1
|
Çimen D, Ünal S, Denizli A. Nanoparticle-assisted plasmonic sensors: Recent developments in clinical applications. Anal Biochem 2025; 698:115753. [PMID: 39719190 DOI: 10.1016/j.ab.2024.115753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 12/08/2024] [Accepted: 12/21/2024] [Indexed: 12/26/2024]
Abstract
Nanotechnology is an important science that finds a wide range of applications from energy production to industrial production processes and biomedical applications. Nanoparti-cles, which are the most frequently preferred nanomaterials that form the basis of nanotechnolo-gy, are prepared with different composition, size, shape and surface chemistry to provide new techniques in applications in many different fields. The use of nanoparticles in the preparation of plasmonic sensors has increased the interest in plasmonic sensors such as surface plasmon resonance, electrochemical sensors, surface enhanced raman scattering and colorimetric sensors due to their increased sensing capacity on sensor surfaces. Plasmonic sensors are an important option in many different fields, such as medicine, environmental agriculture and food safety, thanks to their ability to solve a multitude of challenges. Because, plasmonic sensors are defined as sensing devices with important features such as sensitive and fast detection, no need for labels, real-time analysis, portability. In this review, the information about nanoparticles and their types and working principles of plasmonic sensors is given. Then, examples in clinical applications using different plasmonic sensors prepared with plasmonic nanoparticles are discussed in detail.
Collapse
Affiliation(s)
- Duygu Çimen
- Department of Chemistry, Hacettepe University, Ankara, Turkey
| | - Serhat Ünal
- Department of Infectious Disease and Clinical Microbiology, Hacettepe University, Ankara, Turkey
| | - Adil Denizli
- Department of Chemistry, Hacettepe University, Ankara, Turkey.
| |
Collapse
|
2
|
Kobayashi K, Sakamoto K. Range of effectiveness of hydraulic diameter model as an analytical solution for rectangular microchannels. Heliyon 2025; 11:e41498. [PMID: 39850432 PMCID: PMC11755038 DOI: 10.1016/j.heliyon.2024.e41498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 12/24/2024] [Accepted: 12/24/2024] [Indexed: 01/25/2025] Open
Abstract
Spontaneous capillary flow in rectangular microfluidic channels is employed in microfluidic devices for various applications. The exact solution for flow in a rectangular cross-sectional channel has a complex point that contains an infinite sum term. The flow depends on the depth-width ratio of the rectangular channel's cross-section, ε. In previous studies, several approximations from exact solutions were useful for ε values smaller than 1 or 2. In this study, we propose a conversion equation J ( ε ) that turns the hydraulic-diameter (HD) model into a rectangular-channel (RC) model. Experiments: Rectangular type flow experiments with ethanol solution were conducted to confirm the difference between the RC and HD models when the analysis was performed based on each model. Findings: J ( ε ) depends on ε . At ε = 0.441 , 2.27 , the two models coincide. For 0.247 < ε < 4.04 , J ( ε ) deviates by ± 12.5 % .
Collapse
Affiliation(s)
- Koichiro Kobayashi
- Shipping Technology Department, National Institute of Technology, Oshima College, Suo-Oshima, 742-2193, Japan
| | - Kenji Sakamoto
- Department of Intelligent and Control Systems, Kyushu Institute of Technology, Iizuka, Fukuoka, 820-8502, Japan
| |
Collapse
|
3
|
Butt MA. Surface Plasmon Resonance-Based Biodetection Systems: Principles, Progress and Applications-A Comprehensive Review. BIOSENSORS 2025; 15:35. [PMID: 39852086 DOI: 10.3390/bios15010035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2024] [Revised: 01/05/2025] [Accepted: 01/08/2025] [Indexed: 01/26/2025]
Abstract
Surface Plasmon Resonance (SPR)-based biodetection systems have emerged as powerful tools for real-time, label-free biomolecular interaction analysis, revolutionizing fields such as diagnostics, drug discovery, and environmental monitoring. This review highlights the foundational principles of SPR, focusing on the interplay of evanescent waves and surface plasmons that underpin its high sensitivity and specificity. Recent advancements in SPR technology, including enhancements in sensor chip materials, integration with nanostructures, and coupling with complementary detection techniques, are discussed to showcase their role in improving analytical performance. The paper also explores diverse applications of SPR biodetection systems, ranging from pathogen detection and cancer biomarker identification to food safety monitoring and environmental toxin analysis. By providing a comprehensive overview of technological progress and emerging trends, this review underscores the transformative potential of SPR-based biodetection systems in addressing critical scientific and societal challenges. Future directions and challenges, including miniaturization, cost reduction, and expanding multiplexing capabilities, are also presented to guide ongoing research and development in this rapidly evolving field.
Collapse
Affiliation(s)
- Muhammad A Butt
- Institute of Microelectronics and Optoelectronics, Warsaw University of Technology, Koszykowa 75, 00-662 Warsaw, Poland
| |
Collapse
|
4
|
Nawa Y, Tawa K. High spatial resolution surface plasmon resonance imaging using a plasmonic chip. J Chem Phys 2024; 160:164710. [PMID: 38651813 DOI: 10.1063/5.0201230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 04/03/2024] [Indexed: 04/25/2024] Open
Abstract
The surface plasmon resonance (SPR) technique has been widely applied to biosensing technologies for the rapid quantification of biomolecules without enzyme and fluorescent labeling. However, the conventional prism-coupling SPR method generally has a detection area of a few mm2, and the large contribution of the background signal forms a barrier to highly sensitive detection. Based on a highly spatially resolved SPR method, the present study constructed a scanning GC-SPR imaging instrument using an objective lens with a high numerical aperture and a plasmonic chip that could be used for grating-coupled SPR. Focusing light on the diffraction limit can suppress background signals and improve detection sensitivity. SPR imaging can also be performed by scanning a focal spot. Using this method, the refractive index of a mixture of water and dimethyl sulfoxide was measured with a detection accuracy of 2.43 × 10-3 RIU. Polydopamine films prepared with a thickness of <5 nm were also measured, and each film thickness was evaluated with high sensitivity from the effective refractive index detected in a small area of <1 µm2.
Collapse
Affiliation(s)
- Yasunori Nawa
- Department of Applied Chemistry for Environment, School of Biological and Environmental Sciences, Kwansei Gakuin University, 1 Gakuen Uegahara, Sanda, Hyogo 669-1330, Japan
| | - Keiko Tawa
- Department of Applied Chemistry for Environment, School of Biological and Environmental Sciences, Kwansei Gakuin University, 1 Gakuen Uegahara, Sanda, Hyogo 669-1330, Japan
| |
Collapse
|
5
|
Liu H, Fu Y, Yang R, Guo J, Guo J. Surface plasmonic biosensors: principles, designs and applications. Analyst 2023; 148:6146-6160. [PMID: 37921208 DOI: 10.1039/d3an01241g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2023]
Abstract
Recently, surface plasmon resonance (SPR) biosensors have been widely used in environmental monitoring, food contamination detection and diagnosing medical conditions due to their superior sensitivity, label-free detection and rapid analysis speed. This paper briefly elaborates on the development history of SPR technology and introduces SPR signal sensing principles. A summary of recent applications of SPR sensors in different fields is highlighted, including their figures of merit and limitations. Finally, the personal perspectives and future development trends about sensor preparation and design are discussed in detail, which may be critical for improving the performance of SPR sensors.
Collapse
Affiliation(s)
- Hao Liu
- University of Electronic Science and Technology of China, Chengdu, China
| | - Yusheng Fu
- University of Electronic Science and Technology of China, Chengdu, China
| | - Rongzhi Yang
- University of Electronic Science and Technology of China, Chengdu, China
| | - Jiuchuan Guo
- University of Electronic Science and Technology of China, Chengdu, China
| | - Jinhong Guo
- School of Sensing Science and Engineering, Shanghai Jiao Tong University, Shanghai, China.
- The M.O.E. Key Laboratory of Laboratory Medical Diagnostics, The College of Laboratory Medicine, Chongqing Medical University, #1 Yixueyuan Road, Yuzhong District, Chongqing, 400016, China
| |
Collapse
|
6
|
Pan S, You R, Chen X, Pan W, Li Q, Chen X, Pang W, Duan X. Regulating Biomolecular Surface Interactions Using Tunable Acoustic Streaming. ACS Sens 2023; 8:3458-3467. [PMID: 37639526 DOI: 10.1021/acssensors.3c00982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Abstract
Diffusion limitations and nonspecific surface absorption are great challenges for developing micro-/nanoscale affinity biosensors. There are very limited approaches that can solve these issues at the same time. Here, an acoustic streaming approach enabled by a gigahertz (GHz) resonator is presented to promote mass transfer of analytes through the jet mode and biofouling removal through the shear mode, which can be switched by tuning the deviation angle, α, between the resonator and the sensor. Simulations show that the jet mode (α ≤ 0) drives the analytes in the fluid toward the sensing surface, overcomes the diffusion limitation, and enhances the binding; while the shear mode (0 < α < π/4) provides a scouring action to remove the biofouling from the sensor. Experimental studies were performed by integrating this GHz resonator with optoelectronic sensing systems, where a 34-fold enhancement for the initial binding rate was obtained. Featuring high efficiency, controllability, and versatility, we believe that this GHz acoustic streaming approach holds promise for many kinds of biosensing systems as well as lab-on-chip systems.
Collapse
Affiliation(s)
- Shuting Pan
- State Key Laboratory of Precision Measuring Technology & Instruments, Tianjin University, Tianjin 300072, China
| | - Rui You
- State Key Laboratory of Precision Measuring Technology & Instruments, Tianjin University, Tianjin 300072, China
| | - Xian Chen
- State Key Laboratory of Precision Measuring Technology & Instruments, Tianjin University, Tianjin 300072, China
| | - Wenwei Pan
- State Key Laboratory of Precision Measuring Technology & Instruments, Tianjin University, Tianjin 300072, China
| | - Quanning Li
- State Key Laboratory of Precision Measuring Technology & Instruments, Tianjin University, Tianjin 300072, China
| | - Xuejiao Chen
- State Key Laboratory of Precision Measuring Technology & Instruments, Tianjin University, Tianjin 300072, China
| | - Wei Pang
- State Key Laboratory of Precision Measuring Technology & Instruments, Tianjin University, Tianjin 300072, China
| | - Xuexin Duan
- State Key Laboratory of Precision Measuring Technology & Instruments, Tianjin University, Tianjin 300072, China
| |
Collapse
|
7
|
Bruce-Tagoe TA, Danquah MK. Bioaffinity Nanoprobes for Foodborne Pathogen Sensing. MICROMACHINES 2023; 14:1122. [PMID: 37374709 DOI: 10.3390/mi14061122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 05/18/2023] [Accepted: 05/23/2023] [Indexed: 06/29/2023]
Abstract
Bioaffinity nanoprobes are a type of biosensor that utilize the specific binding properties of biological molecules, such as antibodies, enzymes, and nucleic acids, for the detection of foodborne pathogens. These probes serve as nanosensors and can provide highly specific and sensitive detection of pathogens in food samples, making them an attractive option for food safety testing. The advantages of bioaffinity nanoprobes include their ability to detect low levels of pathogens, rapid analysis time, and cost-effectiveness. However, limitations include the need for specialized equipment and the potential for cross-reactivity with other biological molecules. Current research efforts focus on optimizing the performance of bioaffinity probes and expanding their application in the food industry. This article discusses relevant analytical methods, such as surface plasmon resonance (SPR) analysis, Fluorescence Resonance Energy Transfer (FRET) measurements, circular dichroism, and flow cytometry, that are used to evaluate the efficacy of bioaffinity nanoprobes. Additionally, it discusses advances in the development and application of biosensors in monitoring foodborne pathogens.
Collapse
Affiliation(s)
- Tracy Ann Bruce-Tagoe
- Department of Chemical Engineering, University of Tennessee, Chattanooga 615 McCallie Ave, Chattanooga, TN 37403, USA
| | - Michael K Danquah
- Department of Chemical Engineering, University of Tennessee, Chattanooga 615 McCallie Ave, Chattanooga, TN 37403, USA
| |
Collapse
|
8
|
Recent advances in surface plasmon resonance imaging and biological applications. Talanta 2023; 255:124213. [PMID: 36584617 DOI: 10.1016/j.talanta.2022.124213] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 12/19/2022] [Accepted: 12/20/2022] [Indexed: 12/28/2022]
Abstract
Surface Plasmon Resonance Imaging (SPRI) is a robust technique for visualizing refractive index changes, which enables researchers to observe interactions between nanoscale objects in an imaging manner. In the past period, scholars have been attracted by the Prism-Coupled and Non-prism Coupled configurations of SPRI and have published numerous experimental results. This review describes the principle of SPRI and discusses recent developments in Prism-Coupled and Non-prism Coupled SPRI techniques in detail, respectively. And then, major advances in biological applications of SPRI are reviewed, including four sub-fields (cells, viruses, bacteria, exosomes, and biomolecules). The purpose is to briefly summarize the recent advances of SPRI and provide an outlook on the development of SPRI in various fields.
Collapse
|
9
|
Wang Q, Wang C, Yang X, Wang J, Zhang Z, Shang L. Microfluidic preparation of optical sensors for biomedical applications. SMART MEDICINE 2023; 2:e20220027. [PMID: 39188556 PMCID: PMC11235902 DOI: 10.1002/smmd.20220027] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Accepted: 11/15/2022] [Indexed: 08/28/2024]
Abstract
Optical biosensors are platforms that translate biological information into detectable optical signals, and have extensive applications in various fields due to their characteristics of high sensitivity, high specificity, dynamic sensing, etc. The development of optical sensing materials is an important part of optical sensors. In this review, we emphasize the role of microfluidic technology in the preparation of optical sensing materials and the application of the derived optical sensors in the biomedical field. We first present some common optical sensing mechanisms and the functional responsive materials involved. Then, we describe the preparation of these sensing materials by microfluidics. Afterward, we enumerate the biomedical applications of these optical materials as biosensors in disease diagnosis, drug evaluation, and organ-on-a-chip. Finally, we discuss the challenges and prospects in this field.
Collapse
Affiliation(s)
- Qiao Wang
- Shanghai Xuhui Central HospitalZhongshan‐Xuhui Hospital, and the Shanghai Key Laboratory of Medical Epigeneticsthe International Co‐laboratory of Medical Epigenetics and Metabolism (Ministry of Science and Technology)Institutes of Biomedical SciencesFudan UniversityShanghaiChina
| | - Chong Wang
- Shanghai Xuhui Central HospitalZhongshan‐Xuhui Hospital, and the Shanghai Key Laboratory of Medical Epigeneticsthe International Co‐laboratory of Medical Epigenetics and Metabolism (Ministry of Science and Technology)Institutes of Biomedical SciencesFudan UniversityShanghaiChina
| | - Xinyuan Yang
- Shanghai Xuhui Central HospitalZhongshan‐Xuhui Hospital, and the Shanghai Key Laboratory of Medical Epigeneticsthe International Co‐laboratory of Medical Epigenetics and Metabolism (Ministry of Science and Technology)Institutes of Biomedical SciencesFudan UniversityShanghaiChina
| | - Jiali Wang
- Shanghai Xuhui Central HospitalZhongshan‐Xuhui Hospital, and the Shanghai Key Laboratory of Medical Epigeneticsthe International Co‐laboratory of Medical Epigenetics and Metabolism (Ministry of Science and Technology)Institutes of Biomedical SciencesFudan UniversityShanghaiChina
| | - Zhuohao Zhang
- Shanghai Xuhui Central HospitalZhongshan‐Xuhui Hospital, and the Shanghai Key Laboratory of Medical Epigeneticsthe International Co‐laboratory of Medical Epigenetics and Metabolism (Ministry of Science and Technology)Institutes of Biomedical SciencesFudan UniversityShanghaiChina
| | - Luoran Shang
- Shanghai Xuhui Central HospitalZhongshan‐Xuhui Hospital, and the Shanghai Key Laboratory of Medical Epigeneticsthe International Co‐laboratory of Medical Epigenetics and Metabolism (Ministry of Science and Technology)Institutes of Biomedical SciencesFudan UniversityShanghaiChina
| |
Collapse
|
10
|
Ma C, Zhang Z, Tan T, Zhu JJ. Recent Progress in Plasmonic based Electrochemiluminescence Biosensors: A Review. BIOSENSORS 2023; 13:bios13020200. [PMID: 36831966 PMCID: PMC9953926 DOI: 10.3390/bios13020200] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 01/25/2023] [Accepted: 01/27/2023] [Indexed: 05/25/2023]
Abstract
Electrochemiluminescence (ECL) analysis has become a powerful tool in recent biomarker detection and clinic diagnosis due to its high sensitivity and broad linear range. To improve the analytical performance of ECL biosensors, various advanced nanomaterials have been introduced to regulate the ECL signal such as graphene, gold nanomaterials, and quantum dots. Among these nanomaterials, some plasmonic nanostructures play important roles in the fabrication of ECL biosensors. The plasmon effect for the ECL signal includes ECL quenching by resonant energy transfer, ECL enhancement by surface plasmon resonance enhancement, and a change in the polarized angle of ECL emission. The influence can be regulated by the distance between ECL emitters and plasmonic materials, and the characteristics of polarization angle-dependent surface plasmon coupling. This paper outlines the recent advances of plasmonic based ECL biosensors involving various plasmonic materials including noble metals and semiconductor nanomaterials. The detection targets in these biosensors range from small molecules, proteins, nucleic acids, and cells thanks to the plasmonic effect. In addition to ECL biosensors, ECL microscopy analysis with plasmonic materials is also highlighted because of the enhanced ECL image quality by the plasmonic effect. Finally, the future opportunities and challenges are discussed if more plasmonic effects are introduced into the ECL realm.
Collapse
Affiliation(s)
- Cheng Ma
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, China
| | - Zhichen Zhang
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, China
| | - Tingting Tan
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, China
| | - Jun-Jie Zhu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| |
Collapse
|
11
|
Akgönüllü S, Özgür E, Denizli A. Quartz Crystal Microbalance-Based Aptasensors for Medical Diagnosis. MICROMACHINES 2022; 13:1441. [PMID: 36144064 PMCID: PMC9503788 DOI: 10.3390/mi13091441] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 08/27/2022] [Accepted: 08/28/2022] [Indexed: 06/16/2023]
Abstract
Aptamers are important materials for the specific determination of different disease-related biomarkers. Several methods have been enhanced to transform selected target molecule-specific aptamer bindings into measurable signals. A number of specific aptamer-based biosensors have been designed for potential applications in clinical diagnostics. Various methods in combination with a wide variety of nano-scale materials have been employed to develop aptamer-based biosensors to further increase sensitivity and detection limit for related target molecules. In this critical review, we highlight the advantages of aptamers as biorecognition elements in biosensors for target biomolecules. In recent years, it has been demonstrated that electrode material plays an important role in obtaining quick, label-free, simple, stable, and sensitive detection in biological analysis using piezoelectric devices. For this reason, we review the recent progress in growth of aptamer-based QCM biosensors for medical diagnoses, including virus, bacteria, cell, protein, and disease biomarker detection.
Collapse
|
12
|
Mathur P, Fomitcheva Khartchenko A, Stavrakis S, Kaigala GV, deMello AJ. Quantifying Antibody Binding Kinetics on Fixed Cells and Tissues via Fluorescence Lifetime Imaging. Anal Chem 2022; 94:10967-10975. [PMID: 35895913 DOI: 10.1021/acs.analchem.2c01076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We present a method for monitoring spatially localized antigen-antibody binding events on physiologically relevant substrates (cell and tissue sections) using fluorescence lifetime imaging. Specifically, we use the difference between the fluorescence decay times of fluorescently tagged antibodies in free solution and in the bound state to track the bound fraction over time and hence deduce the binding kinetics. We make use of a microfluidic probe format to minimize the mass transport effects and localize the analysis to specific regions of interest on the biological substrates. This enables measurement of binding constants (kon) on surface-bound antigens and on cell blocks using model biomarkers. Finally, we directly measure p53 kinetics with differential biomarker expression in ovarian cancer tissue sections, observing that the degree of expression corresponds to the changes in kon, with values of 3.27-3.50 × 103 M-1 s-1 for high biomarker expression and 2.27-2.79 × 103 M-1 s-1 for low biomarker expression.
Collapse
Affiliation(s)
- Prerit Mathur
- Institute for Chemical and Bioengineering, Department of Chemistry & Applied Biosciences, Eidgenössische Technische Hochschule (ETH Zürich), Vladimir-Prelog-Weg 1-5/10, 8093 Zürich, Switzerland.,IBM Research Europe─Zurich, Säumerstrasse 4, CH-8803 Rüschlikon, Switzerland
| | - Anna Fomitcheva Khartchenko
- Institute for Chemical and Bioengineering, Department of Chemistry & Applied Biosciences, Eidgenössische Technische Hochschule (ETH Zürich), Vladimir-Prelog-Weg 1-5/10, 8093 Zürich, Switzerland.,IBM Research Europe─Zurich, Säumerstrasse 4, CH-8803 Rüschlikon, Switzerland
| | - Stavros Stavrakis
- Institute for Chemical and Bioengineering, Department of Chemistry & Applied Biosciences, Eidgenössische Technische Hochschule (ETH Zürich), Vladimir-Prelog-Weg 1-5/10, 8093 Zürich, Switzerland
| | - Govind V Kaigala
- IBM Research Europe─Zurich, Säumerstrasse 4, CH-8803 Rüschlikon, Switzerland.,School of Biomedical Engineering, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Andrew J deMello
- Institute for Chemical and Bioengineering, Department of Chemistry & Applied Biosciences, Eidgenössische Technische Hochschule (ETH Zürich), Vladimir-Prelog-Weg 1-5/10, 8093 Zürich, Switzerland
| |
Collapse
|
13
|
Ustun O, Yilmaz A, Yilmaz M. Catalytic and SERS activities of WO 3-based nanowires: the effect of oxygen vacancies, silver nanoparticle doping, and the type of organic dye. Phys Chem Chem Phys 2022; 24:18615-18626. [PMID: 35894693 DOI: 10.1039/d2cp00034b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Oxygen vacancies in tungsten trioxide (WO3) nanostructures (WO3-x) dominate the major characteristics of the material and determine their activity in various applications including photocatalysis and surface-enhanced Raman spectroscopy (SERS). Despite some studies performed in the last decade, the photocatalytic activity toward different pollutants and SERS activity toward different Raman reporter molecules are still unclear and may provide valuable insights into this research field. Therefore, in this study, we propose WO3-x nanowires (NWs) both as ideal photocatalysts for the degradation of organic pollutants such as crystal violet (CV), methylene blue (MB), malachite green (MG), and rhodamine 6G (R6G) and a SERS platform for the detection of these molecules. In the first step, WO3-x NWs were fabricated through the solvothermal method. Afterward, the oxygen vacancy content of WO3-x NWs was manipulated by the addition of silver ions or H2O2. Although H2O2 led to a remarkable decrease in oxygen vacancies (WO3), the addition of silver ions led to the formation of Ag nanostructures on WO3-x NWs (WO3-x@Ag). Interestingly, the combination of WO3-x and WO3-x@Ag nanosystems with all dye molecules resulted in the formation of H-aggregates due to the strong electrostatic interaction between the nanostructure and dye molecules and then its photocatalytic degradation, while regular degradation of dyes was observed for WO3. In SERS activity tests, each NP system exhibited different activities depending on various parameters including the chemical nature of the nanosystem, the degree of oxygen vacancy, the interaction of the Raman reporter molecule with the surface of the NP, and the resultant formation of H-aggregates or photocatalytic degradation. The combination of MB with WO3-x, WO3-x@Ag, and WO3 created enhancement factors such as 1.6 × 103, 5.4 × 103, and 6.2 × 103, respectively. This report showed that the parameters mentioned here must be considered in detail to evaluate the photocatalytic and SERS activity of the WO3-based nanosystem.
Collapse
Affiliation(s)
- Oguzhan Ustun
- Department of Nanoscience and Nanoengineering, Ataturk University, 25240 Erzurum, Turkey.
| | - Asli Yilmaz
- Department of Molecular Biology and Genetics, Ataturk University, 25240 Erzurum, Turkey
| | - Mehmet Yilmaz
- Department of Nanoscience and Nanoengineering, Ataturk University, 25240 Erzurum, Turkey. .,Department of Chemical Engineering, Ataturk University, 25240 Erzurum, Turkey
| |
Collapse
|
14
|
Szittner Z, Péter B, Kurunczi S, Székács I, Horváth R. Functional blood cell analysis by label-free biosensors and single-cell technologies. Adv Colloid Interface Sci 2022; 308:102727. [DOI: 10.1016/j.cis.2022.102727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 05/25/2022] [Accepted: 06/27/2022] [Indexed: 11/01/2022]
|
15
|
Hou Y, Jing J, Luo Y, Xu F, Xie W, Ma L, Xia X, Wei Q, Lin Y, Li KH, Chu Z. A Versatile, Incubator-Compatible, Monolithic GaN Photonic Chipscope for Label-Free Monitoring of Live Cell Activities. ADVANCED SCIENCE 2022; 9:e2200910. [PMID: 35404518 PMCID: PMC9189681 DOI: 10.1002/advs.202200910] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 03/16/2022] [Indexed: 02/05/2023]
Abstract
The ability to quantitatively monitor various cellular activities is critical for understanding their biological functions and the therapeutic response of cells to drugs. Unfortunately, existing approaches such as fluorescent staining and impedance-based methods are often hindered by their multiple time-consuming preparation steps, sophisticated labeling procedures, and complicated apparatus. The cost-effective, monolithic gallium nitride (GaN) photonic chip has been demonstrated as an ultrasensitive and ultracompact optical refractometer in a previous work, but it has never been applied to cell studies. Here, for the first time, the so-called GaN chipscope is proposed to quantitatively monitor the progression of different intracellular processes in a label-free manner. Specifically, the GaN-based monolithic chip enables not only a photoelectric readout of cellular/subcellular refractive index changes but also the direct imaging of cellular/subcellular ultrastructural features using a customized differential interference contrast (DIC) microscope. The miniaturized chipscope adopts an ultracompact design, which can be readily mounted with conventional cell culture dishes and placed inside standard cell incubators for real-time observation of cell activities. As a proof-of-concept demonstration, its applications are explored in 1) cell adhesion dynamics monitoring, 2) drug screening, and 3) cell differentiation studies, highlighting its potential in broad fundamental cell biology studies as well as in clinical applications.
Collapse
Affiliation(s)
- Yong Hou
- Department of Electrical and Electronic Engineering The University of Hong Kong Hong Kong China
| | - Jixiang Jing
- Department of Electrical and Electronic Engineering The University of Hong Kong Hong Kong China
| | - Yumeng Luo
- School of Microelectronics Southern University of Science and Technology Shenzhen 518055 China
| | - Feng Xu
- Department of Electrical and Electronic Engineering The University of Hong Kong Hong Kong China
| | - Wenyan Xie
- Department of Biotherapy State Key Laboratory of Biotherapy and Cancer Center West China Hospital Sichuan University Chengdu Sichuan 610065 China
| | - Linjie Ma
- Department of Electrical and Electronic Engineering The University of Hong Kong Hong Kong China
| | - Xingyu Xia
- Department of Mechanical Engineering The University of Hong Kong Hong Kong China
| | - Qiang Wei
- College of Polymer Science and Engineering State Key Laboratory of Polymer Materials and Engineering Sichuan University Chengdu 610065 China
| | - Yuan Lin
- Department of Mechanical Engineering The University of Hong Kong Hong Kong China
- Advanced Biomedical Instrumentation Centre Hong Kong Science Park Shatin New Territories Hong Kong
| | - Kwai Hei Li
- School of Microelectronics Southern University of Science and Technology Shenzhen 518055 China
| | - Zhiqin Chu
- Department of Electrical and Electronic Engineering The University of Hong Kong Hong Kong China
- School of Biomedical Sciences The University of Hong Kong Hong Kong China
| |
Collapse
|
16
|
Khadir Z, Schmidt V, Chabot K, Bryche JF, Froehlich U, Moreau J, Canva M, Charette P, Grandbois M. Surface micropatterning for the formation of an in vitro functional endothelial model for cell-based biosensors. Biosens Bioelectron 2022; 214:114481. [DOI: 10.1016/j.bios.2022.114481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 06/01/2022] [Accepted: 06/10/2022] [Indexed: 11/02/2022]
|
17
|
Shen PT, Huang SH, Huang Z, Wilson JJ, Shvets G. Probing the Drug Dynamics of Chemotherapeutics Using Metasurface-Enhanced Infrared Reflection Spectroscopy of Live Cells. Cells 2022; 11:1600. [PMID: 35626636 PMCID: PMC9139550 DOI: 10.3390/cells11101600] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 05/05/2022] [Accepted: 05/07/2022] [Indexed: 11/25/2022] Open
Abstract
Infrared spectroscopy has drawn considerable interest in biological applications, but the measurement of live cells is impeded by the attenuation of infrared light in water. Metasurface-enhanced infrared reflection spectroscopy (MEIRS) had been shown to mitigate the problem, enhance the cellular infrared signal through surface-enhanced infrared absorption, and encode the cellular vibrational signatures in the reflectance spectrum at the same time. In this study, we used MEIRS to study the dynamic response of live cancer cells to a newly developed chemotherapeutic metal complex with distinct modes of action (MoAs): tricarbonyl rhenium isonitrile polypyridyl (TRIP). MEIRS measurements demonstrated that administering TRIP resulted in long-term (several hours) reduction in protein, lipid, and overall refractive index signals, and in short-term (tens of minutes) increase in these signals, consistent with the induction of endoplasmic reticulum stress. The unique tricarbonyl IR signature of TRIP in the bioorthogonal spectral window was monitored in real time, and was used as an infrared tag to detect the precise drug delivery time that was shown to be closely correlated with the onset of the phenotypic response. These results demonstrate that MEIRS is an effective label-free real-time cellular assay capable of detecting and interpreting the early phenotypic responses of cells to IR-tagged chemotherapeutics.
Collapse
Affiliation(s)
- Po-Ting Shen
- School of Applied and Engineering Physics, Cornell University, Ithaca, NY 14853, USA; (P.-T.S.); (S.H.H.)
| | - Steven H. Huang
- School of Applied and Engineering Physics, Cornell University, Ithaca, NY 14853, USA; (P.-T.S.); (S.H.H.)
| | - Zhouyang Huang
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14853, USA; (Z.H.); (J.J.W.)
| | - Justin J. Wilson
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14853, USA; (Z.H.); (J.J.W.)
| | - Gennady Shvets
- School of Applied and Engineering Physics, Cornell University, Ithaca, NY 14853, USA; (P.-T.S.); (S.H.H.)
| |
Collapse
|
18
|
Shoji A, Nakajima M, Morioka K, Fujimori E, Umemura T, Yanagida A, Hemmi A, Uchiyama K, Nakajima H. Development of a surface plasmon resonance sensor using an optical fiber prepared by electroless displacement gold plating and its application to immunoassay. Talanta 2022; 240:123162. [PMID: 34996015 DOI: 10.1016/j.talanta.2021.123162] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 12/17/2021] [Accepted: 12/20/2021] [Indexed: 11/27/2022]
Abstract
A simple and low-cost method of fabricating an optical fiber for a surface plasmon resonance (SPR) sensor was proposed. The method is based on the electroless nickel plating and subsequent displacement gold plating of the core of the optical fiber. The thickness of the nickel and gold thin films deposited on the core of the optical fiber could be controlled by measuring the reflected light intensity from the tip of the optical fiber during the plating processes. The sensitivity and resolution of the SPR sensor with the fabricated optical fiber in the refractive index range from 1.333 to 1.348 were 1324.3 nm/RIU and 7.6 × 10-4 RIU, respectively. The developed SPR sensor was successfully used in the determination of immunoglobulin A (IgA) in human saliva. The IgA quantification results obtained by the SPR sensor were in excellent agreement with those obtained by conventional enzyme-linked immunosorbent assay using a 96-well microtiter plate.
Collapse
Affiliation(s)
- Atsushi Shoji
- School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo, 192-0392, Japan.
| | - Miyu Nakajima
- Department of Applied Chemistry for Environment, Graduate School of Urban Environmental Sciences, Tokyo Metropolitan University, 1-1 Minamiohsawa, Hachioji, Tokyo, 192-0397, Japan
| | - Kazuhiro Morioka
- School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo, 192-0392, Japan
| | - Eiji Fujimori
- National Environmental Research and Training Institute, 3-3 Namiki, Tokorozawa, Saitama, 359-0042, Japan
| | - Tomonari Umemura
- Laboratory of Bioanalytical and Environmental Chemistry, School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo, 192-0392, Japan
| | - Akio Yanagida
- School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo, 192-0392, Japan
| | - Akihide Hemmi
- Mebius Advanced Technology Ltd., 3-31-6 Nishiogi-kita, Suginami-ku, Tokyo, 167-0042, Japan
| | - Katsumi Uchiyama
- Department of Applied Chemistry for Environment, Graduate School of Urban Environmental Sciences, Tokyo Metropolitan University, 1-1 Minamiohsawa, Hachioji, Tokyo, 192-0397, Japan
| | - Hizuru Nakajima
- Department of Applied Chemistry for Environment, Graduate School of Urban Environmental Sciences, Tokyo Metropolitan University, 1-1 Minamiohsawa, Hachioji, Tokyo, 192-0397, Japan.
| |
Collapse
|
19
|
Chupradit S, Jasim SA, Bokov D, Mahmoud MZ, Roomi AB, Hachem K, Rudiansyah M, Suksatan W, Bidares R. Recent advances in biosensor devices for HER-2 cancer biomarker detection. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2022; 14:1301-1310. [PMID: 35318477 DOI: 10.1039/d2ay00111j] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
The human epidermal growth factor receptor 2 (HER-2) protein is a member of the epidermal growth factor receptor (EGFR or ErbB) family and is a transmembrane tyrosine kinase receptor. HER-2 is highly regulated in ovarian, lung, gastric, oral, and breast cancers. The low specificity, complexity, expensiveness and the lack of sensitivity are essential restrictions in traditional diagnosis methods such as FISH, immunohistochemistry and PCR and these disadvantages led to the need for more studies on alternative methods. Biosensor technology has greatly affected the quality of human life owing to its features including, sensitivity, specificity, and rapid diagnosis and monitoring of different patient diseases. In this review article, we examine various biosensors, considering that they have been categorized based on the transducers used including piezoelectric biosensors, optical sensors such as fluorescence and surface plasmon resonance, and electrochemical types for the diagnosis of HER-2 and the effectiveness of some drugs against that. Attention to developing some types of biosensor devices such as colorimetric biosensors for HER-2 detection can be an important point in future studies.
Collapse
Affiliation(s)
- Supat Chupradit
- Department of Occupational Therapy, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, 50200, Thailand
| | | | - Dmitry Bokov
- Institute of Pharmacy, Sechenov First Moscow State Medical University, 8 Trubetskaya St., Bldg. 2, Moscow, 119991, Russian Federation
- Laboratory of Food Chemistry, Federal Research Center of Nutrition, Biotechnology and Food Safety, 2/14 Ustyinsky pr., Moscow, 109240, Russian Federation
| | - Mustafa Z Mahmoud
- Department of Radiology and Medical Imaging, College of Applied Medical Sciences, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
- Faculty of Health, University of Canberra, Canberra, ACT, Australia
| | - Ali B Roomi
- PhD Biochemistry, Ministry of Education, Directorate of Education Thi-Qar, Thi-Qar, 64001, Iraq
- Biochemistry and Biological Engineering Research Group, Scientific Research Center, Al-Ayen University, Thi-Qar, 64001, Iraq
| | - Kadda Hachem
- Laboratory of Biotoxicology, Pharmacognosy and Biological Valorization of Plants (LBPVBP), Faculty of Sciences, University of Saida - Dr Moulay Tahar, 20000 Saida, Algeria
| | - Mohammad Rudiansyah
- Division of Nephrology & Hypertension, Department of Internal Medicine, Faculty of Medicine, Universitas Lambung Mangkurat, Banjarmasin, Indonesia
| | - Wanich Suksatan
- Faculty of Nursing, HRH Princess Chulabhorn College of Medical Science, Chulabhorn Royal Academy, Bangkok, 10210, Thailand
| | - Ramtin Bidares
- Department of Anatomy, Histology Forensic Medicine, Sapienza University of Rome, Rome, Italy
| |
Collapse
|
20
|
A Low-Cost, 3D-Printed Biosensor for Rapid Detection of Escherichia coli. SENSORS 2022; 22:s22062382. [PMID: 35336553 PMCID: PMC8953795 DOI: 10.3390/s22062382] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 03/15/2022] [Accepted: 03/18/2022] [Indexed: 12/10/2022]
Abstract
Detection of bacterial pathogens is significant in the fields of food safety, medicine, and public health, just to name a few. If bacterial pathogens are not properly identified and treated promptly, they can lead to morbidity and mortality, also possibly contribute to antimicrobial resistance. Current bacterial detection methodologies rely solely on laboratory-based techniques, which are limited by long turnaround detection times, expensive costs, and risks of inadequate accuracy; also, the work requires trained specialists. Here, we describe a cost-effective and portable 3D-printed electrochemical biosensor that facilitates rapid detection of certain Escherichia coli (E. coli) strains (DH5α, BL21, TOP10, and JM109) within 15 min using 500 μL of sample, and costs only USD 2.50 per test. The sensor displayed an excellent limit of detection (LOD) of 53 cfu, limit of quantification (LOQ) of 270 cfu, and showed cross-reactivity with strains BL21 and JM109 due to shared epitopes. This advantageous diagnostic device is a strong candidate for frequent testing at point of care; it also has application in various fields and industries where pathogen detection is of interest.
Collapse
|
21
|
Sobiepanek A, Kowalska PD, Szota M, Grzywa TM, Nowak J, Włodarski PK, Galus R, Jachimska B, Kobiela T. Novel diagnostic and prognostic factors for the advanced melanoma based on the glycosylation-related changes studied by biophysical profiling methods. Biosens Bioelectron 2022; 203:114046. [PMID: 35121451 DOI: 10.1016/j.bios.2022.114046] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 01/21/2022] [Accepted: 01/25/2022] [Indexed: 12/28/2022]
Abstract
Melanoma is a life-threatening disease due to the early onset of metastasis and frequent resistance to the applied treatment. For now, no single histological, immunohistochemical or serological biomarker was able to provide a precise predictive value for the aggressive behavior in melanoma patients. Thus, the search for quantifying methods allowing a simultaneous diagnosis and prognosis of melanoma patients is highly desirable. By investigating specific molecular interactions with some biosensor-based techniques, one can determine novel prognostic factors for this tumor. In our previous study, we have shown the possibility of a qualitative in vitro distinguishing the commercially available melanoma cells at different progression stages based on the measurements of the lectin Concanavalin A interacting with surface glycans present on cells. Here, we present the results of the quantitative diagnostic and prognostic study of both commercial and patient-derived melanoma cells based on the evaluation of two novel factors: lectin affinity and glycan viscoelastic index obtained from the quartz crystal microbalance with dissipation monitoring (QCM-D) measurements. Two approaches to the QCM-D measurements were applied, the first uses the ability of melanoma cells to grow as a monolayer of cells on the sensor (cell-based sensors), and the second shortens the time of the analysis (suspension cell based-sensors). The results were confirmed by the complementary label-free (atomic force microscopy, AFM; and surface plasmon resonance, SPR) and labeling (lectin-ELISA; and microscale thermophoresis, MST) techniques. This new approach provides additional quantitative diagnosis and a personalized prognosis which can be done simultaneously to the traditional histopathological analysis.
Collapse
Affiliation(s)
- Anna Sobiepanek
- Faculty of Chemistry, Warsaw University of Technology, Warsaw, Poland.
| | - Patrycja D Kowalska
- Faculty of Chemistry, Warsaw University of Technology, Warsaw, Poland; Polish Stem Cell Bank, Warsaw, Poland
| | - Magdalena Szota
- Jerzy Haber Institute of Catalysis and Surface Chemistry Polish Academy of Sciences, Krakow, Poland
| | - Tomasz M Grzywa
- Department of Methodology, Centre for Preclinical Research, Medical University of Warsaw, Poland; Department of Immunology, Medical University of Warsaw, Warsaw, Poland; Doctoral School, Medical University of Warsaw, Warsaw, Poland
| | - Jakub Nowak
- Department of Physical Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | - Paweł K Włodarski
- Department of Methodology, Centre for Preclinical Research, Medical University of Warsaw, Poland
| | - Ryszard Galus
- Department of Histology and Embryology, Medical University of Warsaw, Warsaw, Poland
| | - Barbara Jachimska
- Jerzy Haber Institute of Catalysis and Surface Chemistry Polish Academy of Sciences, Krakow, Poland
| | - Tomasz Kobiela
- Faculty of Chemistry, Warsaw University of Technology, Warsaw, Poland.
| |
Collapse
|
22
|
Huang SH, Li J, Fan Z, Delgado R, Shvets G. Monitoring the effects of chemical stimuli on live cells with metasurface-enhanced infrared reflection spectroscopy. LAB ON A CHIP 2021; 21:3991-4004. [PMID: 34474459 PMCID: PMC8511245 DOI: 10.1039/d1lc00580d] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Infrared spectroscopy has found wide applications in the analysis of biological materials. A more recent development is the use of engineered nanostructures - plasmonic metasurfaces - as substrates for metasurface-enhanced infrared reflection spectroscopy (MEIRS). Here, we demonstrate that strong field enhancement from plasmonic metasurfaces enables the use of MEIRS as a highly informative analytic technique for real-time monitoring of cells. By exposing live cells cultured on a plasmonic metasurface to chemical compounds, we show that MEIRS can be used as a label-free phenotypic assay for detecting multiple cellular responses to external stimuli: changes in cell morphology, adhesion, and lipid composition of the cellular membrane, as well as intracellular signaling. Using a focal plane array detection system, we show that MEIRS also enables spectro-chemical imaging at the single-cell level. The described metasurface-based all-optical sensor opens the way to a scalable, high-throughput spectroscopic assay for live cells.
Collapse
Affiliation(s)
- Steven H Huang
- School of Applied and Engineering Physics, Cornell University, Ithaca, New York, 14853 USA.
| | - Jiaruo Li
- School of Applied and Engineering Physics, Cornell University, Ithaca, New York, 14853 USA.
| | - Zhiyuan Fan
- School of Applied and Engineering Physics, Cornell University, Ithaca, New York, 14853 USA.
| | - Robert Delgado
- School of Applied and Engineering Physics, Cornell University, Ithaca, New York, 14853 USA.
| | - Gennady Shvets
- School of Applied and Engineering Physics, Cornell University, Ithaca, New York, 14853 USA.
| |
Collapse
|
23
|
Genova-Kalou P, Dyankov G, Marinov R, Mankov V, Belina E, Kisov H, Strijkova-Kenderova V, Kantardjiev T. SPR-Based Kinetic Analysis of the Early Stages of Infection in Cells Infected with Human Coronavirus and Treated with Hydroxychloroquine. BIOSENSORS-BASEL 2021; 11:bios11080251. [PMID: 34436052 PMCID: PMC8392451 DOI: 10.3390/bios11080251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/20/2021] [Revised: 07/12/2021] [Accepted: 07/21/2021] [Indexed: 11/27/2022]
Abstract
Cell-based assays are a valuable tool for examination of virus–host cell interactions and drug discovery processes, allowing for a more physiological setting compared to biochemical assays. Despite the fact that cell-based SPR assays are label-free and thus provide all the associated benefits, they have never been used to study viral growth kinetics and to predict drug antiviral response in cells. In this study, we prove the concept that the cell-based SPR assay can be applied in the kinetic analysis of the early stages of viral infection of cells and the antiviral drug activity in the infected cells. For this purpose, cells immobilized on the SPR slides were infected with human coronavirus HCov-229E and treated with hydroxychloroquine. The SPR response was measured at different time intervals within the early stages of infection. Methyl Thiazolyl Tetrazolium (MTT) assay was used to provide the reference data. We found that the results of the SPR and MTT assays were consistent, and SPR is a reliable tool in investigating virus–host cell interaction and the mechanism of action of viral inhibitors. SPR assay was more sensitive and accurate in the first hours of infection within the first replication cycle, whereas the MTT assay was not so effective. After the second replication cycle, noise was generated by the destruction of the cell layer and by the remnants of dead cells, and masks useful SPR signals.
Collapse
Affiliation(s)
- Petia Genova-Kalou
- National Center of Infectious and Parasitic Diseases, 44A “Gen. Stoletov” Blvd., 1233 Sofia, Bulgaria; (P.G.-K.); (R.M.); (T.K.)
| | - Georgi Dyankov
- Institute of Optical Materials and Technologies “Acad. J. Malinowski” (IOMT), Bulgarian Academy of Sciences (BAS), 109 “Acad. G. Bonchev” Str., 1113 Sofia, Bulgaria; (V.M.); (E.B.); (H.K.); (V.S.-K.)
- Correspondence: ; Tel.: +359-897-771-945
| | - Radoslav Marinov
- National Center of Infectious and Parasitic Diseases, 44A “Gen. Stoletov” Blvd., 1233 Sofia, Bulgaria; (P.G.-K.); (R.M.); (T.K.)
| | - Vihar Mankov
- Institute of Optical Materials and Technologies “Acad. J. Malinowski” (IOMT), Bulgarian Academy of Sciences (BAS), 109 “Acad. G. Bonchev” Str., 1113 Sofia, Bulgaria; (V.M.); (E.B.); (H.K.); (V.S.-K.)
| | - Evdokiya Belina
- Institute of Optical Materials and Technologies “Acad. J. Malinowski” (IOMT), Bulgarian Academy of Sciences (BAS), 109 “Acad. G. Bonchev” Str., 1113 Sofia, Bulgaria; (V.M.); (E.B.); (H.K.); (V.S.-K.)
| | - Hristo Kisov
- Institute of Optical Materials and Technologies “Acad. J. Malinowski” (IOMT), Bulgarian Academy of Sciences (BAS), 109 “Acad. G. Bonchev” Str., 1113 Sofia, Bulgaria; (V.M.); (E.B.); (H.K.); (V.S.-K.)
| | - Velichka Strijkova-Kenderova
- Institute of Optical Materials and Technologies “Acad. J. Malinowski” (IOMT), Bulgarian Academy of Sciences (BAS), 109 “Acad. G. Bonchev” Str., 1113 Sofia, Bulgaria; (V.M.); (E.B.); (H.K.); (V.S.-K.)
| | - Todor Kantardjiev
- National Center of Infectious and Parasitic Diseases, 44A “Gen. Stoletov” Blvd., 1233 Sofia, Bulgaria; (P.G.-K.); (R.M.); (T.K.)
| |
Collapse
|
24
|
Benedé S, Lozano-Ojalvo D, Cristobal S, Costa J, D'Auria E, Velickovic TC, Garrido-Arandia M, Karakaya S, Mafra I, Mazzucchelli G, Picariello G, Romero-Sahagun A, Villa C, Roncada P, Molina E. New applications of advanced instrumental techniques for the characterization of food allergenic proteins. Crit Rev Food Sci Nutr 2021; 62:8686-8702. [PMID: 34060381 DOI: 10.1080/10408398.2021.1931806] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Current approaches based on electrophoretic, chromatographic or immunochemical principles have allowed characterizing multiple allergens, mapping their epitopes, studying their mechanisms of action, developing detection and diagnostic methods and therapeutic strategies for the food and pharmaceutical industry. However, some of the common structural features related to the allergenic potential of food proteins remain unknown, or the pathological mechanism of food allergy is not yet fully understood. In addition, it is also necessary to evaluate new allergens from novel protein sources that may pose a new risk for consumers. Technological development has allowed the expansion of advanced technologies for which their whole potential has not been entirely exploited and could provide novel contributions to still unexplored molecular traits underlying both the structure of food allergens and the mechanisms through which they sensitize or elicit adverse responses in human subjects, as well as improving analytical techniques for their detection. This review presents cutting-edge instrumental techniques recently applied when studying structural and functional aspects of proteins, mechanism of action and interaction between biomolecules. We also exemplify their role in the food allergy research and discuss their new possible applications in several areas of the food allergy field.
Collapse
Affiliation(s)
- Sara Benedé
- Instituto de Investigación en Ciencias de la Alimentación (CIAL, CSIC-UAM), Madrid, Spain
| | - Daniel Lozano-Ojalvo
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, Jaffe Food Allergy Institute, New York, NY, USA
| | - Susana Cristobal
- Department of Biomedical and Clinical Sciences, Cell Biology, Faculty of Medicine, Linköping University, Linköping, Sweden.,IKERBASQUE, Basque Foundation for Science, Department of Physiology, Faculty of Medicine and Nursing, University of the Basque Country UPV/EHU, Leioa, Spain
| | - Joana Costa
- REQUIMTE-LAQV, Faculdade de Farmácia, Universidade do Porto, Porto, Portugal
| | - Enza D'Auria
- Clinica Pediatrica, Ospedale dei Bambini Vittore Buzzi, Università degli Studi, Milano, Italy
| | - Tanja Cirkovic Velickovic
- Faculty of Chemistry, University of Belgrade, Belgrade, Serbia.,Ghent University Global Campus, Incheon, South Korea.,Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium.,Serbian Academy of Sciences and Arts, Belgrade, Serbia
| | - María Garrido-Arandia
- Centro de Biotecnología y Genómica de Plantas (UPM-INIA), Universidad Politécnica de Madrid, Pozuelo de Alarcón, Madrid, Spain
| | - Sibel Karakaya
- Department of Food Engineering, Ege University, Izmir, Turkey
| | - Isabel Mafra
- REQUIMTE-LAQV, Faculdade de Farmácia, Universidade do Porto, Porto, Portugal
| | - Gabriel Mazzucchelli
- Mass Spectrometry Laboratory, MolSys Research Unit, University of Liege, Liege, Belgium
| | - Gianluca Picariello
- Institute of Food Sciences, National Research Council (CNR), Avellino, Italy
| | - Alejandro Romero-Sahagun
- Centro de Biotecnología y Genómica de Plantas (UPM-INIA), Universidad Politécnica de Madrid, Pozuelo de Alarcón, Madrid, Spain
| | - Caterina Villa
- REQUIMTE-LAQV, Faculdade de Farmácia, Universidade do Porto, Porto, Portugal
| | - Paola Roncada
- Department of Health Sciences, University Magna Graecia, Catanzaro, Italy
| | - Elena Molina
- Instituto de Investigación en Ciencias de la Alimentación (CIAL, CSIC-UAM), Madrid, Spain
| |
Collapse
|
25
|
Steinegger A, Wolfbeis OS, Borisov SM. Optical Sensing and Imaging of pH Values: Spectroscopies, Materials, and Applications. Chem Rev 2020; 120:12357-12489. [PMID: 33147405 PMCID: PMC7705895 DOI: 10.1021/acs.chemrev.0c00451] [Citation(s) in RCA: 189] [Impact Index Per Article: 37.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Indexed: 12/13/2022]
Abstract
This is the first comprehensive review on methods and materials for use in optical sensing of pH values and on applications of such sensors. The Review starts with an introduction that contains subsections on the definition of the pH value, a brief look back on optical methods for sensing of pH, on the effects of ionic strength on pH values and pKa values, on the selectivity, sensitivity, precision, dynamic ranges, and temperature dependence of such sensors. Commonly used optical sensing schemes are covered in a next main chapter, with subsections on methods based on absorptiometry, reflectometry, luminescence, refractive index, surface plasmon resonance, photonic crystals, turbidity, mechanical displacement, interferometry, and solvatochromism. This is followed by sections on absorptiometric and luminescent molecular probes for use pH in sensors. Further large sections cover polymeric hosts and supports, and methods for immobilization of indicator dyes. Further and more specific sections summarize the state of the art in materials with dual functionality (indicator and host), nanomaterials, sensors based on upconversion and 2-photon absorption, multiparameter sensors, imaging, and sensors for extreme pH values. A chapter on the many sensing formats has subsections on planar, fiber optic, evanescent wave, refractive index, surface plasmon resonance and holography based sensor designs, and on distributed sensing. Another section summarizes selected applications in areas, such as medicine, biology, oceanography, bioprocess monitoring, corrosion studies, on the use of pH sensors as transducers in biosensors and chemical sensors, and their integration into flow-injection analyzers, microfluidic devices, and lab-on-a-chip systems. An extra section is devoted to current challenges, with subsections on challenges of general nature and those of specific nature. A concluding section gives an outlook on potential future trends and perspectives.
Collapse
Affiliation(s)
- Andreas Steinegger
- Institute
of Analytical Chemistry and Food Chemistry, Graz University of Technology, Stremayrgasse 9, A-8010 Graz, Austria
| | - Otto S. Wolfbeis
- Institute
of Analytical Chemistry, Chemo- and Biosensors, University of Regensburg, D-93040 Regensburg, Germany
| | - Sergey M. Borisov
- Institute
of Analytical Chemistry and Food Chemistry, Graz University of Technology, Stremayrgasse 9, A-8010 Graz, Austria
| |
Collapse
|
26
|
Amarie D, Mosavian N, Waters EL, Stupack DG. Underlying Subwavelength Aperture Architecture Drives the Optical Properties of Microcavity Surface Plasmon Resonance Sensors. SENSORS (BASEL, SWITZERLAND) 2020; 20:s20174906. [PMID: 32872658 PMCID: PMC7506739 DOI: 10.3390/s20174906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 08/25/2020] [Accepted: 08/27/2020] [Indexed: 06/11/2023]
Abstract
Microcavity surface plasmon resonance sensors (MSPRSs) develop out of the classic surface plasmon resonance technologies and aim at producing novel lab-on-a-chip devices. MSPRSs generate a series of spectral resonances sensitive to minute changes in the refractive index. Related sensitivity studies and biosensing applications are published elsewhere. The goal of this work is to test the hypothesis that MSPRS resonances are standing surface plasmon waves excited at the surface of the sensor that decay back into propagating photons. Their optical properties (mean wavelength, peak width, and peak intensity) appear highly dependent on the internal morphology of the sensor and the underlying subwavelength aperture architecture in particular. Numerous optical experiments were designed to investigate trends that confirm this hypothesis. An extensive study of prior works was supportive of our findings and interpretations. A complete understanding of those mechanisms and parameters driving the formations of the MSPRS resonances would allow further improvement in sensor sensitivity, reliability, and manufacturability.
Collapse
Affiliation(s)
- Dragos Amarie
- Department of Physics and Astronomy, Georgia Southern University, Statesboro, GA 30560, USA;
| | - Nazanin Mosavian
- Optical Science and Engineering, University of New Mexico, Albuquerque, NM 87106, USA;
| | - Elijah L. Waters
- Department of Physics and Astronomy, Georgia Southern University, Statesboro, GA 30560, USA;
| | - Dwayne G. Stupack
- Department of Reproductive Medicine, School of Medicine and Moores Cancer Center, University of California San Diego, La Jolla, CA 92093, USA;
| |
Collapse
|
27
|
Jahed FS, Hamidi S. Applications of surface plasmon resonance in human health care. Nanomedicine (Lond) 2020; 15:1823-1827. [PMID: 32746690 DOI: 10.2217/nnm-2020-0170] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Affiliation(s)
- Fatemeh Soghra Jahed
- Pharmaceutical Analysis Research Center, Tabriz University of Medical Sciences, Tabriz, 51664, Iran
| | - Samin Hamidi
- Food & Drug Safety Research Center, Tabriz University of Medical Science, Tabriz, 51664, Iran
| |
Collapse
|
28
|
Ijaz M, Aftab M, Afsheen S, Iqbal T. Novel Au nano-grating for detection of water in various electrolytes. APPLIED NANOSCIENCE 2020. [DOI: 10.1007/s13204-020-01520-w] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
29
|
Kamal Eddin FB, Fen YW. The Principle of Nanomaterials Based Surface Plasmon Resonance Biosensors and Its Potential for Dopamine Detection. Molecules 2020; 25:molecules25122769. [PMID: 32549390 PMCID: PMC7356898 DOI: 10.3390/molecules25122769] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 05/12/2020] [Accepted: 05/25/2020] [Indexed: 12/12/2022] Open
Abstract
For a healthy life, the human biological system should work in order. Scheduled lifestyle and lack of nutrients usually lead to fluctuations in the biological entities levels such as neurotransmitters (NTs), proteins, and hormones, which in turns put the human health in risk. Dopamine (DA) is an extremely important catecholamine NT distributed in the central nervous system. Its level in the body controls the function of human metabolism, central nervous, renal, hormonal, and cardiovascular systems. It is closely related to the major domains of human cognition, feeling, and human desires, as well as learning. Several neurological disorders such as schizophrenia and Parkinson’s disease are related to the extreme abnormalities in DA levels. Therefore, the development of an accurate, effective, and highly sensitive method for rapid determination of DA concentrations is desired. Up to now, different methods have been reported for DA detection such as electrochemical strategies, high-performance liquid chromatography, colorimetry, and capillary electrophoresis mass spectrometry. However, most of them have some limitations. Surface plasmon resonance (SPR) spectroscopy was widely used in biosensing. However, its use to detect NTs is still growing and has fascinated impressive attention of the scientific community. The focus in this concise review paper will be on the principle of SPR sensors and its operation mechanism, the factors that affect the sensor performance. The efficiency of SPR biosensors to detect several clinically related analytes will be mentioned. DA functions in the human body will be explained. Additionally, this review will cover the incorporation of nanomaterials into SPR biosensors and its potential for DA sensing with mention to its advantages and disadvantages.
Collapse
Affiliation(s)
- Faten Bashar Kamal Eddin
- Department of Physics, Faculty of Science, University Putra Malaysia, UPM, Serdang 43400, Selangor, Malaysia;
| | - Yap Wing Fen
- Department of Physics, Faculty of Science, University Putra Malaysia, UPM, Serdang 43400, Selangor, Malaysia;
- Functional Devices Laboratory, Institute of Advanced Technology, University Putra Malaysia, UPM, Serdang 43400, Selangor, Malaysia
- Correspondence:
| |
Collapse
|
30
|
Masson JF. Portable and field-deployed surface plasmon resonance and plasmonic sensors. Analyst 2020; 145:3776-3800. [PMID: 32374303 DOI: 10.1039/d0an00316f] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Plasmonic sensors are ideally suited for the design of small, integrated, and portable devices that can be employed in situ for the detection of analytes relevant to environmental sciences, clinical diagnostics, infectious diseases, food, and industrial applications. To successfully deploy plasmonic sensors, scaled-down analytical devices based on surface plasmon resonance (SPR) and localized surface plasmon resonance (LSPR) must integrate optics, plasmonic materials, surface chemistry, fluidics, detectors and data processing in a functional instrument with a small footprint. The field has significantly progressed from the implementation of the various components in specifically designed prism-based instruments to the use of nanomaterials, optical fibers and smartphones to yield increasingly portable devices, which have been shown for a number of applications in the laboratory and deployed on site for environmental, biomedical/clinical, and food applications. A roadmap to deploy plasmonic sensors is provided by reviewing the current successes and by laying out the directions the field is currently taking to increase the use of field-deployed plasmonic sensors at the point-of-care, in the environment and in industries.
Collapse
Affiliation(s)
- Jean-Francois Masson
- Departement de chimie, Centre Québécois sur les Matériaux Fonctionnels (CQMF) and Regroupement Québécois sur les Matériaux de Pointe (RQMP), Université de Montréal, CP 6128 Succ. Centre-Ville, Montreal, QC, CanadaH3C 3J7.
| |
Collapse
|
31
|
Gauglitz G. Critical assessment of relevant methods in the field of biosensors with direct optical detection based on fibers and waveguides using plasmonic, resonance, and interference effects. Anal Bioanal Chem 2020; 412:3317-3349. [PMID: 32313998 PMCID: PMC7214504 DOI: 10.1007/s00216-020-02581-0] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 02/28/2020] [Accepted: 03/04/2020] [Indexed: 12/16/2022]
Abstract
Direct optical detection has proven to be a highly interesting tool in biomolecular interaction analysis to be used in drug discovery, ligand/receptor interactions, environmental analysis, clinical diagnostics, screening of large data volumes in immunology, cancer therapy, or personalized medicine. In this review, the fundamental optical principles and applications are reviewed. Devices are based on concepts such as refractometry, evanescent field, waveguides modes, reflectometry, resonance and/or interference. They are realized in ring resonators; prism couplers; surface plasmon resonance; resonant mirror; Bragg grating; grating couplers; photonic crystals, Mach-Zehnder, Young, Hartman interferometers; backscattering; ellipsometry; or reflectance interferometry. The physical theories of various optical principles have already been reviewed in detail elsewhere and are therefore only cited. This review provides an overall survey on the application of these methods in direct optical biosensing. The "historical" development of the main principles is given to understand the various, and sometimes only slightly modified variations published as "new" methods or the use of a new acronym and commercialization by different companies. Improvement of optics is only one way to increase the quality of biosensors. Additional essential aspects are the surface modification of transducers, immobilization strategies, selection of recognition elements, the influence of non-specific interaction, selectivity, and sensitivity. Furthermore, papers use for reporting minimal amounts of detectable analyte terms such as value of mass, moles, grams, or mol/L which are difficult to compare. Both these essential aspects (i.e., biochemistry and the presentation of LOD values) can be discussed only in brief (but references are provided) in order to prevent the paper from becoming too long. The review will concentrate on a comparison of the optical methods, their application, and the resulting bioanalytical quality.
Collapse
Affiliation(s)
- Günter Gauglitz
- Institute of Physical and Theoretical Chemistry, Eberhard Karls Universität, Auf der Morgenstelle 18, 72076, Tübingen, Germany.
| |
Collapse
|
32
|
Loyez M, Hassan EM, Lobry M, Liu F, Caucheteur C, Wattiez R, DeRosa MC, Willmore WG, Albert J. Rapid Detection of Circulating Breast Cancer Cells Using a Multiresonant Optical Fiber Aptasensor with Plasmonic Amplification. ACS Sens 2020; 5:454-463. [PMID: 31967461 DOI: 10.1021/acssensors.9b02155] [Citation(s) in RCA: 73] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The detection of circulating tumor cells (CTCs), which are responsible for metastasis in several forms of cancer, represents an important goal in oncological diagnosis and treatment. These cells remain extremely challenging to detect, despite numerous previous studies, due to their low concentration (1-10 cells/mL of blood). In this work, an all-fiber plasmonic aptasensor featuring multiple narrowband resonances in the near-infrared wavelength range was developed to detect metastatic breast cancer cells. To this aim, specific aptamers against mammaglobin-A were selected and immobilized as receptors on the sensor surface. In vitro assays confirm that the label-free and real-time detection of cancer cells [limit of detection (LOD) of 49 cells/mL] occurs within 5 min, while the additional use of functionalized gold nanoparticles allows a 2-fold amplification of the biosensor response. Differential measurements on selected optical resonances were used to process the sensor response, and results were confirmed by microscopy. The detection of only 10 cancer cells/mL was achieved with relevant specificity against control cells and with quick response time.
Collapse
Affiliation(s)
- Médéric Loyez
- Proteomics and Microbiology Department, University of Mons, Champ de Mars 6, 7000 Mons, Belgium
| | - Eman M. Hassan
- Institute of Biochemistry, Carleton University, 1125 Colonel By Drive, Ottawa, Ontario K1S 5B6, Canada
| | - Maxime Lobry
- Electromagnetism and Telecommunications Department, University of Mons, Boulevard Dolez 31, 7000 Mons, Belgium
| | - Fu Liu
- Department of Electronics, Carleton University, 1125 Colonel By Drive, Ottawa, Ontario K1S 5B6, Canada
| | - Christophe Caucheteur
- Electromagnetism and Telecommunications Department, University of Mons, Boulevard Dolez 31, 7000 Mons, Belgium
| | - Ruddy Wattiez
- Proteomics and Microbiology Department, University of Mons, Champ de Mars 6, 7000 Mons, Belgium
| | - Maria C. DeRosa
- Institute of Biochemistry, Carleton University, 1125 Colonel By Drive, Ottawa, Ontario K1S 5B6, Canada
| | - William G. Willmore
- Institute of Chemistry, Carleton University, 1125 Colonel By Drive, Ottawa, Ontario K1S 5B6, Canada
| | - Jacques Albert
- Department of Electronics, Carleton University, 1125 Colonel By Drive, Ottawa, Ontario K1S 5B6, Canada
| |
Collapse
|
33
|
|
34
|
Qu JH, Dillen A, Saeys W, Lammertyn J, Spasic D. Advancements in SPR biosensing technology: An overview of recent trends in smart layers design, multiplexing concepts, continuous monitoring and in vivo sensing. Anal Chim Acta 2019; 1104:10-27. [PMID: 32106939 DOI: 10.1016/j.aca.2019.12.067] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Revised: 12/04/2019] [Accepted: 12/24/2019] [Indexed: 12/22/2022]
Abstract
Inspired by the rapid progress and existing limitations in surface plasmon resonance (SPR) biosensing technology, we have summarized the recent trends in the fields of both chip-SPR and fiber optic (FO)-SPR biosensors during the past five years, primarily regarding smart layers design, multiplexing, continuous monitoring and in vivo sensing. Versatile surface chemistries, biomaterials and nanomaterials have been utilized thus far to generate smart layers on SPR platforms and as such achieve oriented immobilization of bioreceptors, improved fouling resistance and sensitivity enhancement, collectively aiming to improve the biosensing performance. Furthermore, often driven by the desires for time- and cost-effective quantification of multiple targets in a single measurement, efforts have been made to implement multiplex bioassays on SPR platforms. While this aspect largely remains difficult to attain, numerous alternative strategies arose for obtaining parallel analysis of multiple analytes in one single device. Additionally, one of the upcoming challenges in this field will be to succeed in using SPR platforms for continuous measurements and in vivo sensing, and as such match up other biosensing platforms where these goals have been already conquered. Overall, this review will give insight into multiple possibilities that have become available over the years for boosting the performance of SPR biosensors. However, because combining them all into one optimal sensor is practically not feasible, the final application needs to be considered while designing an SPR biosensor, as this will determine the requirements of the bioassay and will thus help in selecting the essential elements from the recent progress made in SPR sensing.
Collapse
Affiliation(s)
- Jia-Huan Qu
- KU Leuven, Department of Biosystems - Biosensors Group, Willem de Croylaan 42, Box 2428, 3001, Leuven, Belgium
| | - Annelies Dillen
- KU Leuven, Department of Biosystems - Biosensors Group, Willem de Croylaan 42, Box 2428, 3001, Leuven, Belgium
| | - Wouter Saeys
- KU Leuven, Department of Biosystems, MeBioS - Biophotonics, Kasteelpark Arenberg 30, Box 2456, 3001, Leuven, Belgium
| | - Jeroen Lammertyn
- KU Leuven, Department of Biosystems - Biosensors Group, Willem de Croylaan 42, Box 2428, 3001, Leuven, Belgium.
| | - Dragana Spasic
- KU Leuven, Department of Biosystems - Biosensors Group, Willem de Croylaan 42, Box 2428, 3001, Leuven, Belgium
| |
Collapse
|
35
|
Chen Y, Liu J, Yang Z, Wilkinson JS, Zhou X. Optical biosensors based on refractometric sensing schemes: A review. Biosens Bioelectron 2019; 144:111693. [DOI: 10.1016/j.bios.2019.111693] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Revised: 08/30/2019] [Accepted: 09/06/2019] [Indexed: 12/31/2022]
|
36
|
Abstract
Terahertz time-domain spectroscopy (THz-TDS) is a non-invasive, non-contact and label-free technique for biological and chemical sensing as THz-spectra are less energetic and lie in the characteristic vibration frequency regime of proteins and DNA molecules. However, THz-TDS is less sensitive for the detection of micro-organisms of size equal to or less than λ/100 (where, λ is the wavelength of the incident THz wave), and molecules in extremely low concentration solutions (like, a few femtomolar). After successful high-throughput fabrication of nanostructures, nanoantennas were found to be indispensable in enhancing the sensitivity of conventional THz-TDS. These nanostructures lead to strong THz field enhancement when in resonance with the absorption spectrum of absorptive molecules, causing significant changes in the magnitude of the transmission spectrum, therefore, enhancing the sensitivity and allowing the detection of molecules and biomaterials in extremely low concentration solutions. Herein, we review the recent developments in ultra-sensitive and selective nanogap biosensors. We have also provided an in-depth review of various high-throughput nanofabrication techniques. We also discussed the physics behind the field enhancements in the sub-skin depth as well as sub-nanometer sized nanogaps. We introduce finite-difference time-domain (FDTD) and molecular dynamics (MD) simulation tools to study THz biomolecular interactions. Finally, we provide a comprehensive account of nanoantenna enhanced sensing of viruses (like, H1N1) and biomolecules such as artificial sweeteners which are addictive and carcinogenic.
Collapse
Affiliation(s)
- Subham Adak
- Department of Physics, Birla Institute of Technology, Mesra, Ranchi - 835215, Jharkhand, India.
| | | |
Collapse
|
37
|
Grześkowiak BF, Tuśnio K, Woźniak A, Szalata M, Lipiński D, Jurga S, Słomski R. Transgenic Plant Detection Using an AuNPs Based SPR Biosensor. BIOSENSORS-BASEL 2019; 9:bios9040116. [PMID: 31574896 PMCID: PMC6955715 DOI: 10.3390/bios9040116] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Revised: 09/20/2019] [Accepted: 09/26/2019] [Indexed: 12/04/2022]
Abstract
The intensive development and commercialization of genetically modified plants observed over the last decade has led to the development of transgenic detection methods that are rapid and sensitive. Among the strategies used for the detection/monitoring of genetically modified organisms (GMOs), surface plasmon resonance (SPR) meets the necessary criteria. This optical technique measures the changes in the refractive index in the vicinity of thin metal layers (i.e., gold) in response to biomolecular interactions occurring at a flat metal‒solution interface. Additionally, it allows the application of functionalized gold nanoparticles (AuNPs) in SPR research to enhance the signal intensity. In the present study, an SPR method, enhanced by the application of AuNPs, was developed to detect transgenic tobacco plants carrying a Streptococcus mutans antigen. The basis for the detection of the target DNA was the hybridization between the genomic DNA isolated from the leaves, stems, and roots of the transgenic tobacco and the biotinylated oligonucleotide probes immobilized onto a streptavidin (SA) sensor chip. SA-functionalized AuNPs coated with a second type of biotinylated probe were applied to increase the sensitivity of the detection method. Analysis of the results indicated that the constructed SPR-based sensor chip can potentially recognize complementary standard fragments (nonamplified genomic DNA) at concentrations as low as 1 pM. Thus, nonamplified transgenic DNA was detected using a label-free and real-time AuNPs-enhanced SPR biosensing method. This unique approach could be used to detect GMOs with high efficiency, even at a low detection limit, high repeatability, and with less time and a lower cost needed for each analysis.
Collapse
Affiliation(s)
- Bartosz F Grześkowiak
- The NanoBioMedical Centre, Adam Mickiewicz University, Wszechnicy Piastowskiej 3, 61-614 Poznan, Poland.
| | - Karol Tuśnio
- The NanoBioMedical Centre, Adam Mickiewicz University, Wszechnicy Piastowskiej 3, 61-614 Poznan, Poland.
- Department of Biochemistry and Biotechnology, Poznań University of Life Sciences, Dojazd 11, 60-632 Poznan, Poland.
| | - Anna Woźniak
- The NanoBioMedical Centre, Adam Mickiewicz University, Wszechnicy Piastowskiej 3, 61-614 Poznan, Poland.
| | - Marlena Szalata
- Department of Biochemistry and Biotechnology, Poznań University of Life Sciences, Dojazd 11, 60-632 Poznan, Poland.
| | - Daniel Lipiński
- Department of Biochemistry and Biotechnology, Poznań University of Life Sciences, Dojazd 11, 60-632 Poznan, Poland.
| | - Stefan Jurga
- The NanoBioMedical Centre, Adam Mickiewicz University, Wszechnicy Piastowskiej 3, 61-614 Poznan, Poland.
| | - Ryszard Słomski
- Department of Biochemistry and Biotechnology, Poznań University of Life Sciences, Dojazd 11, 60-632 Poznan, Poland.
| |
Collapse
|
38
|
Zeng Y, Zhou J, Wang X, Cai Z, Shao Y. Wavelength-scanning surface plasmon resonance microscopy: A novel tool for real time sensing of cell-substrate interactions. Biosens Bioelectron 2019; 145:111717. [PMID: 31561092 DOI: 10.1016/j.bios.2019.111717] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 09/05/2019] [Accepted: 09/18/2019] [Indexed: 01/12/2023]
Abstract
This paper, for the first time, presents a wavelength-scanning surface plasmon resonance microscope (WS-SPRM) as a label-free biosensor capable of measuring cell-substrate interaction. The approach utilized a liquid crystal tunable filter (LCTF) as a fast and flexible wavelength-scanning device that can implement a wavelength-scanning and SPR imaging cycle within 1 s. The system was verified by monitoring the dynamics of cellular processes including cell detachment and electroporation of individual cells. It was found that the WS-SPRM presented better performance than the intensity-based SPRM (I-SPRM) in the imaging of cell adhesion. The results also indicated that the WS-SPRM exhibited a larger dynamic range in monitoring cell electroporation than that of I-SPRM. In summary, the developed WS-SPRM in this study provides a promising technique for real-time monitoring of cell-substrate interaction.
Collapse
Affiliation(s)
- Youjun Zeng
- College of Physics and Optoelectronics Engineering, Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, Shenzhen Key Laboratory of Sensor Technology, Shenzhen University, Shenzhen, 518060, China
| | - Jie Zhou
- College of Physics and Optoelectronics Engineering, Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, Shenzhen Key Laboratory of Sensor Technology, Shenzhen University, Shenzhen, 518060, China
| | - Xueliang Wang
- College of Physics and Optoelectronics Engineering, Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, Shenzhen Key Laboratory of Sensor Technology, Shenzhen University, Shenzhen, 518060, China
| | - Zhiwen Cai
- College of Physics and Optoelectronics Engineering, Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, Shenzhen Key Laboratory of Sensor Technology, Shenzhen University, Shenzhen, 518060, China
| | - Yonghong Shao
- College of Physics and Optoelectronics Engineering, Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, Shenzhen Key Laboratory of Sensor Technology, Shenzhen University, Shenzhen, 518060, China.
| |
Collapse
|
39
|
Cheng R, Zhang F, Li M, Wo X, Su YW, Wang W. Influence of Fixation and Permeabilization on the Mass Density of Single Cells: A Surface Plasmon Resonance Imaging Study. Front Chem 2019; 7:588. [PMID: 31508410 PMCID: PMC6716545 DOI: 10.3389/fchem.2019.00588] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Accepted: 08/06/2019] [Indexed: 01/24/2023] Open
Abstract
Fixation and permeabilization of cells and tissues are essential processes in biological techniques like immunofluorescence and immunohistochemistry for cell biology studies. In typical procedures, the biological samples are treated by paraformaldehyde and Triton X-100 to achieve cellular fixation and permeabilization, respectively, prior to the incubation with specific antibodies. While it is well-known that the integrity of cell membrane has been broken during these processes, quantitative studies on the loss of cellular mass density and the enhancement of molecular accessibility at single cell level are still rare. In this study, we employed the surface plasmon resonance (SPR) imaging technique to monitor the mass density change of single cells during sequential fixation and permeabilization processes. We further utilize the osmotic responses of single cells to sugar molecules as an indicator to evaluate the integrity of cell membranes. It was found that, while fixation initially destructed the integrity of cell membranes and increased the permeability of intra- and extra-cellular molecules, it was permeabilization process that substantially induced significant loss in cellular mass density.
Collapse
Affiliation(s)
- Ruoyu Cheng
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, China
| | - Feng Zhang
- Department of Monoclonal Antibody Products, National Institutes for Food and Drug Control, Beijing, China
| | - Meng Li
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, China
| | - Xiang Wo
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, China
| | - Yu-Wen Su
- School of Pharmacy, Nanjing Medical University, Nanjing, China
- Department of Clinical Pharmacology, Sir Run Run Hospital, Nanjing Medical University, Nanjing, China
| | - Wei Wang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, China
| |
Collapse
|
40
|
Behera B, Anil Vishnu GK, Chatterjee S, Sitaramgupta V VSN, Sreekumar N, Nagabhushan A, Rajendran N, Prathik BH, Pandya HJ. Emerging technologies for antibiotic susceptibility testing. Biosens Bioelectron 2019; 142:111552. [PMID: 31421358 DOI: 10.1016/j.bios.2019.111552] [Citation(s) in RCA: 78] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Revised: 07/27/2019] [Accepted: 07/29/2019] [Indexed: 12/22/2022]
Abstract
Superbugs such as infectious bacteria pose a great threat to humanity due to an increase in bacterial mortality leading to clinical treatment failure, lengthy hospital stay, intravenous therapy and accretion of bacteraemia. These disease-causing bacteria gain resistance to drugs over time which further complicates the treatment. Monitoring of antibiotic resistance is therefore necessary so that bacterial infectious diseases can be diagnosed rapidly. Antimicrobial susceptibility testing (AST) provides valuable information on the efficacy of antibiotic agents and their dosages for treatment against bacterial infections. In clinical laboratories, most widely used AST methods are disk diffusion, gradient diffusion, broth dilution, or commercially available semi-automated systems. Though these methods are cost-effective and accurate, they are time-consuming, labour-intensive, and require skilled manpower. Recently much attention has been on developing rapid AST techniques to avoid misuse of antibiotics and provide effective treatment. In this review, we have discussed emerging engineering AST techniques with special emphasis on phenotypic AST. These techniques include fluorescence imaging along with computational image processing, surface plasmon resonance, Raman spectra, and laser tweezer as well as micro/nanotechnology-based device such as microfluidics, microdroplets, and microchamber. The mechanical and electrical behaviour of single bacterial cell and bacterial suspension for the study of AST is also discussed.
Collapse
Affiliation(s)
- Bhagaban Behera
- Biomedical and Electronic (10(-6)-10(-9)) Engineering Systems Laboratory, Department of Electronic Systems Engineering, Indian Institute of Science, Bangalore, India
| | - G K Anil Vishnu
- Biomedical and Electronic (10(-6)-10(-9)) Engineering Systems Laboratory, Department of Electronic Systems Engineering, Indian Institute of Science, Bangalore, India; Center for BioSystems Science and Engineering, Indian Institute of Science, Bangalore, India
| | - Suman Chatterjee
- Biomedical and Electronic (10(-6)-10(-9)) Engineering Systems Laboratory, Department of Electronic Systems Engineering, Indian Institute of Science, Bangalore, India
| | - V S N Sitaramgupta V
- Biomedical and Electronic (10(-6)-10(-9)) Engineering Systems Laboratory, Department of Electronic Systems Engineering, Indian Institute of Science, Bangalore, India
| | - Niranjana Sreekumar
- Biomedical and Electronic (10(-6)-10(-9)) Engineering Systems Laboratory, Department of Electronic Systems Engineering, Indian Institute of Science, Bangalore, India
| | - Apoorva Nagabhushan
- Biomedical and Electronic (10(-6)-10(-9)) Engineering Systems Laboratory, Department of Electronic Systems Engineering, Indian Institute of Science, Bangalore, India
| | | | - B H Prathik
- Indira Gandhi Institute of Child Health, Bangalore, India
| | - Hardik J Pandya
- Biomedical and Electronic (10(-6)-10(-9)) Engineering Systems Laboratory, Department of Electronic Systems Engineering, Indian Institute of Science, Bangalore, India.
| |
Collapse
|
41
|
Fathi F, Rahbarghazi R, Movassaghpour AA, Rashidi MR. Detection of CD133-marked cancer stem cells by surface plasmon resonance: Its application in leukemia patients. Biochim Biophys Acta Gen Subj 2019; 1863:1575-1582. [PMID: 31228554 DOI: 10.1016/j.bbagen.2019.06.009] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Revised: 06/08/2019] [Accepted: 06/17/2019] [Indexed: 01/05/2023]
Abstract
Here, we reported the development of a label-free and real-time surface plasmon resonance (SPR) based biosensor for cancer stem cells (CSCs) detection using cell surface biomarker; CD133. The fabricated biosensor was used for detection of this marker in some acute myeloid leukemia (AML) patients and the results were compared with those obtained from flow cytometry (FC) method. CD133 antibody was immobilized on the gold chip surface via EDC/NHS coupling method and binding of the candidate cells to the modified gold sensor surface was monitored after isolation of mononuclear cells from bone marrow of the patients. The method was validated in terms of various parameters such as CD133- antibody concentration and cell density. The CD133-marked cells were investigated in seven AML patients. All SPR results were compared with those obtained from FC method. A very good correlation (R2 = 0.96) was obtained between SPR and FC responses related to CD133-marked cells densities. In conclusion, in this study, a label-free and real-time SPR cytometry method was developed to detect CD133 and it was successfully applied to follow this cancer stem cell biomarker in AML patients.
Collapse
Affiliation(s)
- Farzaneh Fathi
- Research Center for Pharmaceutical Nanotechnology, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Reza Rahbarghazi
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Applied Cell Sciences, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ali Akbar Movassaghpour
- Hematology and Oncology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad-Reza Rashidi
- Research Center for Pharmaceutical Nanotechnology, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
42
|
Yanase Y, Yoshizaki K, Kimura K, Kawaguchi T, Hide M, Uno S. Development of SPR Imaging-Impedance Sensor for Multi-Parametric Living Cell Analysis. SENSORS 2019; 19:s19092067. [PMID: 31058824 PMCID: PMC6539035 DOI: 10.3390/s19092067] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Revised: 04/22/2019] [Accepted: 04/28/2019] [Indexed: 11/16/2022]
Abstract
Label-free evaluation and monitoring of living cell conditions or functions by means of chemical and/or physical sensors in a real-time manner are increasingly desired in the field of basic research of cells and clinical diagnosis. In order to perform multi-parametric analysis of living cells on a chip, we here developed a surface plasmon resonance (SPR) imaging (SPRI)-impedance sensor that can detect both refractive index (RI) and impedance changes on a sensor chip with comb-shaped electrodes. We then investigated the potential of the sensor for label-free and real-time analysis of living cell reactions in response to stimuli. We cultured rat basophilic leukemia (RBL)-2H3 cells on the sensor chip, which was a glass slide coated with comb-shaped electrodes, and detected activation of RBL-2H3 cells, such as degranulation and morphological changes, in response to a dinitro-phenol-conjugated human serum albumin (DNP-HSA) antigen. Moreover, impedance analysis revealed that the changes of impedance derived from RBL-2H3 cell activation appeared in the range of 1 kHz–1 MHz. Furthermore, we monitored living cell-derived RI and impedance changes simultaneously on a sensor chip using the SPRI-impedance sensor. Thus, we developed a new technique to monitor both impedance and RI derived from living cells by using a comb-shaped electrode sensor chip. This technique may enable us to clarify complex living cell functions which affect the RI and impedance and apply this to medical applications, such as accurate clinical diagnosis of type I allergy.
Collapse
Affiliation(s)
- Yuhki Yanase
- Department of Dermatology, Graduate School of Biomedical and Health Science, Hiroshima University, 1-2-3 Kasumi, minami-ku, Hiroshima 734-8551, Japan.
| | - Kyohei Yoshizaki
- Department of Electrical and Electronic, Ritsumeikan University, Kusatsu, Shiga 525-8577, Japan.
| | - Kaiken Kimura
- Department of Electrical and Electronic, Ritsumeikan University, Kusatsu, Shiga 525-8577, Japan.
| | - Tomoko Kawaguchi
- Department of Dermatology, Graduate School of Biomedical and Health Science, Hiroshima University, 1-2-3 Kasumi, minami-ku, Hiroshima 734-8551, Japan.
| | - Michihiro Hide
- Department of Dermatology, Graduate School of Biomedical and Health Science, Hiroshima University, 1-2-3 Kasumi, minami-ku, Hiroshima 734-8551, Japan.
| | - Shigeyasu Uno
- Department of Electrical and Electronic, Ritsumeikan University, Kusatsu, Shiga 525-8577, Japan.
| |
Collapse
|
43
|
Sensitivity Enhancement of Two-Dimensional Materials Based on Genetic Optimization in Surface Plasmon Resonance. SENSORS 2019; 19:s19051198. [PMID: 30857251 PMCID: PMC6427556 DOI: 10.3390/s19051198] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Revised: 02/27/2019] [Accepted: 03/05/2019] [Indexed: 11/17/2022]
Abstract
Sensitivity is an important performance index for evaluating surface plasmon resonance (SPR) biosensors. Sensitivity enhancement has always been a hot topic. It is found that the different refractive indices of samples require different combinations of prism and metal film for better sensitivity. Furthermore, the sensitivity can be enhanced by coating two-dimensional (2D) materials with appropriate layers on the metal film. At this time, it is necessary to choose the best film configuration to enhance sensitivity. With the emergence of more and more 2D materials, selecting the best configuration manually is becoming more complicated. Compared with the traditional manual method of selecting materials and layers, this paper proposes an optimization method based on a genetic algorithm to quickly and effectively find the optimal film configuration that enhances sensitivity. By using this method, not only can the optimal number of layers of 2D materials be determined quickly, but also the optimal configuration can be conveniently found when many materials are available. The maximum sensitivity can reach 400°/RIU after optimization. The method provided application value for the relevant researchers seeking to enhance sensitivity.
Collapse
|
44
|
Howe CL, Webb KF, Abayzeed SA, Anderson DJ, Denning C, Russell NA. Surface plasmon resonance imaging of excitable cells. JOURNAL OF PHYSICS D: APPLIED PHYSICS 2019; 52:104001. [PMID: 30867618 PMCID: PMC6380809 DOI: 10.1088/1361-6463/aaf849] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Revised: 12/03/2018] [Accepted: 12/12/2018] [Indexed: 05/27/2023]
Abstract
Surface plasmons (SPs) are surface charge density oscillations occuring at a metal/dieletric interface and are highly sensitive to refractive index variations adjacent to the surface. This sensitivity has been exploited successfully for chemical and biological assays. In these systems, a surface plasmon resonance (SPR)-based sensor detects temporal variations in the refractive index at a point. SPR has also been used in imaging systems where the spatial variations of refractive index in the sample provide the contrast mechanism. SPR imaging systems using high numerical aperture (NA) objective lenses have been designed to image adherent live cells with high magnification and near-diffraction limited spatial resolution. Addressing research questions in cell physiology and pharmacology often requires the development of a multimodal microscope where complementary information can be obtained. In this paper, we present the development of a multimodal microscope that combines SPR imaging with a number of additional imaging modalities including bright-field, epifluorescence, total internal reflection microscopy and SPR fluorescence microscopy. We used a high NA objective lens for SPR and TIR microscopy and the platform has been used to image live cell cultures demonstrating both fluorescent and label-free techniques. Both the SPR and TIR imaging systems feature a wide field of view (~300 µm) that allows measurements from multiple cells whilst maintaining a resolution sufficient to image fine cellular processes. The capability of the platform to perform label-free functional imaging of living cells was demonstrated by imaging the spatial variations in contractions from stem cell-derived cardiomyocytes. This technique shows promise for non-invasive imaging of cultured cells over very long periods of time during development.
Collapse
Affiliation(s)
- Carmel L Howe
- Department of Electrical and Electronic Engineering, University of Nottingham, Nottingham, NG7 2RD, United Kingdom
- School of Physics and Astronomy, University of Nottingham, Nottingham, NG7 2RD, United Kingdom
| | - Kevin F Webb
- Department of Electrical and Electronic Engineering, University of Nottingham, Nottingham, NG7 2RD, United Kingdom
| | - Sidahmed A Abayzeed
- Department of Electrical and Electronic Engineering, University of Nottingham, Nottingham, NG7 2RD, United Kingdom
| | - David J Anderson
- Empyrean Therapeutics Ltd, Building 250, Babraham Research Campus, Cambridge, CB22 3AT, United Kingdom
| | - Chris Denning
- Department of Stem Cell Biology, Centre of Biomolecular Sciences, University of Nottingham, Nottingham, NG7 2RD, United Kingdom
| | - Noah A Russell
- Department of Electrical and Electronic Engineering, University of Nottingham, Nottingham, NG7 2RD, United Kingdom
| |
Collapse
|
45
|
Su YW, Wang W. Surface plasmon resonance sensing: from purified biomolecules to intact cells. Anal Bioanal Chem 2018; 410:3943-3951. [DOI: 10.1007/s00216-018-1008-8] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2018] [Revised: 02/03/2018] [Accepted: 03/07/2018] [Indexed: 12/11/2022]
|
46
|
Su P, He Z, Wu L, Li L, Zheng K, Yang Y. SI-traceable calibration-free analysis for the active concentration of G2-EPSPS protein using surface plasmon resonance. Talanta 2018; 178:78-84. [PMID: 29136894 DOI: 10.1016/j.talanta.2017.09.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Revised: 08/17/2017] [Accepted: 09/03/2017] [Indexed: 01/07/2023]
Abstract
Active proteins play important roles in the function regulation of human bodies and attract much interest for use in pharmaceuticals and clinical diagnostics. However, the lack of primary methods to analyze active proteins means there is currently no metrology standard for active protein measurement. In recent years, calibration-free concentration analysis (CFCA), which is based on surface plasmon resonance (SPR) technology, has been proposed to determine the active concentration of proteins that have specific binding activity with a binding partner without any higher order standards. The CFCA experiment observes the changes of binding rates at totally different two flow rates and uses the known diffusion coefficient of an analyte to calculate the active concentration of proteins, theoretically required, the binding process have to be under diffusion-limited conditions. Measuring the active concentration of G2-EPSPS protein by CFCA was proposed in this study. This method involves optimization of the regeneration buffer and preparation of chip surfaces for appropriate reaction conditions by immobilizing ligands (G2-EPSPS antibodies) on sensor chips (CM5) via amine coupling. The active concentration of G2-EPSPS was then determined by injection of G2-EPSPS protein samples and running buffer over immobilized and reference chip surfaces at two different flow rates (5 and 100μLmin-1). The active concentration of G2-EPSPS was obtained after analyzing these sensorgrams with the 1:1 model. Using the determined active concentration of G2-EPSPS, the association, dissociation, and equilibrium constants of G2-EPSPS and its antibody were determined to be 2.18 ± 0.03 × 106M-1s-1, 5.79 ± 0.06 ×10-3s-1, and 2.65 ± 0.06 × 10-9M, respectively. The performance of the proposed method was evaluated. The within-day precisions were from 3.26% to 4.59%, and the between-day precision was 8.36%. The recovery rate of the method was from 97.46% to 104.34% in the concentration range of 1.5-8nM. The appropriate concentration range of G2-EPSPS in the proposed method was determined to be 1.5-8nM. The active G2-EPSPS protein concentration determined by our method was only 17.82% of that obtained by isotope dilution mass spectrometry, showing the active protein was only a small part of the total G2-EPSPS protein. The measurement principle of the proposed method can be clearly described by equations and the measurement result can be expressed in SI units. Therefore, the proposed method shows promise to become a primary method for active protein concentration measurement, which can benefit the development of certified reference materials for active proteins.
Collapse
Affiliation(s)
- Ping Su
- Beijing University of Chemical Technology, Beijing, China
| | - Zhangjing He
- Beijing University of Chemical Technology, Beijing, China
| | - Liqing Wu
- National Institute of Metrology, Beijing, China
| | - Liang Li
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Kangle Zheng
- Beijing University of Chemical Technology, Beijing, China
| | - Yi Yang
- Beijing University of Chemical Technology, Beijing, China.
| |
Collapse
|
47
|
Irifuku R, Yanase Y, Kawaguchi T, Ishii K, Takahagi S, Hide M. Impedance-Based Living Cell Analysis for Clinical Diagnosis of Type I Allergy. SENSORS 2017; 17:s17112503. [PMID: 29088110 PMCID: PMC5713047 DOI: 10.3390/s17112503] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Revised: 10/23/2017] [Accepted: 10/27/2017] [Indexed: 01/11/2023]
Abstract
Non-invasive real time evaluation of living cell conditions and functions are increasingly desired in the field of clinical diagnosis. For diagnosis of type I allergy, the identification of antigens that induces activation of mast cells and basophils is crucial to avoid symptoms of allergic diseases. However, conventional tests, such as detection of antigen-specific IgE antibody and skin tests, are either of low reliability or are invasive. To overcome such problems, we hereby applied an impedance sensor for label-free and real-time monitoring of mast cell reactions in response to stimuli. When IgE-sensitized RBL-2H3 cells cultured on the electrodes were stimulated with various concentrations of antigens, dose-dependent cell index (CI) increases were detected. Moreover, we confirmed that the impedance sensor detected morphological changes rather than degranulation as the indicator of cell activation. Furthermore, the CI of human IgE receptor-expressing cells (RBL-48 cells) treated with serum of a sweat allergy-positive patient, but not with serum from a sweat allergy-negative patient, significantly increased in response to purified human sweat antigen. We thus developed a technique to detect the activation of living cells in response to stimuli without any labeling using the impedance sensor. This system may represent a high reliable tool for the diagnosis of type I allergy.
Collapse
Affiliation(s)
- Reiko Irifuku
- Department of Dermatology, Graduate School of Biomedical and Health Science, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima 734-8551, Japan.
| | - Yuhki Yanase
- Department of Dermatology, Graduate School of Biomedical and Health Science, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima 734-8551, Japan.
| | - Tomoko Kawaguchi
- Department of Dermatology, Graduate School of Biomedical and Health Science, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima 734-8551, Japan.
| | - Kaori Ishii
- Department of Dermatology, Graduate School of Biomedical and Health Science, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima 734-8551, Japan.
| | - Shunsuke Takahagi
- Department of Dermatology, Graduate School of Biomedical and Health Science, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima 734-8551, Japan.
| | - Michihiro Hide
- Department of Dermatology, Graduate School of Biomedical and Health Science, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima 734-8551, Japan.
| |
Collapse
|
48
|
Calin VL, Mihailescu M, Scarlat EI, Baluta AV, Calin D, Kovacs E, Savopol T, Moisescu MG. Evaluation of the metastatic potential of malignant cells by image processing of digital holographic microscopy data. FEBS Open Bio 2017; 7:1527-1538. [PMID: 28979841 PMCID: PMC5623698 DOI: 10.1002/2211-5463.12282] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Revised: 07/13/2017] [Accepted: 08/02/2017] [Indexed: 12/20/2022] Open
Abstract
The cell refractive index has been proposed as a putative cancer biomarker of great potential, being correlated with cell content and morphology, cell division rate and membrane permeability. We used digital holographic microscopy to compare the refractive index and dry mass density of two B16 murine melanoma sublines of different metastatic potential. Using statistical methods, the distribution of phase shifts within the reconstructed quantitative phase images was analyzed by the method of bimodality coefficients. The observed correlation of refractive index, dry mass density and bimodality profile with the metastatic potential of the cells was validated by real time impedance-based assay and clonogenic tests. We suggest that the refractive index and bimodality analysis of quantitative phase image histograms could be developed as optical biomarkers useful in label-free detection and quantitative evaluation of cell metastatic potential.
Collapse
Affiliation(s)
- Violeta L. Calin
- Biophysics and Cellular Biotechnology DepartmentFaculty of MedicineCarol Davila University of Medicine and PharmacyBucharestRomania
| | - Mona Mihailescu
- Physics DepartmentFaculty of Applied SciencesPolitehnica University of BucharestRomania
| | - Eugen I. Scarlat
- Physics DepartmentFaculty of Applied SciencesPolitehnica University of BucharestRomania
| | - Alexandra V. Baluta
- Applied Electronics and Informatics Engineering DepartmentFaculty of ElectronicsTelecommunications and Information TechnologyPolitehnica University of BucharestRomania
| | - Daniel Calin
- Biophysics and Cellular Biotechnology DepartmentFaculty of MedicineCarol Davila University of Medicine and PharmacyBucharestRomania
| | - Eugenia Kovacs
- Biophysics and Cellular Biotechnology DepartmentFaculty of MedicineCarol Davila University of Medicine and PharmacyBucharestRomania
| | - Tudor Savopol
- Biophysics and Cellular Biotechnology DepartmentFaculty of MedicineCarol Davila University of Medicine and PharmacyBucharestRomania
| | - Mihaela G. Moisescu
- Biophysics and Cellular Biotechnology DepartmentFaculty of MedicineCarol Davila University of Medicine and PharmacyBucharestRomania
| |
Collapse
|
49
|
Grundmann M. Label-Free Dynamic Mass Redistribution and Bio-Impedance Methods for Drug Discovery. ACTA ACUST UNITED AC 2017. [PMID: 28640952 DOI: 10.1002/cpph.24] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Label-free biosensors are increasingly employed in drug discovery. Cell-based biosensors provide valuable insights into the biological consequences of exposing cells and tissues to chemical agents and the underlying molecular mechanisms associated with these effects. Optical biosensors based on the detection of dynamic mass redistribution (DMR) and impedance biosensors using cellular dielectric spectroscopy (CDS) capture changes of the cytoskeleton of living cells in real time. Because signal transduction correlates with changes in cell morphology, DMR and CDS biosensors are exquisitely suited for recording integrated cell responses in an unbiased, yet pathway-specific manner without the use of labels that may interfere with cell function. Described in this unit are several experimental approaches utilizing optical label-free system capturing dynamic mass redistribution (DMR) in living cells (Epic System) and an impedance-based CDS technology (CellKey). In addition, potential pitfalls associated with these assays and alternative approaches for overcoming such technical challenges are discussed. © 2017 by John Wiley & Sons, Inc.
Collapse
Affiliation(s)
- Manuel Grundmann
- Section Cellular, Molecular and Pharmacobiology, Institute for Pharmaceutical Biology, University of Bonn, Bonn, Germany
| |
Collapse
|
50
|
Yuan L, Tao N, Wang W. Plasmonic Imaging of Electrochemical Impedance. ANNUAL REVIEW OF ANALYTICAL CHEMISTRY (PALO ALTO, CALIF.) 2017; 10:183-200. [PMID: 28301751 DOI: 10.1146/annurev-anchem-061516-045150] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Electrochemical impedance spectroscopy (EIS) measures the frequency spectrum of an electrochemical interface to resist an alternating current. This method allows label-free and noninvasive studies on interfacial adsorption and molecular interactions and has applications in biosensing and drug screening. Although powerful, traditional EIS lacks spatial resolution or imaging capability, hindering the study of heterogeneous electrochemical processes on electrodes. We have recently developed a plasmonics-based electrochemical impedance technique to image local electrochemical impedance with a submicron spatial resolution and a submillisecond temporal resolution. In this review, we provide a systematic description of the theory, instrumentation, and data analysis of this technique. To illustrate its present and future applications, we further describe several selected samples analyzed with this method, including protein microarrays, two-dimensional materials, and single cells. We conclude by summarizing the technique's unique features and discussing the remaining challenges and new directions of its application.
Collapse
Affiliation(s)
- Liang Yuan
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University , Nanjing 210093, China ;
| | - Nongjian Tao
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University , Nanjing 210093, China ;
- Center for Bioelectronics and Biosensors, Biodesign Institute, Arizona State University, Tempe, Arizona 85287
| | - Wei Wang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University , Nanjing 210093, China ;
| |
Collapse
|