1
|
Nath P, Liversage AR, Mortensen LJ, Ray A. Perovskites as Multiphoton Fluorescence Contrast Agents for In Vivo Imaging. ACS APPLIED MATERIALS & INTERFACES 2024; 16:46035-46043. [PMID: 39167710 DOI: 10.1021/acsami.4c08672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/23/2024]
Abstract
Multiphoton fluorescence microscopy is a powerful tool for imaging and exploring biological tissue at subcellular spatial resolution while minimizing photobleaching and autofluorescence. For optimal performance in multiphoton microscopy, materials exhibiting a large multiphoton absorption cross section (σn) and fluorescence quantum yield are desired. Notably, perovskite nanocrystals (CsPbX3, PNCs) exhibit exceptionally large two-, three-, up to five photon absorption cross section (σ2 ∼ 106 GM, σ3 ∼ 10-73 cm6s2 photon-2, σ5 ∼ 10-136 cm10s4 photon-4), along with near unity fluorescence quantum yield, making them desirable for deep tissue applications. Here, we employed PNCs as contrast agents to image mesenchymal stromal cells in a living mouse. The PNCs were stabilized by encapsulating them in a SiO2 matrix (∼60-70 nm in diameter), offering versatility for subsequent surface modification to target specific biological entities for both diagnostic and therapeutic applications. Multiphoton imaging of PNCs offers substantial benefits for dynamic tracking of cells in deep tissue, such as in understanding immune cell migration and other biological processes in both healthy and diseased tissues.
Collapse
Affiliation(s)
- Peuli Nath
- Department of Physics & Astronomy, University of Toledo, Toledo, Ohio 43606, United States
| | - Adrian Ross Liversage
- School of Chemical, Materials and Biomedical Engineering, University of Georgia, Athens, Georgia 30602, United States
| | - Luke J Mortensen
- School of Chemical, Materials and Biomedical Engineering, University of Georgia, Athens, Georgia 30602, United States
- Regenerative Bioscience Center, Rhodes Center for ADS, University of Georgia, Athens, Georgia 30602, United States
| | - Aniruddha Ray
- Department of Physics & Astronomy, University of Toledo, Toledo, Ohio 43606, United States
| |
Collapse
|
2
|
Shrestha S, Banstola A, Jeong JH, Seo JH, Yook S. Targeting Cancer Stem Cells: Therapeutic and diagnostic strategies by the virtue of nanoparticles. J Control Release 2022; 348:518-536. [PMID: 35709876 DOI: 10.1016/j.jconrel.2022.06.013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 06/08/2022] [Accepted: 06/09/2022] [Indexed: 12/18/2022]
Abstract
Cancer stem cells (CSCs) are the subpopulation of cells present within a tumor with the properties of self-renewing, differentiating, and proliferating. Owing to the presence of ATP-binding cassette drug pumps and increased expression of anti-apoptotic proteins, the conventional chemotherapeutic agents have failed to eliminate CSCs resulting in relapse and resistance of cancer. Therefore, to obtain long-lasting clinical responses and avoid the recurrence of cancer, it is crucial to develop an efficient strategy targeting CSCs by either employing a differentiation therapy or specifically delivering drugs to CSCs. Several intracellular and extracellular cancer specific biomarkers are overexpressed by CSCs and are utilized as targets for the development of new approaches in the diagnosis and treatment of CSCs. Moreover, several nanostructured particles, alone or in combination with current treatment approaches, have been used to improve the detection, imaging, and targeting of CSCs, thus addressing the limitations of cancer therapies. Targeting CSC surface markers, stemness-related signaling pathways, and tumor microenvironmental signals has improved the detection and eradication of CSCs and, therefore, tumor diagnosis and treatment. This review summarizes a variety of promising nanoparticles targeting the surface biomarkers of CSCs for the detection and eradication of tumor-initiating stem cells, used in combination with other treatment regimens.
Collapse
Affiliation(s)
- Samjhana Shrestha
- College of Pharmacy, Keimyung University, 1095 Dalgubeol-daero, Dalseo-Gu, Daegu 42601, Republic of Korea
| | - Asmita Banstola
- College of Pharmacy, Keimyung University, 1095 Dalgubeol-daero, Dalseo-Gu, Daegu 42601, Republic of Korea; Wellman Center for Photomedicine, Massachusetts General Hospital, Department of Dermatology, Harvard Medical School, Boston, MA 02114, USA
| | - Jee-Heon Jeong
- Department of Precision Medicine, School of Medicine, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Ji Hae Seo
- Department of Biochemistry, School of Medicine, Keimyung University, Daegu 42601, Republic of Korea
| | - Simmyung Yook
- College of Pharmacy, Keimyung University, 1095 Dalgubeol-daero, Dalseo-Gu, Daegu 42601, Republic of Korea.
| |
Collapse
|
3
|
Salgado CL, Mansur AAP, Mansur HS, Monteiro FJM. Bioengineered Fluorescent Nanoprobe Conjugates for Tracking Human Bone Cells: In Vitro Biocompatibility Analysis. MATERIALS 2021; 14:ma14164422. [PMID: 34442946 PMCID: PMC8399135 DOI: 10.3390/ma14164422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 08/03/2021] [Accepted: 08/05/2021] [Indexed: 11/16/2022]
Abstract
Herein, we validated novel functionalized hybrid semiconductor bioconjugates made of fluorescent quantum dots (QD) with the surface capped by chitosan (polysaccharide) and chemically modified with O-phospho-L-serine (OPS) that are biocompatible with different human cell sources. The conjugation with a directing signaling molecule (OPS) allows preferential accumulation in human bone mesenchymal stromal cells (HBMSC). The chitosan (Chi) shell with the fluorescent CdS core was characterized by spectroscopical (UV spectrophotometry and photoluminescence), by morphological techniques (Transmission Electron Microscopy (TEM)) and showed small size (ø 2.3 nm) and a stable photoluminescence emission band. The in vitro biocompatibility results were not dependent on the polysaccharide chain length (Chi with higher and lower molecular weight) but were remarkably affected by the surface modification (Chi or Chi-OPS). In addition, the efficiency of nanoparticles uptake by the cells was dependent on cells nature (human primary cells or cell lines) and tissue source (bone or skin) in the presence or absence of the OPS modification. The complex cellular uptake pathways involved in the cell labeling with the nanoparticles do not interfere on the normal cellular biology (adhesion and proliferation), osteogenic differentiation, and gene expression. The bone cells particles uptake evaluation showed a possible pathway by Caveolin-1 that regulates cell transduction in the membrane’s Caveolae. Caveolae mediates non-specific endocytosis, and it is upregulated in HBMSC. The OPS-modified nanoparticles promoted an intense intracellular trafficking by the HBMSCs that showed late-osteoblast phenotype with an increase of extracellular matrix (ECM) mineralization (Alizarin red and Von Kossa staining for calcium phosphate crystals). In this work, the OPS modified bioconjugated QD proved to be a reliable and stable fluorescent bioprobe for cell imaging and targeting research that could also help in clarifying some cellular mechanisms of particles intracellular traffic through the cytoplasmic membrane and osteogenic differentiation induction. The in vitro HBMSC’s biocompatibility responses indicated that the OPS-modified chitosan QDs have a prospective future in laboratory and pre-clinical applications such as bioimaging analysis and for ex-vivo cellular evaluation of biomedical implants.
Collapse
Affiliation(s)
- Christiane L. Salgado
- i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal;
- INEB, Instituto Nacional de Engenharia Biomédica, 4200-135 Porto, Portugal
- Correspondence:
| | - Alexandra A. P. Mansur
- Center of Nanoscience, Nanotechnology, and Innovation-CeNano2I, Department of Metallurgical and Materials Engineering, Federal University of Minas Gerais-UFMG, Av. Antônio Carlos, 6627, Belo Horizonte 31270-901, Brazil; (A.A.P.M.); (H.S.M.)
- Department of Metallurgical and Materials Engineering, Federal University of Minas Gerais-UFMG, Av. Antônio Carlos, 6627, Belo Horizonte 31270-901, Brazil
| | - Herman S. Mansur
- Center of Nanoscience, Nanotechnology, and Innovation-CeNano2I, Department of Metallurgical and Materials Engineering, Federal University of Minas Gerais-UFMG, Av. Antônio Carlos, 6627, Belo Horizonte 31270-901, Brazil; (A.A.P.M.); (H.S.M.)
- Department of Metallurgical and Materials Engineering, Federal University of Minas Gerais-UFMG, Av. Antônio Carlos, 6627, Belo Horizonte 31270-901, Brazil
| | - Fernando J. M. Monteiro
- i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal;
- INEB, Instituto Nacional de Engenharia Biomédica, 4200-135 Porto, Portugal
- FEUP, Faculdade de Engenharia, Departamento de Engenharia Metalúrgica e de Materiais, Universidade do Porto, 4200-465 Porto, Portugal
| |
Collapse
|
4
|
Hagaman DE, Damasco JA, Perez JVD, Rojo RD, Melancon MP. Recent Advances in Nanomedicine for the Diagnosis and Treatment of Prostate Cancer Bone Metastasis. Molecules 2021; 26:E384. [PMID: 33450939 PMCID: PMC7828457 DOI: 10.3390/molecules26020384] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 01/07/2021] [Accepted: 01/07/2021] [Indexed: 12/12/2022] Open
Abstract
Patients with advanced prostate cancer can develop painful and debilitating bone metastases. Currently available interventions for prostate cancer bone metastases, including chemotherapy, bisphosphonates, and radiopharmaceuticals, are only palliative. They can relieve pain, reduce complications (e.g., bone fractures), and improve quality of life, but they do not significantly improve survival times. Therefore, additional strategies to enhance the diagnosis and treatment of prostate cancer bone metastases are needed. Nanotechnology is a versatile platform that has been used to increase the specificity and therapeutic efficacy of various treatments for prostate cancer bone metastases. In this review, we summarize preclinical research that utilizes nanotechnology to develop novel diagnostic imaging tools, translational models, and therapies to combat prostate cancer bone metastases.
Collapse
Affiliation(s)
- Daniel E. Hagaman
- Department of Interventional Radiology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (D.E.H.); (J.A.D.); (J.V.D.P.); (R.D.R.)
| | - Jossana A. Damasco
- Department of Interventional Radiology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (D.E.H.); (J.A.D.); (J.V.D.P.); (R.D.R.)
| | - Joy Vanessa D. Perez
- Department of Interventional Radiology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (D.E.H.); (J.A.D.); (J.V.D.P.); (R.D.R.)
- College of Medicine, University of the Philippines, Manila NCR 1000, Philippines
| | - Raniv D. Rojo
- Department of Interventional Radiology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (D.E.H.); (J.A.D.); (J.V.D.P.); (R.D.R.)
- College of Medicine, University of the Philippines, Manila NCR 1000, Philippines
| | - Marites P. Melancon
- Department of Interventional Radiology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (D.E.H.); (J.A.D.); (J.V.D.P.); (R.D.R.)
- UTHealth Graduate School of Biomedical Sciences, Houston, TX 77030, USA
| |
Collapse
|
5
|
Mohsenzadegan M, Saebi F, Yazdani M, Abolhasani M, Saemi N, Jahanbani F, Farajollahi MM. Autoantibody against new gene expressed in prostate protein is traceable in prostate cancer patients. Biomark Med 2018; 12:1125-1138. [DOI: 10.2217/bmm-2018-0069] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Aim: We assessed an autoantibody against new gene expressed in prostate (NGEP) protein for prostate cancer (PCa) that may better diagnosis and prognosis approaches in the patients with PCa. Methods: Autoantibodies against NGEP were measured in sera of PCa patients by ELISA. Results: The autoantibody against NGEP is present in a significantly higher proportion in the sera of PCa patients as compared with healthy controls (p < 0.001). An inverse significant correlation was found between seropositive patients and Gleason score (p < 0.05) and serum prostate-specific antigen (recombinant NGEP; p < 0.05). Conclusion: The data showed that measurement of autoantibody against NGEP as a novel prostate-specific antigen in sera can be used as a potential biomarker to discriminate well-differentiated PCa patients from normal subjects.
Collapse
Affiliation(s)
- Monireh Mohsenzadegan
- Cellular & Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran
- Department of Medical Laboratory Science, Faculty of Allied Medical Sciences, Iran University of Medical Sciences, Tehran, Iran
| | - Fatemeh Saebi
- Cellular & Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Mehdi Yazdani
- Hasheminejad Kidney Center Laboratory, Iran University of Medical Sciences, Tehran, Iran
| | - Maryam Abolhasani
- Hasheminejad Kidney Center Laboratory, Iran University of Medical Sciences, Tehran, Iran
- Oncopathology Research Center, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Nazanin Saemi
- Department of Medical Biotechnology, Faculty of Allied Medical Sciences, Iran University of Medical Sciences, Tehran, Iran
| | - Fatemeh Jahanbani
- Department of Genetic, Standford University School of Medicine, CA, USA
| | - Mohammad M Farajollahi
- Cellular & Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran
- Department of Medical Biotechnology, Faculty of Allied Medical Sciences, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
6
|
Heinrich MC, Göbel C, Kluth M, Bernreuther C, Sauer C, Schroeder C, Möller-Koop C, Hube-Magg C, Lebok P, Burandt E, Sauter G, Simon R, Huland H, Graefen M, Heinzer H, Schlomm T, Heumann A. PSCA expression is associated with favorable tumor features and reduced PSA recurrence in operated prostate cancer. BMC Cancer 2018; 18:612. [PMID: 29855276 PMCID: PMC5984312 DOI: 10.1186/s12885-018-4547-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Accepted: 05/22/2018] [Indexed: 11/28/2022] Open
Abstract
Background Prostate Stem Cell Antigen (PSCA) is frequently expressed in prostate cancer but its exact function is unclear. Methods To clarify contradictory findings on the prognostic role of PSCA expression, a tissue microarray containing 13,665 prostate cancers was analyzed by immunohistochemistry. Results PSCA staining was absent in normal epithelial and stromal cells of the prostate. Membranous and cytoplasmic PSCA staining was seen in 53.7% of 9642 interpretable tumors. Staining was weak in 22.4%, moderate in 24.5% and strong in 6.8% of tumors. PSCA expression was associated with favorable pathological and clinical tumor features: Early pathological tumor stage (p < 0.0001), low Gleason grade (p < 0.0001), absence of lymph node metastasis (p < 0.0001), low pre-operative PSA level (p = 0.0118), negative surgical margin (p < 0.0001) and reduced PSA recurrence (p < 0.0001). PSCA expression was an independent predictor of prognosis in multivariate analysis (hazard ratio 0.84, p < 0.0001). Conclusions The absence of statistical relationship to TMPRSS2:ERG fusion status, chromosomal deletion or high tumor cell proliferation argues against a major role of PSCA for regulation of cell cycle or genomic integrity. PSCA expression is linked to favorable prognosis. PSCA measurement is a candidate for inclusion in multi-parametric prognostic prostate cancer tests. Electronic supplementary material The online version of this article (10.1186/s12885-018-4547-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Marie-Christine Heinrich
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, D-20246, Hamburg, Germany
| | - Cosima Göbel
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, D-20246, Hamburg, Germany
| | - Martina Kluth
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, D-20246, Hamburg, Germany
| | - Christian Bernreuther
- Institute of Neuropathology, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, D-20246, Hamburg, Germany
| | - Charlotte Sauer
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, D-20246, Hamburg, Germany
| | - Cornelia Schroeder
- Department of Surgery, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, D-20246, Hamburg, Germany
| | - Christina Möller-Koop
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, D-20246, Hamburg, Germany
| | - Claudia Hube-Magg
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, D-20246, Hamburg, Germany
| | - Patrick Lebok
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, D-20246, Hamburg, Germany
| | - Eike Burandt
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, D-20246, Hamburg, Germany
| | - Guido Sauter
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, D-20246, Hamburg, Germany
| | - Ronald Simon
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, D-20246, Hamburg, Germany.
| | - Hartwig Huland
- Martini-Clinic, Prostate Cancer Center, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, D-20246, Hamburg, Germany
| | - Markus Graefen
- Martini-Clinic, Prostate Cancer Center, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, D-20246, Hamburg, Germany
| | - Hans Heinzer
- Martini-Clinic, Prostate Cancer Center, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, D-20246, Hamburg, Germany
| | - Thorsten Schlomm
- Martini-Clinic, Prostate Cancer Center, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, D-20246, Hamburg, Germany.,Department of Urology, Section for translational Prostate Cancer Center, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, D-20246, Hamburg, Germany
| | - Asmus Heumann
- Department of Surgery, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, D-20246, Hamburg, Germany
| |
Collapse
|
7
|
Farina NH, Zingiryan A, Vrolijk MA, Perrapato SD, Ades S, Stein GS, Lian JB, Landry CC. Nanoparticle-based targeted cancer strategies for non-invasive prostate cancer intervention. J Cell Physiol 2018; 233:6408-6417. [PMID: 29663383 DOI: 10.1002/jcp.26593] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Accepted: 03/09/2018] [Indexed: 01/07/2023]
Abstract
Prostate cancer is screened by testing circulating levels of the prostate-specific antigen (PSA) biomarker, monitoring changes over time, or a digital rectal exam. Abnormal results often lead to prostate biopsy. Prostate cancer positive patients are stratified into very low-risk, low-risk, intermediate-risk, and high-risk, based on clinical classification parameters, to assess therapy options. However, there remains a gap in our knowledge and a compelling need for improved risk stratification to inform clinical decisions and reduce both over-diagnosis and over-treatment. Further, current strategies for clinical intervention do not distinguish clinically aggressive prostate cancer from indolent disease. This mini-review takes advantage of a large number of functionally characterized microRNAs (miRNA), epigenetic regulators of prostate cancer, that define prostate cancer cell activity, tumor stage, and circulate as biomarkers to monitor disease progression. Nanoparticles provide an effective platform for targeted delivery of miRNA inhibitors or mimics specifically to prostate tumor cells to inhibit cancer progression. Several prostate-specific transmembrane proteins expressed at elevated levels in prostate tumors are under investigation for targeting therapeutic agents to prostate cancer cells. Given that prostate cancer progresses slowly, circulating miRNAs can be monitored to identify tumor progression in indolent disease, allowing identification of miRNAs for nanoparticle intervention before the crucial point of transition to aggressive disease. Here, we describe clinically significant and non-invasive intervention nanoparticle strategies being used in clinical trials for drug and nucleic acid delivery. The advantages of mesoporous silica-based nanoparticles and a number of candidate miRNAs for inhibition of prostate cancer are discussed.
Collapse
Affiliation(s)
- Nicholas H Farina
- Department of Biochemistry, Larner College of Medicine, University of Vermont, Burlington, Vermont.,UVM Cancer Center, Larner College of Medicine, University of Vermont, Burlington, Vermont
| | - Areg Zingiryan
- Department of Biochemistry, Larner College of Medicine, University of Vermont, Burlington, Vermont
| | - Michael A Vrolijk
- Department of Chemistry, College of Arts and Sciences, University of Vermont, Burlington, Vermont
| | - Scott D Perrapato
- UVM Cancer Center, Larner College of Medicine, University of Vermont, Burlington, Vermont.,Department of Surgery, Division of Urology, Larner College of Medicine, University of Vermont Medical Center, Burlington, Vermont
| | - Steven Ades
- UVM Cancer Center, Larner College of Medicine, University of Vermont, Burlington, Vermont.,Department of Medicine, Division of Hematology and Oncology, Larner College of Medicine, University of Vermont Medical Center, Burlington, Vermont
| | - Gary S Stein
- Department of Biochemistry, Larner College of Medicine, University of Vermont, Burlington, Vermont.,UVM Cancer Center, Larner College of Medicine, University of Vermont, Burlington, Vermont
| | - Jane B Lian
- Department of Biochemistry, Larner College of Medicine, University of Vermont, Burlington, Vermont.,UVM Cancer Center, Larner College of Medicine, University of Vermont, Burlington, Vermont
| | - Christopher C Landry
- Department of Chemistry, College of Arts and Sciences, University of Vermont, Burlington, Vermont
| |
Collapse
|
8
|
Mohsenzadegan M, Shekarabi M, Madjd Z, Asgari M, Abolhasani M, Tajik N, Farajollahi MM. Study of NGEP expression pattern in cancerous tissues provides novel insights into prognostic marker in prostate cancer. Biomark Med 2016; 9:391-401. [PMID: 25808443 DOI: 10.2217/bmm.14.106] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
AIM The aim of this study was to produce a novel polyclonal antibody against extracellular domain of NGEP protein and explore its role in prognosis of prostate cancer. MATERIALS & METHODS Polyclonal antibodies against two peptides (NGEP-p1 and NGEP-p2) derived extracellular domains of NGEP were prepared and the intensity and distribution of NGEP expression analyzed in large series of prostate tissue specimens. RESULTS We found a significant inverse correlation between NGEP expression and prognostic features such as Gleason score, pathologic tumor stage and prostate-specific antigen level using anti-NGEP-p2 antibody. CONCLUSION The results indicate that the high level of expression could be associated with good prognosis in prostate cancer. However, additional studies are required to evaluate NGEP as an independent prognostic factor for prostate carcinoma.
Collapse
Affiliation(s)
- Monireh Mohsenzadegan
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | | | | | | | | | | | | |
Collapse
|
9
|
Wang S, Li W, Yuan D, Song J, Fang J. Quantitative detection of the tumor-associated antigen large external antigen in colorectal cancer tissues and cells using quantum dot probe. Int J Nanomedicine 2016; 11:235-47. [PMID: 26834472 PMCID: PMC4716728 DOI: 10.2147/ijn.s97509] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The large external antigen (LEA) is a cell surface glycoprotein that has been proven to be highly expressed in colorectal cancer (CRC) as a tumor-associated antigen. To evaluate and validate the relationship between LEA expression and clinical characteristics of CRC with high efficiency, LEA expression levels were detected in 85 tissue blocks from CRC patients by quantum dot-based immunohistochemistry (QD-IHC) combined with imaging quantitative analysis using quantum dots with a 605 nm emission wavelength (QD605) conjugated to an ND-1 monoclonal antibody against LEA as a probe. Conventional IHC was performed in parallel for comparison. Both QD-IHC and conventional IHC showed that LEA was specifically expressed in CRC, but not in non-CRC tissues, and high LEA expression was significantly associated with a more advanced T-stage (P<0.05), indicating that LEA is likely to serve as a CRC prognostic marker. Compared with conventional IHC, receiver operating characteristic analysis revealed that QD-IHC possessed higher sensitivity, resulting in an increased positive detection rate of CRC, from 70.1% to 89.6%. In addition, a simpler operation, objective analysis of results, and excellent repeatability make QD-IHC an attractive alternative to conventional IHC in clinical practice. Furthermore, to explore whether the QD probes can be utilized to quantitatively detect living cells or single cells, quantum dot-based immunocytochemistry (QD-ICC) combined with imaging quantitative analysis was developed to evaluate LEA expression in several CRC cell lines. It was demonstrated that QD-ICC could also predict the correlation between LEA expression and the T-stage characteristics of the cell lines, which was confirmed by flow cytometry. The results of this study indicate that QD-ICC has the potential to noninvasively detect rare circulating tumor cells in clinical samples in real clinical applications.
Collapse
Affiliation(s)
- Shuo Wang
- Department of Cell Biology, Key Laboratory of Cell Biology, Ministry of Public Health, and Key Laboratory of Medical Cell Biology, Ministry of Education, China Medical University, Shenyang, People's Republic of China
| | - Wanming Li
- Department of Cell Biology, Key Laboratory of Cell Biology, Ministry of Public Health, and Key Laboratory of Medical Cell Biology, Ministry of Education, China Medical University, Shenyang, People's Republic of China
| | - Dezheng Yuan
- Department of Cell Biology, Key Laboratory of Cell Biology, Ministry of Public Health, and Key Laboratory of Medical Cell Biology, Ministry of Education, China Medical University, Shenyang, People's Republic of China
| | - Jindan Song
- Department of Cell Biology, Key Laboratory of Cell Biology, Ministry of Public Health, and Key Laboratory of Medical Cell Biology, Ministry of Education, China Medical University, Shenyang, People's Republic of China
| | - Jin Fang
- Department of Cell Biology, Key Laboratory of Cell Biology, Ministry of Public Health, and Key Laboratory of Medical Cell Biology, Ministry of Education, China Medical University, Shenyang, People's Republic of China
| |
Collapse
|
10
|
Wegner KD, Hildebrandt N. Quantum dots: bright and versatile in vitro and in vivo fluorescence imaging biosensors. Chem Soc Rev 2015; 44:4792-4834. [DOI: 10.1039/c4cs00532e] [Citation(s) in RCA: 562] [Impact Index Per Article: 62.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/30/2023]
Abstract
Colourful cells and tissues: semiconductor quantum dots and their versatile applications in multiplexed bioimaging research.
Collapse
Affiliation(s)
- K. David Wegner
- NanoBioPhotonics
- Institut d'Electronique Fondamentale
- Université Paris-Sud
- 91405 Orsay Cedex
- France
| | - Niko Hildebrandt
- NanoBioPhotonics
- Institut d'Electronique Fondamentale
- Université Paris-Sud
- 91405 Orsay Cedex
- France
| |
Collapse
|
11
|
Hossain MA, Chowdhury T, Bagul A. Imaging modalities for the in vivo surveillance of mesenchymal stromal cells. J Tissue Eng Regen Med 2014; 9:1217-24. [PMID: 24917526 DOI: 10.1002/term.1907] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2013] [Revised: 03/20/2014] [Accepted: 04/20/2014] [Indexed: 12/13/2022]
Abstract
Bone marrow stromal cells exist as mesenchymal stromal cells (MSCs) and have the capacity to differentiate into multiple tissue types when subjected to appropriate culture conditions. This property of MSCs creates therapeutic opportunities in regenerative medicine for the treatment of damage to neural, cardiac and musculoskeletal tissues or acute kidney injury. The prerequisite for successful cell therapy is delivery of cells to the target tissue. Assessment of therapeutic outcomes utilize traditional methods to examine cell function of MSC populations involving routine biochemical or histological analysis for cell proliferation, protein synthesis and gene expression. However, these methods do not provide sufficient spatial and temporal information. In vivo surveillance of MSC migration to the site of interest can be performed through a variety of imaging modalities such as the use of radiolabelling, fluc protein expression bioluminescence imaging and paramagnetic nanoparticle magnetic resonance imaging. This review will outline the current methods of in vivo surveillance of exogenously administered MSCs in regenerative medicine while addressing potential technological developments. Furthermore, nanoparticles and microparticles for cellular labelling have shown that migration of MSCs can be spatially and temporally monitored. In vivo surveillance therefore permits time-stratified assessment in animal models without disruption of the target organ. In vivo tracking of MSCs is non-invasive, repeatable and non-toxic. Despite the excitement that nanoparticles for tracking MSCs offer, delivery methods are difficult because of the challenges with imaging three-dimensional systems. The current advances and growth in MSC research, is likely to provide a wealth of evidence overcoming these issues.
Collapse
Affiliation(s)
| | - Tina Chowdhury
- Institute of Bioengineering, School of Engineering and Materials Science, Queen Mary University of London, London, UK
| | - Atul Bagul
- Department of Renal Transplantation, St Georges Hospital NHS Trust, London, UK
| |
Collapse
|
12
|
Hossain MA, Frampton AE, Bagul A. Challenges facing in vivo tracking of mesenchymal stem cells used for tissue regeneration. Expert Rev Med Devices 2013; 11:9-13. [PMID: 24308739 DOI: 10.1586/17434440.2014.865306] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Bone marrow-derived mesenchymal stem cells (MSCs) are increasingly being investigated in the field of regenerative medicine. In vivo monitoring of MSCs can be performed with MRI, which is a non-invasive, non-toxic and clinically acceptable modality. In order to track these MSCs, cells must be labeled with detectable magnetic nanoparticles. However, they 'leak' from labeled cells, limiting their surveillance to a 3-week period. Li et al. developed a rodent model in order to evaluate MRI monitoring of intramuscularly injected aminopropyltriethoxysilane iron oxide-labeled MSCs. Both in vivo tracking and histological analysis were undertaken. Seeded MSCs demonstrated increased MRI signal in the labeled test group over 3 weeks compared with the unlabeled controls. Histological Prussian blue staining of posttermination tissues confirmed these findings. The authors conclude that successful labeling of MSCs is possible with aminopropyltriethoxysilane - magnetic nanoparticles and that these cells can be monitored in vivo. They offer this form of labeling as an alternative to more common dextran-coated magnetic nanoparticles.
Collapse
Affiliation(s)
- Mohammad A Hossain
- Renal Transplant and Vascular Access Department, St. George's Healthcare NHS Trust, Blackshaw Road, London SW17 0QT, UK
| | | | | |
Collapse
|
13
|
Overexpression of CD73 in prostate cancer is associated with lymph node metastasis. Pathol Oncol Res 2013; 19:811-4. [PMID: 23653114 DOI: 10.1007/s12253-013-9648-7] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2013] [Accepted: 04/24/2013] [Indexed: 12/30/2022]
Abstract
Prostate cancer is the most common malignancy in men in Europe and North America. At present, it is becoming an increasingly common cancer in China. CD73 (ecto-5'-nucleotidase) is a glycosylphosphatidylinositol (GPI)-linked 70-kDa cell surface enzyme. It is also broadly expressed in many types of tissues. Recent studies have showed that CD73 is widely expressed on malignancies and is up-regulated in cancerous tissues. Consequently, we analyzed the expression of CD73 in prostate cancer tissue. The expression of the CD73 protein was evaluated by Immunohistochemistry staining in 116 tissue specimens. The expression was further examined by quantitative real-time PCR (qRT-PCR) and Western blot in the same set of patients. The intense cell membrane staining for the CD73 protein was observed. The expression of CD73 in lymph node non-metastasizing prostate cancer tissues can be seen at low levels, and is generally undetectable. RT-PCR and Western blot showed that the expression of CD73 in lymph node metastasizing prostate cancer was higher compared with non-metastasizing ones. These results suggest that CD73 could be considered as a relevant-specific target for molecular therapy of prostate cancer metastasis.
Collapse
|
14
|
Petryayeva E, Algar WR, Medintz IL. Quantum dots in bioanalysis: a review of applications across various platforms for fluorescence spectroscopy and imaging. APPLIED SPECTROSCOPY 2013; 67:215-52. [PMID: 23452487 DOI: 10.1366/12-06948] [Citation(s) in RCA: 298] [Impact Index Per Article: 27.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Semiconductor quantum dots (QDs) are brightly luminescent nanoparticles that have found numerous applications in bioanalysis and bioimaging. In this review, we highlight recent developments in these areas in the context of specific methods for fluorescence spectroscopy and imaging. Following a primer on the structure, properties, and biofunctionalization of QDs, we describe select examples of how QDs have been used in combination with steady-state or time-resolved spectroscopic techniques to develop a variety of assays, bioprobes, and biosensors that function via changes in QD photoluminescence intensity, polarization, or lifetime. Some special attention is paid to the use of Förster resonance energy transfer-type methods in bioanalysis, including those based on bioluminescence and chemiluminescence. Direct chemiluminescence, electrochemiluminescence, and charge transfer quenching are similarly discussed. We further describe the combination of QDs and flow cytometry, including traditional cellular analyses and spectrally encoded barcode-based assay technologies, before turning our attention to enhanced fluorescence techniques based on photonic crystals or plasmon coupling. Finally, we survey the use of QDs across different platforms for biological fluorescence imaging, including epifluorescence, confocal, and two-photon excitation microscopy; single particle tracking and fluorescence correlation spectroscopy; super-resolution imaging; near-field scanning optical microscopy; and fluorescence lifetime imaging microscopy. In each of the above-mentioned platforms, QDs provide the brightness needed for highly sensitive detection, the photostability needed for tracking dynamic processes, or the multiplexing capacity needed to elucidate complex systems. There is a clear synergy between advances in QD materials and spectroscopy and imaging techniques, as both must be applied in concert to achieve their full potential.
Collapse
Affiliation(s)
- Eleonora Petryayeva
- Department of Chemistry, University of British Columbia, Vancouver, BC V6T 1Z1, Canada
| | | | | |
Collapse
|