxic heavy metals in the environment, as well as their intrusion into the food chain, seriously threatens human health. Therefore, the surveillance of xenobiotics is crucial for social safety and security. Online investigation by traditional methods is not sufficient for the detection and identification of such compounds because of the high costs and their complexity. Advancement in the field of genetic engineering provides a potential opportunity to use genetically modified microorganisms. In this regard, whole-cell-based microbial biosensors (WCBMB) represent an essential tool that couples genetically engineered organisms with an operator/promoter derived from a heavy metal-resistant operon combined with a regulatory protein in the gene circuit. The plasmid controls the expression of the reporter gene, such as gfp, luc, lux and lacZ, to an inducible gene promoter and has been widely applied to assay toxicity and bioavailability. This review summarises the recent trends in the development and application of microbial biosensors and the use of mobile genes for biomedical and environmental safety concerns.
Collapse
Affiliation(s)
- Syed Azmal Ali
- Proteomics and Cell Biology Lab, Animal Biotechnology Center, National Dairy Research Institute, Karnal, Haryana, India. .,Proteomics and Cell Biology Lab, Animal Biotechnology Center, ICAR-National Dairy Research Institute, 132001, Karnal, Haryana, India.
| | - Deepti Mittal
- Animal Biochemistry Division, National Dairy Research Institute, Karnal, Haryana, India
| | - Gurjeet Kaur
- Centre for Healthy Brain Ageing, School of Psychiatry, University of New South Wales, 2052, Sydney, NSW, Australia
| |
Collapse
|
4
|
Zeng N, Wu Y, Chen W, Huang Q, Cai P. Whole-Cell Microbial Bioreporter for Soil Contaminants Detection. Front Bioeng Biotechnol 2021; 9:622994. [PMID: 33708764 PMCID: PMC7940511 DOI: 10.3389/fbioe.2021.622994] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Accepted: 01/22/2021] [Indexed: 11/16/2022] Open
Abstract
Anthropogenic activities have released various contaminants into soil that pose a serious threat to the ecosystem and human well-being. Compared to conventional analytical methodologies, microbial cell-based bioreporters are offering a flexible, rapid, and cost-effective strategy to assess the environmental risks. This review aims to summarize the recent progress in the application of bioreporters in soil contamination detection and provide insight into the challenges and current strategies. The biosensing principles and genetic circuit engineering are introduced. Developments of bioreporters to detect and quantify heavy metal and organic contaminants in soil are reviewed. Moreover, future opportunities of whole-cell bioreporters for soil contamination monitoring are discussed.
Collapse
Affiliation(s)
- Ni Zeng
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China.,College of Resources and Environment, Huazhong Agricultural University, Wuhan, China
| | - Yichao Wu
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China.,College of Resources and Environment, Huazhong Agricultural University, Wuhan, China
| | - Wenli Chen
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
| | - Qiaoyun Huang
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China.,College of Resources and Environment, Huazhong Agricultural University, Wuhan, China
| | - Peng Cai
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China.,College of Resources and Environment, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
5
|
Plekhanova YV, Reshetilov AN. Microbial Biosensors for the Determination of Pesticides. JOURNAL OF ANALYTICAL CHEMISTRY 2019. [DOI: 10.1134/s1061934819120098] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
6
|
Bilal M, Iqbal HM. Microbial-derived biosensors for monitoring environmental contaminants: Recent advances and future outlook. PROCESS SAFETY AND ENVIRONMENTAL PROTECTION 2019. [DOI: 10.1016/j.psep.2019.01.032] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
7
|
Dinca V, Zaharie-Butucel D, Stanica L, Brajnicov S, Marascu V, Bonciu A, Cristocea A, Gaman L, Gheorghiu M, Astilean S, Vasilescu A. Functional Micrococcus lysodeikticus layers deposited by laser technique for the optical sensing of lysozyme. Colloids Surf B Biointerfaces 2017; 162:98-107. [PMID: 29190474 DOI: 10.1016/j.colsurfb.2017.11.058] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Revised: 11/13/2017] [Accepted: 11/22/2017] [Indexed: 12/17/2022]
Abstract
Whole cell optical biosensors, made by immobilizing whole algal, bacterial or mammalian cells on various supports have found applications in several fields, from ecology and ecotoxicity testing to biopharmaceutical production or medical diagnostics. We hereby report the deposition of functional bacterial layers of Micrococcus lysodeikticus (ML) via Matrix-Assisted Pulsed Laser Evaporation (MAPLE) on poly(diallyldimethylamonium) (PDDA)-coated-glass slides and their application as an optical biosensor for the detection of lysozyme in serum. Lysozyme is an enzyme upregulated in inflammatory diseases and ML is an enzymatic substrate for this enzyme. The MAPLE-deposited bacterial interfaces were characterised by Scanning Electron Microscopy (SEM), Atomic Force Microscopy (AFM), Fourier-Transformed Infrared Spectroscopy (FTIR), Raman and optical microscopy and were compared with control interfaces deposited via layer-by-layer on the same substrate. After MAPLE deposition and coating with graphene oxide (GO), ML-modified interfaces retained their functionality and sensitivity to lysozyme's lytic action. The optical biosensor detected lysozyme in undiluted serum in the clinically relevant range up to 10μgmL-1, in a fast and simple manner.
Collapse
Affiliation(s)
- Valentina Dinca
- National Institute for Laser, Plasma and Radiation Physics (INFLPR), 409 Atomistilor, 077125, Magurele, Romania
| | - Diana Zaharie-Butucel
- Nanobiophotonics Center, Interdisciplinary Research Institute in Bio-Nano-Sciences, 42 Treboniu Laurian, Cluj-Napoca, Romania
| | - Luciana Stanica
- International Centre of Biodynamics, 1B Intrarea Portocalelor, 060101, Bucharest, Romania
| | - Simona Brajnicov
- National Institute for Laser, Plasma and Radiation Physics (INFLPR), 409 Atomistilor, 077125, Magurele, Romania; University of Craiova, Faculty of Mathematics and Natural Science, 13 Alexandru Ioan Cuza, 200585, Craiova, Romania
| | - Valentina Marascu
- National Institute for Laser, Plasma and Radiation Physics (INFLPR), 409 Atomistilor, 077125, Magurele, Romania; University of Bucharest, Faculty of Physics, 405 Atomistilor, 077125, Magurele, Romania
| | - Anca Bonciu
- National Institute for Laser, Plasma and Radiation Physics (INFLPR), 409 Atomistilor, 077125, Magurele, Romania; University of Bucharest, Faculty of Physics, 405 Atomistilor, 077125, Magurele, Romania
| | - Andra Cristocea
- Fundeni Clinical Institute, Department of Gastroenterology and Hepatology, 258 Sos. Fundeni, Bucharest, Romania
| | - Laura Gaman
- "Carol Davila" University of Medicine and Pharmacy, Faculty of Medicine, Department of Biochemistry, 8 B-dul Eroilor Sanitari, 76241, Bucharest, Romania
| | - Mihaela Gheorghiu
- International Centre of Biodynamics, 1B Intrarea Portocalelor, 060101, Bucharest, Romania
| | - Simion Astilean
- Nanobiophotonics Center, Interdisciplinary Research Institute in Bio-Nano-Sciences, 42 Treboniu Laurian, Cluj-Napoca, Romania
| | - Alina Vasilescu
- International Centre of Biodynamics, 1B Intrarea Portocalelor, 060101, Bucharest, Romania.
| |
Collapse
|
8
|
Chang HJ, Voyvodic PL, Zúñiga A, Bonnet J. Microbially derived biosensors for diagnosis, monitoring and epidemiology. Microb Biotechnol 2017; 10:1031-1035. [PMID: 28771944 PMCID: PMC5609271 DOI: 10.1111/1751-7915.12791] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2017] [Accepted: 07/04/2017] [Indexed: 11/27/2022] Open
Abstract
Living cells have evolved to detect and process various signals and can self-replicate, presenting an attractive platform for engineering scalable and affordable biosensing devices. Microbes are perfect candidates: they are inexpensive and easy to manipulate and store. Recent advances in synthetic biology promise to streamline the engineering of microbial biosensors with unprecedented capabilities. Here we review the applications of microbially-derived biosensors with a focus on environmental monitoring and healthcare applications. We also identify critical challenges that need to be addressed in order to translate the potential of synthetic microbial biosensors into large-scale, real-world applications.
Collapse
Affiliation(s)
- Hung-Ju Chang
- Centre de Biochimie Structurale, INSERM U1054, CNRS UMR5048, University of Montpellier, Montpellier, France
| | - Peter L Voyvodic
- Centre de Biochimie Structurale, INSERM U1054, CNRS UMR5048, University of Montpellier, Montpellier, France
| | - Ana Zúñiga
- Centre de Biochimie Structurale, INSERM U1054, CNRS UMR5048, University of Montpellier, Montpellier, France
| | - Jérôme Bonnet
- Centre de Biochimie Structurale, INSERM U1054, CNRS UMR5048, University of Montpellier, Montpellier, France
| |
Collapse
|
9
|
Wynn D, Deo S, Daunert S. Engineering Rugged Field Assays to Detect Hazardous Chemicals Using Spore-Based Bacterial Biosensors. Methods Enzymol 2017; 589:51-85. [PMID: 28336074 DOI: 10.1016/bs.mie.2017.02.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Bacterial whole cell-based biosensors have been genetically engineered to achieve selective and reliable detection of a wide range of hazardous chemicals. Although whole-cell biosensors demonstrate many advantages for field-based detection of target analytes, there are still some challenges that need to be addressed. Most notably, their often modest shelf life and need for special handling and storage make them challenging to use in situations where access to reagents, instrumentation, and expertise are limited. These problems can be circumvented by developing biosensors in Bacillus spores, which can be engineered to address all of these concerns. In its sporulated state, a whole cell-based biosensor has a remarkably long life span and is exceptionally resistant to environmental insult. When these spores are germinated for use in analytical techniques, they show no loss in performance, even after long periods of storage under harsh conditions. In this chapter, we will discuss the development and use of whole cell-based sensors, their adaptation to spore-based biosensors, their current applications, and future directions in the field.
Collapse
Affiliation(s)
- Daniel Wynn
- Miller School of Medicine, University of Miami, Miami, FL, United States
| | - Sapna Deo
- Miller School of Medicine, University of Miami, Miami, FL, United States
| | - Sylvia Daunert
- Miller School of Medicine, University of Miami, Miami, FL, United States.
| |
Collapse
|
10
|
Musilova L, Ridl J, Polivkova M, Macek T, Uhlik O. Effects of Secondary Plant Metabolites on Microbial Populations: Changes in Community Structure and Metabolic Activity in Contaminated Environments. Int J Mol Sci 2016; 17:E1205. [PMID: 27483244 PMCID: PMC5000603 DOI: 10.3390/ijms17081205] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2016] [Revised: 06/20/2016] [Accepted: 07/15/2016] [Indexed: 12/19/2022] Open
Abstract
Secondary plant metabolites (SPMEs) play an important role in plant survival in the environment and serve to establish ecological relationships between plants and other organisms. Communication between plants and microorganisms via SPMEs contained in root exudates or derived from litter decomposition is an example of this phenomenon. In this review, the general aspects of rhizodeposition together with the significance of terpenes and phenolic compounds are discussed in detail. We focus specifically on the effect of SPMEs on microbial community structure and metabolic activity in environments contaminated by polychlorinated biphenyls (PCBs) and polyaromatic hydrocarbons (PAHs). Furthermore, a section is devoted to a complex effect of plants and/or their metabolites contained in litter on bioremediation of contaminated sites. New insights are introduced from a study evaluating the effects of SPMEs derived during decomposition of grapefruit peel, lemon peel, and pears on bacterial communities and their ability to degrade PCBs in a long-term contaminated soil. The presented review supports the "secondary compound hypothesis" and demonstrates the potential of SPMEs for increasing the effectiveness of bioremediation processes.
Collapse
Affiliation(s)
- Lucie Musilova
- Department of Biochemistry and Microbiology, Faculty of Food and Biochemical Technology, University of Chemistry and Technology Prague, Technicka 3, 166 28 Prague, Czech Republic.
| | - Jakub Ridl
- Department of Genomics and Bioinformatics, Institute of Molecular Genetics of the Czech Academy of Sciences, Videnska 1083, 142 20 Prague, Czech Republic.
| | - Marketa Polivkova
- Department of Biochemistry and Microbiology, Faculty of Food and Biochemical Technology, University of Chemistry and Technology Prague, Technicka 3, 166 28 Prague, Czech Republic.
| | - Tomas Macek
- Department of Biochemistry and Microbiology, Faculty of Food and Biochemical Technology, University of Chemistry and Technology Prague, Technicka 3, 166 28 Prague, Czech Republic.
| | - Ondrej Uhlik
- Department of Biochemistry and Microbiology, Faculty of Food and Biochemical Technology, University of Chemistry and Technology Prague, Technicka 3, 166 28 Prague, Czech Republic.
| |
Collapse
|
11
|
Plotnikova EG, Shumkova ES, Shumkov MS. Whole-cell bacterial biosensors for the detection of aromatic hydrocarbons and their chlorinated derivatives (Review). APPL BIOCHEM MICRO+ 2016. [DOI: 10.1134/s0003683816040128] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
12
|
Kong HG, Kim NH, Lee SY, Lee SW. Impact of a Recombinant Biocontrol Bacterium, Pseudomonas fluorescens pc78, on Microbial Community in Tomato Rhizosphere. THE PLANT PATHOLOGY JOURNAL 2016; 32:136-44. [PMID: 27147933 PMCID: PMC4853103 DOI: 10.5423/ppj.oa.08.2015.0172] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2015] [Revised: 11/16/2015] [Accepted: 11/22/2015] [Indexed: 05/11/2023]
Abstract
Pseudomonas fluorescens pc78 is an effective biocontrol agent for soil-borne fungal diseases. We previously constructed a P43-gfp tagged biocontrol bacteria P. fluorescens pc78-48 to investigate bacterial traits in natural ecosystem and the environmental risk of genetically modified biocontrol bacteria in tomato rhizosphere. Fluctuation of culturable bacteria profile, microbial community structure, and potential horizontal gene transfer was investigated over time after the bacteria treatment to the tomato rhizosphere. Tagged gene transfer to other organisms such as tomato plants and bacteria cultured on various media was examined by polymerase chain reaction, using gene specific primers. Transfer of chromosomally integrated P43-gfp from pc78 to other organisms was not apparent. Population and colony types of culturable bacteria were not significantly affected by the introduction of P. fluorescens pc78 or pc78-48 into tomato rhizosphere. Additionally, terminal restriction fragment length polymorphism profiles were investigated to estimate the influence on the microbial community structure in tomato rhizosphere between non-treated and pc78-48-treated samples. Interestingly, rhizosphere soil treated with strain pc78-48 exhibited a significantly different bacterial community structure compared to that of non-treated rhizosphere soil. Our results suggest that biocontrol bacteria treatment influences microbial community in tomato rhizosphere, while the chromosomally modified biocontrol bacteria may not pose any specific environmental risk in terms of gene transfer.
Collapse
Affiliation(s)
| | | | | | - Seon-Woo Lee
- Corresponding author. Phone) +82-51-200-7551, FAX) +82-51-200-7505, E-mail)
| |
Collapse
|
13
|
Dierckx S, Van Puyvelde S, Venken L, Eberle W, Vanderleyden J. Design and Construction of a Whole Cell Bacterial 4-Hydroxyphenylacetic Acid and 2-Phenylacetic Acid Bioassay. Front Bioeng Biotechnol 2015; 3:88. [PMID: 26137458 PMCID: PMC4468947 DOI: 10.3389/fbioe.2015.00088] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2015] [Accepted: 06/01/2015] [Indexed: 11/25/2022] Open
Abstract
INTRODUCTION Auxins are hormones that regulate plant growth and development. To accurately quantify the low levels of auxins present in plant and soil samples, sensitive detection methods are needed. In this study, the design and construction of two different whole cell auxin bioassays is illustrated. Both use the auxin responsive element HpaA as an input module but differ in output module. The first bioassay incorporates the gfp gene to produce a fluorescent bioassay. Whereas the second one utilizes the genes phzM and phzS to produce a pyocyanin producing bioassay whose product can be measured electrochemically. RESULTS The fluorescent bioassay is able to detect 4-hydroxyphenylacetic acid (4-HPA) and 2-phenylacetic acid (PAA) concentrations from 60 μM to 3 mM in a dose-responsive manner. The pyocyanin producing bioassay can detect 4-HPA concentrations from 1.9 to 15.625 μM and PAA concentrations from 15.625 to 125 μM, both in a dose-responsive manner. CONCLUSION A fluorescent whole cell auxin bioassay and an electrochemical whole cell auxin bioassay were constructed and tested. Both are able to detect 4-HPA and PAA at concentrations that are environmentally relevant to plant growth.
Collapse
Affiliation(s)
- Seppe Dierckx
- Centre of Microbial and Plant Genetics, KU Leuven, Leuven, Belgium
| | - Sandra Van Puyvelde
- Centre of Microbial and Plant Genetics, KU Leuven, Leuven, Belgium
- Diagnostic Bacteriology Unit, Department of Biomedical Sciences, Institute of Tropical Medicine, Antwerp, Belgium
| | - Lyn Venken
- Centre of Microbial and Plant Genetics, KU Leuven, Leuven, Belgium
| | | | - Jos Vanderleyden
- Centre of Microbial and Plant Genetics, KU Leuven, Leuven, Belgium
| |
Collapse
|
14
|
Coronado E, Valtat A, van der Meer JR. Sphingomonas wittichii RW1 gene reporters interrogating the dibenzofuran metabolic network highlight conditions for early successful development in contaminated microcosms. ENVIRONMENTAL MICROBIOLOGY REPORTS 2015; 7:480-488. [PMID: 25683238 DOI: 10.1111/1758-2229.12276] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2014] [Accepted: 01/31/2015] [Indexed: 06/04/2023]
Abstract
In order to better understand the fate and activity of bacteria introduced into contaminated material for the purpose of enhancing biodegradation rates, we constructed Sphingomonas wittichii RW1 variants with gene reporters interrogating dibenzofuran metabolic activity. Three potential promoters from the dibenzofuran metabolic network were selected and fused to the gene for enhanced green fluorescent protein (EGFP). The stability of the resulting genetic constructions in RW1 was examined, with plasmids based on the broad-host range vector pME6012 being the most reliable. One of the selected promoters, upstream of the gene Swit_4925 for a putative 2-hydroxy-2,4-pentadienoate hydratase, was inducible by growth on dibenzofuran. Sphingomonas wittichii RW1 equipped with the Swit_4925 promoter egfp fusion grew in a variety of non-sterile sandy microcosms contaminated with dibenzofuran and material from a former gasification site. The strain also grew in microcosms without added dibenzofuran but to a very limited extent, and EGFP expression indicated the formation of consistent small subpopulations of cells with an active inferred dibenzofuran metabolic network. Evidence was obtained for competition for dibenzofuran metabolites scavenged by resident bacteria in the gasification site material, which resulted in a more rapid decline of the RW1 population. Our results show the importance of low inoculation densities in order to observe the population development of the introduced bacteria and further illustrate that the limited availability of unique carbon substrate may be the most important factor impinging growth.
Collapse
Affiliation(s)
- Edith Coronado
- Department of Fundamental Microbiology, University of Lausanne, Lausanne, 1015, Switzerland
| | - Annabelle Valtat
- Department of Fundamental Microbiology, University of Lausanne, Lausanne, 1015, Switzerland
| | - Jan R van der Meer
- Department of Fundamental Microbiology, University of Lausanne, Lausanne, 1015, Switzerland
| |
Collapse
|
15
|
Sanahuja D, Giménez-Gómez P, Vigués N, Ackermann TN, Guerrero-Navarro AE, Pujol-Vila F, Sacristán J, Santamaria N, Sánchez-Contreras M, Díaz-González M, Mas J, Muñoz-Berbel X. Microbial trench-based optofluidic system for reagentless determination of phenolic compounds. LAB ON A CHIP 2015; 15:1717-1726. [PMID: 25669844 DOI: 10.1039/c4lc01446d] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Phenolic compounds are one of the main contaminants of soil and water due to their toxicity and persistence in the natural environment. Their presence is commonly determined with bulky and expensive instrumentation (e.g. chromatography systems), requiring sample collection and transport to the laboratory. Sample transport delays data acquisition, postponing potential actions to prevent environmental catastrophes. This article presents a portable, miniaturized, robust and low-cost microbial trench-based optofluidic system for reagentless determination of phenols in water. The optofluidic system is composed of a poly(methyl methacrylate) structure, incorporating polymeric optical elements and miniaturized discrete auxiliary components for optical transduction. An electronic circuit, adapted from a lock-in amplifier, is used for system control and interfering ambient light subtraction. In the trench, genetically modified bacteria are stably entrapped in an alginate hydrogel for quantitative determination of model phenol catechol. Alginate is also acting as a diffusion barrier for compounds present in the sample. Additionally, the superior refractive index of the gel (compared to water) confines the light in the lower level of the chip. Hence, the optical readout of the device is only altered by changes in the trench. Catechol molecules (colorless) in the sample diffuse through the alginate matrix and reach bacteria, which degrade them to a colored compound. The absorbance increase at 450 nm reports the presence of catechol simply, quickly (~10 min) and quantitatively without addition of chemical reagents. This miniaturized, portable and robust optofluidic system opens the possibility for quick and reliable determination of environmental contamination in situ, thus mitigating the effects of accidental spills.
Collapse
Affiliation(s)
- David Sanahuja
- Department of Genetics and Microbiology Universitat Autonòma de Barcelona (UAB), Bellaterra, Barcelona, Spain
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Harnessing a radiation inducible promoter of Deinococcus radiodurans for enhanced precipitation of uranium. J Biotechnol 2014; 189:88-93. [DOI: 10.1016/j.jbiotec.2014.09.013] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2014] [Revised: 09/11/2014] [Accepted: 09/15/2014] [Indexed: 11/20/2022]
|
17
|
Li YF, Yu Z. Construction and evaluation of a genetic construct for specific detection and measurement of propionate by whole-cell bacteria. Biotechnol Bioeng 2014; 112:280-7. [DOI: 10.1002/bit.25358] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2014] [Revised: 07/24/2014] [Accepted: 07/28/2014] [Indexed: 11/08/2022]
Affiliation(s)
- Yueh-Fen Li
- Environmental Science Graduate Program; The Ohio State University; Columbus Ohio 43210
| | - Zhongtang Yu
- Environmental Science Graduate Program; The Ohio State University; Columbus Ohio 43210
- Department of Animal Sciences; The Ohio State University; Columbus Ohio 43210
| |
Collapse
|
18
|
Iwanicki A, Piątek I, Stasiłojć M, Grela A, Lęga T, Obuchowski M, Hinc K. A system of vectors for Bacillus subtilis spore surface display. Microb Cell Fact 2014; 13:30. [PMID: 24568122 PMCID: PMC4015724 DOI: 10.1186/1475-2859-13-30] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2014] [Accepted: 02/18/2014] [Indexed: 11/10/2022] Open
Abstract
Background Bacterial spores have been utilized as platforms for protein display. The best studied display systems are based on Bacillus subtilis spores in which several coat proteins have successfully been used as anchors for heterologous protein. Increasing knowledge about spore coat structure enables selection of new anchor proteins such as CotZ and CgeA. Here we describe a system of vectors for display of proteins on the surface of B. subtilis spores. Results We have designed and constructed a set of 16 vectors for ectopic integration which can be used for spore surface display of heterologous proteins. There is a selection of five coat proteins: CotB, CotC, CotG, CotZ and CgeA which can be used for construction of fusions. Three of these (CotB, CotC and CotG) enable obtaining N-terminal and C-terminal fusions and other two (CotZ and CgeA) are designed to produce C-terminal fusions only. All the vectors enable introduction of an additional peptide linker between anchor and displayed protein to enhance surface display. As a selection marker trophic genes are used. Additionally we describe an example application of presented vector system to display CagA protein of Helicobacter pylori in fusion with CgeA spore coat protein. Conclusions Described system of vectors is a versatile tool for display of heterologous proteins on the surface of B. subtilis spores. Such recombinant spores can be further used as for example biocatalysts or antigen-carriers in vaccine formulations. The lack of antibiotic resistance genes in the system makes such spores an interesting option for applications in which a possible release to the environment can occur.
Collapse
Affiliation(s)
- Adam Iwanicki
- Department of Medical Biotechnology, Intercollegiate Faculty of Biotechnology UG-MUG, Medical University of Gdańsk, Dębinki 1, Gdańsk 80-211, Poland.
| | | | | | | | | | | | | |
Collapse
|
19
|
Sokolova AS, Yarovaya ОI, Shernyukov АV, Pokrovsky МA, Pokrovsky АG, Lavrinenko VA, Zarubaev VV, Tretiak TS, Anfimov PM, Kiselev OI, Beklemishev AB, Salakhutdinov NF. New quaternary ammonium camphor derivatives and their antiviral activity, genotoxic effects and cytotoxicity. Bioorg Med Chem 2013; 21:6690-8. [PMID: 23993669 PMCID: PMC7126328 DOI: 10.1016/j.bmc.2013.08.014] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2013] [Revised: 07/31/2013] [Accepted: 08/05/2013] [Indexed: 12/20/2022]
Abstract
The synthesis and biological evaluation of a novel series of dimeric camphor derivatives are described. The resulting compounds were studied for their antiviral activity, cyto- and genotoxicity. Compounds 3a and 3d in which the quaternary nitrogen atoms are separated by the C5H10 and С9H18 aliphatic chain, exhibited the highest efficiency as an agent inhibiting the reproduction of the influenza virus A(H1N1)pdm09. The cytotoxicity data of compounds 3 and 4 revealed their moderate activity against malignant cell lines; compound 3f had the highest activity for the CEM-13 cells. These results show close agreement with the data of independent studies on toxicity of these compounds, in particular that the toxicity of compounds strongly depends on spacer length.
Collapse
Affiliation(s)
- Anastasiya S. Sokolova
- N.N. Vorozhtsov Novosibirsk Institute of Organic Chemistry, Siberian Branch, Russian Academy of Sciences, Lavrentjev Avenue 9, 630090 Novosibirsk, Russia
- Novosibirsk State University, Pirogova St. 2, 630090 Novosibirsk, Russia
| | - Оlga I. Yarovaya
- N.N. Vorozhtsov Novosibirsk Institute of Organic Chemistry, Siberian Branch, Russian Academy of Sciences, Lavrentjev Avenue 9, 630090 Novosibirsk, Russia
- Novosibirsk State University, Pirogova St. 2, 630090 Novosibirsk, Russia
| | - Аndrey V. Shernyukov
- N.N. Vorozhtsov Novosibirsk Institute of Organic Chemistry, Siberian Branch, Russian Academy of Sciences, Lavrentjev Avenue 9, 630090 Novosibirsk, Russia
| | | | | | | | - Vladimir V. Zarubaev
- Department of Chemotherapy, Influenza Research Institute, 15/17 Prof. Popova St., 197376 St. Petersburg, Russia
| | - Tatiana S. Tretiak
- Department of Chemotherapy, Influenza Research Institute, 15/17 Prof. Popova St., 197376 St. Petersburg, Russia
| | - Pavel M. Anfimov
- Department of Chemotherapy, Influenza Research Institute, 15/17 Prof. Popova St., 197376 St. Petersburg, Russia
| | - Oleg I. Kiselev
- Department of Chemotherapy, Influenza Research Institute, 15/17 Prof. Popova St., 197376 St. Petersburg, Russia
| | - Anatoly B. Beklemishev
- Research Institute for Biochemistry, Siberian Branch of the Russian Academy of Medical Sciences, Timakova St. 2, 630117 Novosibirsk, Russia
| | - Nariman F. Salakhutdinov
- N.N. Vorozhtsov Novosibirsk Institute of Organic Chemistry, Siberian Branch, Russian Academy of Sciences, Lavrentjev Avenue 9, 630090 Novosibirsk, Russia
| |
Collapse
|
20
|
Moser F, Horwitz A, Chen J, Lim WA, Voigt CA. Genetic sensor for strong methylating compounds. ACS Synth Biol 2013; 2:614-24. [PMID: 24032656 DOI: 10.1021/sb400086p] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Methylating chemicals are common in industry and agriculture and are often toxic, partly due to their propensity to methylate DNA. The Escherichia coli Ada protein detects methylating compounds by sensing aberrant methyl adducts on the phosphoester backbone of DNA. We characterize this system as a genetic sensor and engineer it to lower the detection threshold. By overexpressing Ada from a plasmid, we improve the sensor’s dynamic range to 350-fold induction and lower its detection threshold to 40 μM for methyl iodide. In eukaryotes, there is no known sensor of methyl adducts on the phosphoester backbone of DNA. By fusing the N-terminal domain of Ada to the Gal4 transcriptional activation domain, we built a functional sensor for methyl phosphotriester adducts in Saccharomyces cerevisiae. This sensor can be tuned to variable specifications by altering the expression level of the chimeric sensor and changing the number of Ada operators upstream of the Gal4-sensitive reporter promoter. These changes result in a detection threshold of 28 μM and 5.2-fold induction in response to methyl iodide. When the yeast sensor is exposed to different SN1 and SN2 alkylating compounds, its response profile is similar to that observed for the native Ada protein in E. coli, indicating that its native function is retained in yeast. Finally, we demonstrate that the specifications achieved for the yeast sensor are suitable for detecting methylating compounds at relevant concentrations in environmental samples. This work demonstrates the movement of a sensor from a prokaryotic to eukaryotic system and its rational tuning to achieve desired specifications.
Collapse
Affiliation(s)
- Felix Moser
- Synthetic Biology
Center, Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Andrew Horwitz
- Howard
Hughes
Medical Institute and Department of Cellular and Molecular Pharmacology, University of California—San Francisco, San Francisco, California 94158, United States
| | - Jacinto Chen
- Howard
Hughes
Medical Institute and Department of Cellular and Molecular Pharmacology, University of California—San Francisco, San Francisco, California 94158, United States
| | - Wendell A. Lim
- Howard
Hughes
Medical Institute and Department of Cellular and Molecular Pharmacology, University of California—San Francisco, San Francisco, California 94158, United States
| | - Christopher A. Voigt
- Synthetic Biology
Center, Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
21
|
Branco R, Cristóvão A, Morais PV. Highly sensitive, highly specific whole-cell bioreporters for the detection of chromate in environmental samples. PLoS One 2013; 8:e54005. [PMID: 23326558 PMCID: PMC3543429 DOI: 10.1371/journal.pone.0054005] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2012] [Accepted: 12/07/2012] [Indexed: 12/04/2022] Open
Abstract
Microbial bioreporters offer excellent potentialities for the detection of the bioavailable portion of pollutants in contaminated environments, which currently cannot be easily measured. This paper describes the construction and evaluation of two microbial bioreporters designed to detect the bioavailable chromate in contaminated water samples. The developed bioreporters are based on the expression of gfp under the control of the chr promoter and the chrB regulator gene of TnOtChr determinant from Ochrobactrum tritici 5bvl1. pCHRGFP1 Escherichia coli reporter proved to be specific and sensitive, with minimum detectable concentration of 100 nM chromate and did not react with other heavy metals or chemical compounds analysed. In order to have a bioreporter able to be used under different environmental toxics, O. tritici type strain was also engineered to fluoresce in the presence of micromolar levels of chromate and showed to be as specific as the first reporter. Their applicability on environmental samples (spiked Portuguese river water) was also demonstrated using either freshly grown or cryo-preserved cells, a treatment which constitutes an operational advantage. These reporter strains can provide on-demand usability in the field and in a near future may become a powerful tool in identification of chromate-contaminated sites.
Collapse
Affiliation(s)
- Rita Branco
- IMAR, 3004-517 Coimbra, Portugal
- Escola Universitária Vasco da Gama, Mosteiro de S. Jorge de Milréu, Estrada da Conraria, Castelo Viegas – Coimbra, Portugal
| | - Armando Cristóvão
- Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
- Department of Life Sciences, FCTUC, University of Coimbra, Coimbra, Portugal
| | - Paula V. Morais
- IMAR, 3004-517 Coimbra, Portugal
- Department of Life Sciences, FCTUC, University of Coimbra, Coimbra, Portugal
- * E-mail:
| |
Collapse
|
22
|
Gupta S, Saxena M, Saini N, Mahmooduzzafar, Kumar R, Kumar A. An effective strategy for a whole-cell biosensor based on putative effector interaction site of the regulatory DmpR protein. PLoS One 2012; 7:e43527. [PMID: 22937060 PMCID: PMC3427379 DOI: 10.1371/journal.pone.0043527] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2012] [Accepted: 07/23/2012] [Indexed: 11/19/2022] Open
Abstract
INTRODUCTION AND RATIONALE The detection of bioavailable phenol is a very important issue in environmental and human hazard assessment. Despite modest developments recently, there is a stern need for development of novel biosensors with high sensitivity for priority phenol pollutants. DmpR (Dimethyl phenol regulatory protein), an NtrC-like regulatory protein for the phenol degradation of Pseudomonas sp. strain CF600, represents an attractive biosensor regimen. Thus, we sought to design a novel biosensor by modifying the phenol detection capacity of DmpR by using mutagenic PCR. METHODS Binding sites of 'A' domain of DmpR were predicted by LIGSITE, and molecular docking was performed by using GOLD to identify the regions where phenol may interact with DmpR. Total five point mutations, one single at position 42 (Phe-to-Leu), two double at 140 (Asp-to-Glu) and 143 (Gln-to-Leu), and two double at L113M (Leu-to- Met) and D116A (Asp-to- Ala) were created in DmpR by site-directed mutagenesis to construct the reporter plasmids pRLuc42R, pRLuc140p143R, and pRLuc113p116R, respectively. Luciferase assays were performed to measure the activity of luc gene in the presence of phenol and its derivatives, while RT-PCR was used to check the expression of luc gene in the presence of phenol. RESULTS Only pRLuc42R and pRLuc113p116R showed positive responses to phenolic effectors. The lowest detectable concentration of phenol was 0.5 µM (0.047 mg/L), 0.1 µM for 2, 4-dimethylphenol and 2-nitrophenol, 10 µM for 2, 4, 6-trichlorophenol and 2-chlorophenol, 100 µM for 2, 4-dichlorophenol, 0.01 µM for 4-nitrophenol, and 1 µM for o-cresol. These concentrations were measured by modified luciferase assay within 3 hrs compared to 6-7 hrs in previous studies. Importantly, increased expression of luciferase gene of pRLuc42R was observed by RT-PCR. CONCLUSIONS The present study offers an effective strategy to design a quick and sensitive biosensor for phenol by constructing recombinant bacteria having DmpR gene.
Collapse
Affiliation(s)
- Saurabh Gupta
- Institute of Genomics and Integrative Biology, Mall Road, Delhi, India
- Jamia Hamdard University, Hamdard Nagar, New Delhi, India
| | - Mritunjay Saxena
- Institute of Genomics and Integrative Biology, Mall Road, Delhi, India
| | - Neeru Saini
- Institute of Genomics and Integrative Biology, Mall Road, Delhi, India
| | - Mahmooduzzafar
- Jamia Hamdard University, Hamdard Nagar, New Delhi, India
| | - Rita Kumar
- Institute of Genomics and Integrative Biology, Mall Road, Delhi, India
| | - Anil Kumar
- National Institute of Immunology, New Delhi, India
| |
Collapse
|
23
|
Bacterial spores as platforms for bioanalytical and biomedical applications. Anal Bioanal Chem 2011; 400:977-89. [PMID: 21380604 DOI: 10.1007/s00216-011-4835-4] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2010] [Revised: 02/14/2011] [Accepted: 02/22/2011] [Indexed: 01/16/2023]
Abstract
Genetically engineered bacteria-based sensing systems have been employed in a variety of analyses because of their selectivity, sensitivity, and ease of use. These systems, however, have found limited applications in the field because of the inability of bacteria to survive long term, especially under extreme environmental conditions. In nature, certain bacteria, such as those from Clostridium and Bacillus genera, when exposed to threatening environmental conditions are capable of cocooning themselves into a vegetative state known as spores. To overcome the aforementioned limitation of bacterial sensing systems, the use of microorganisms capable of sporulation has recently been proposed. The ability of spores to endow bacteria-based sensing systems with long lives, along with their ability to cycle between the vegetative spore state and the germinated living cell, contributes to their attractiveness as vehicles for cell-based biosensors. An additional application where spores have shown promise is in surface display systems. In that regard, spores expressing certain enzymes, proteins, or peptides on their surface have been presented as a stable, simple, and safe new tool for the biospecific recognition of target analytes, the biocatalytic production of chemicals, and the delivery of biomolecules of pharmaceutical relevance. This review focuses on the application of spores as a packaging method for whole-cell biosensors, surface display of recombinant proteins on spores for bioanalytical and biotechnological applications, and the use of spores as vehicles for vaccines and therapeutic agents.
Collapse
|
24
|
Escherichia coli as a bioreporter in ecotoxicology. Appl Microbiol Biotechnol 2010; 88:1007-25. [PMID: 20803141 DOI: 10.1007/s00253-010-2826-6] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2010] [Revised: 08/02/2010] [Accepted: 08/03/2010] [Indexed: 01/30/2023]
Abstract
Ecotoxicological assessment relies to a large extent on the information gathered with surrogate species and the extrapolation of test results across species and different levels of biological organisation. Bacteria have long been used as a bioreporter for genotoxic testing and general toxicity. Today, it is clear that bacteria have the potential for screening of other toxicological endpoints. Escherichia coli has been studied for years; in-depth knowledge of its biochemistry and genetics makes it the most proficient prokaryote for the development of new toxicological assays. Several assays have been designed with E. coli as a bioreporter, and the recent trend to develop novel, better advanced reporters makes bioreporter development one of the most dynamic in ecotoxicology. Based on in-depth knowledge of E. coli, new assays are being developed or existing ones redesigned, thanks to the availability of new reporter genes and new or improved substrates. The technological evolution towards easier and more sensitive detection of different gene products is another important aspect. Often, this requires the redesign of the bacterium to make it compatible with the novel measuring tests. Recent advances in surface chemistry and nanoelectronics open the perspective for advanced reporter based on novel measuring platforms and with an online potential. In this article, we will discuss the use of E. coli-based bioreporters in ecotoxicological applications as well as some innovative sensors awaited for the future.
Collapse
|
25
|
Komaitis E, Vasiliou E, Kremmydas G, Georgakopoulos DG, Georgiou C. Development of a fully automated Flow Injection analyzer implementing bioluminescent biosensors for water toxicity assessment. SENSORS 2010; 10:7089-98. [PMID: 22163592 PMCID: PMC3231189 DOI: 10.3390/s100807089] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/11/2010] [Revised: 06/02/2010] [Accepted: 07/12/2010] [Indexed: 11/16/2022]
Abstract
This paper describes the development of an automated Flow Injection analyzer for water toxicity assessment. The analyzer is validated by assessing the toxicity of heavy metal (Pb2+, Hg2+ and Cu2+) solutions. One hundred μL of a Vibrio fischeri suspension are injected in a carrier solution containing different heavy metal concentrations. Biosensor cells are mixed with the toxic carrier solution in the mixing coil on the way to the detector. Response registered is % inhibition of biosensor bioluminescence due to heavy metal toxicity in comparison to that resulting by injecting the Vibrio fischeri suspension in deionised water. Carrier solutions of mercury showed higher toxicity than the other heavy metals, whereas all metals show concentration related levels of toxicity. The biosensor’s response to carrier solutions of different pHs was tested. Vibrio fischeri’s bioluminescence is promoted in the pH 5–10 range. Experiments indicate that the whole cell biosensor, as applied in the automated fluidic system, responds to various toxic solutions.
Collapse
Affiliation(s)
- Efstratios Komaitis
- Chemistry Laboratory, Agricultural University of Athens, 75 Iera Odos, 118 55 Athens, Greece; E-Mails: (E.M.K.), (E.G.V.)
| | - Efstathios Vasiliou
- Chemistry Laboratory, Agricultural University of Athens, 75 Iera Odos, 118 55 Athens, Greece; E-Mails: (E.M.K.), (E.G.V.)
| | - Gerasimos Kremmydas
- Microbiology Laboratory, Agricultural University of Athens, 75 Iera Odos, 118 55 Athens, Greece; E-Mails: (D.G.), (G.K.)
| | - Dimitrios G. Georgakopoulos
- Microbiology Laboratory, Agricultural University of Athens, 75 Iera Odos, 118 55 Athens, Greece; E-Mails: (D.G.), (G.K.)
| | - Constantinos Georgiou
- Chemistry Laboratory, Agricultural University of Athens, 75 Iera Odos, 118 55 Athens, Greece; E-Mails: (E.M.K.), (E.G.V.)
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +30-210-5294248; Fax: +30-210-5294265
| |
Collapse
|
26
|
Van Dorst B, Mehta J, Bekaert K, Rouah-Martin E, De Coen W, Dubruel P, Blust R, Robbens J. Recent advances in recognition elements of food and environmental biosensors: a review. Biosens Bioelectron 2010; 26:1178-94. [PMID: 20729060 DOI: 10.1016/j.bios.2010.07.033] [Citation(s) in RCA: 158] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2010] [Revised: 07/08/2010] [Accepted: 07/11/2010] [Indexed: 12/12/2022]
Abstract
A sensitive monitoring of contaminants in food and environment, such as chemical compounds, toxins and pathogens, is essential to assess and avoid risks for both, human and environmental health. To accomplish this, there is a high need for sensitive, robust and cost-effective biosensors that make real time and in situ monitoring possible. Due to their high sensitivity, selectivity and versatility, affinity-based biosensors are interesting for monitoring contaminants in food and environment. Antibodies have long been the most popular affinity-based recognition elements, however recently a lot of research effort has been dedicated to the development of novel recognition elements with improved characteristics, like specificity, stability and cost-efficiency. This review discusses three of these innovative affinity-based recognition elements, namely, phages, nucleic acids and molecular imprinted polymers and gives an overview of biosensors for food and environmental applications where these novel affinity-based recognition elements are applied.
Collapse
Affiliation(s)
- Bieke Van Dorst
- University of Antwerp, Department of Biology, Laboratory of Ecophysiology, Biochemistry and Toxicology, Groenenborgerlaan 171, 2020 Antwerp, Belgium.
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Liu X, Germaine KJ, Ryan D, Dowling DN. Genetically modified Pseudomonas biosensing biodegraders to detect PCB and chlorobenzoate bioavailability and biodegradation in contaminated soils. Bioeng Bugs 2010; 1:198-206. [PMID: 21326926 DOI: 10.4161/bbug.1.3.12443] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2010] [Revised: 05/21/2010] [Accepted: 05/24/2010] [Indexed: 11/19/2022] Open
Abstract
Whole cell microbial biosensors offer excellent possibilities for assaying the complex nature of the bioavailable and bioaccessible fraction of pollutants in contaminated soils, which currently cannot be easily addressed. This paper describes the application and evaluation of three microbial biosensor strains designed to detect the bioavailability and biodegradation of PCBs (and end-products) in contaminated soils and sediments. Polychlorinated biphenyls (PCBs) are considered to be one of the most wide spread, hazardous and persistent pollutants. Herein we describe that there was a positive correlation between the PCB levels within the samples and the percentage of biosensor cells that were expressing their reporter gene; gfp. Immobilisation of the biosensors in calcium alginate beads allowed easy and accurate detection of the biosensor strains in contaminated soil and sludge samples. The biosensors also showed that PCB degradation activity was occurring at a much greater level in Pea inoculated planted soil compared to inoculated unplanted soil indicating rhizoremediation (the removal of pollutants by plant root associated microbes) shows considerable promise as a solution for removing organic xenobiotics from the environment.
Collapse
Affiliation(s)
- Xuemei Liu
- Department of Science and Health, Institute of Technology Carlow, Carlow, Ireland
| | | | | | | |
Collapse
|