1
|
Chakraborty S, Jaitpal S, Acharya S, Paul D. Effect of microchannel geometry and linker molecules on surface immobilization efficiency of proteins in microfluidic devices. J Biotechnol 2023; 364:31-39. [PMID: 36702256 DOI: 10.1016/j.jbiotec.2023.01.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 12/05/2022] [Accepted: 01/21/2023] [Indexed: 01/25/2023]
Abstract
One of the key metrics in the design of biosensors is the presence of an effective capture layer. Surface-immobilized proteins (especially as a part of antibody-antigen combinations) are the most commonly used capture ligands in biosensors. The surface coverage of these proteins in flow-based biosensors are affected by both the linker chemistry used to attach them as well as the microchannel geometry. We used streptavidin as a model protein to compare glutaraldehyde, EDC-NHS, sulfo-SMCC and sulfo-NHS-biotin as linkers inside straight, serpentine and square-wave microchannel geometries. We found that straight microchannels achieve the highest degree of protein immobilization compared to serpentine and square-wave microchannels, irrespective of the linker chemistry used. We also showed that for a given microchannel geometry, sulfo-NHS-biotin leads to the highest immobilization of streptavidin among all the linkers.
Collapse
Affiliation(s)
- Senjuti Chakraborty
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Siddhant Jaitpal
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Sourav Acharya
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Debjani Paul
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India.
| |
Collapse
|
2
|
Addabbo T, Fort A, Landi E, Moretti R, Mugnaini M, Vignoli V. Strategies for the Accurate Measurement of the Resonance Frequency in QCM-D Systems via Low-Cost Digital Techniques. SENSORS (BASEL, SWITZERLAND) 2022; 22:5728. [PMID: 35957285 PMCID: PMC9371052 DOI: 10.3390/s22155728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 07/27/2022] [Accepted: 07/28/2022] [Indexed: 06/15/2023]
Abstract
In this paper, an FPGA (Field Programmable Gate Array)-based digital architecture for the measurement of quartz crystal microbalance (QCM) oscillating frequency of transient responses, i.e., in QCM-D (QCM and Dissipation) applications, is presented. The measurement system is conceived for operations in liquid, with short QCM transient responses due to the large mechanical load. The proposed solution allows for avoiding the complex processing systems typically required by the QCM-D techniques and grants frequency resolutions better than 1 ppm. The core of the architecture is a reciprocal digital frequency meter, combined with the preprocessing of the QCM signal through mixing operations, such as a step-down of the input frequency and reducing the measurement error. The measurement error is further reduced through averaging. Different strategies are proposed to implement the proposed measurement solution, comprising an all-digital circuit and mixed analog/digital ones. The performance of the proposed architectures is theoretically derived, compared, and analyzed by means of experimental data obtained considering 10 MHz QCMs and 200 μs long transient responses. A frequency resolution of about 240 ppb, which corresponds to a Sauerbrey mass resolution of 8 ng/cm2, is obtained for the all-digital solution, whereas for the mixed solution the resolution halves to 120 ppb, with a measurement time of about one second over 100 repetitions.
Collapse
|
3
|
Pusta A, Tertis M, Graur F, Cristea C, Al Hajjar N. Aptamers and New Bioreceptors for the Electrochemical Detection of Biomarkers Expressed in Hepatocellular Carcinoma. Curr Med Chem 2022; 29:4363-4390. [PMID: 35196969 DOI: 10.2174/0929867329666220222113707] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 12/11/2021] [Accepted: 12/18/2021] [Indexed: 11/22/2022]
Abstract
Hepatocellular carcinoma is a malignancy associated with high mortality and increasing incidence. Early detection of this disease could help increase survival and overall patient benefit. Non-invasive strategies for the diagnosis of this medical condition are of utmost importance. In this scope, the detection of hepatocellular carcinoma biomarkers could provide a useful diagnostic tool. Aptamers represent as short, single-stranded DNAs or RNAs that can specifically bind selected analytes, and also as pseudo-biorecognition elements that can be employed for electrode functionalization. Also, other types of DNA sequences can be used for the construction of DNA-based biosensors applied for the quantification of hepatocellular carcinoma biomarkers. Herein, we will be analyzing recent examples of aptasensors and DNA biosensors for the detection of hepatocellular carcinoma biomarkers like micro-RNAs, long non-coding RNAs, exosomes, circulating tumor cells and proteins. The literature data is discussed comparatively in a critical manner highlighting the advantages of using electrochemical biosensors in diagnosis, as well as the use of nanomaterials and biocomponents in the functionalization of electrodes for improved sensitivity and selectivity.
Collapse
Affiliation(s)
- Alexandra Pusta
- Department of Analytical Chemistry, Faculty of Pharmacy,"Iuliu Hațieganu" University of Medicine and Pharmacy, Cluj-Napoca, Romania
- Department of Medical Devices, Faculty of Pharmacy,"Iuliu Hațieganu" University of Medicine and Pharmacy, Cluj-Napoca,Romania
| | - Mihaela Tertis
- Department of Analytical Chemistry, Faculty of Pharmacy,"Iuliu Hațieganu" University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Florin Graur
- Department of Surgery, Iuliu Hațieganu University of Medicine and Pharmacy Romania
| | - Cecilia Cristea
- Department of Medical Devices, Faculty of Pharmacy,"Iuliu Hațieganu" University of Medicine and Pharmacy, Cluj-Napoca,Romania
| | - Nadim Al Hajjar
- Department of Surgery, Iuliu Hațieganu University of Medicine and Pharmacy Romania
| |
Collapse
|
4
|
Abstract
Quartz Crystal Microbalance (QCM) is one of the many acoustic transducers. It is the most popular and widely used acoustic transducer for sensor applications. It has found wide applications in chemical and biosensing fields owing to its high sensitivity, robustness, small sized-design, and ease of integration with electronic measurement systems. However, it is necessary to coat QCM with a sensing film. Without coating materials, its selectivity and sensitivity are not obtained. At present, this is not an issue, mainly due to the advancement of oscillator circuits and dedicated measurement circuits. Since a new researcher may seek to understand QCM sensors, we provide an overview of QCM from its fundamental knowledge. Then, we explain some of the recent QCM applications both in gas-phase and liquid-phase. Next, the theory of QCM is introduced by using piezoelectric stress equations and the Mason equivalent circuit, which explains how the QCM behavior is obtained. Then, the conventional equations that govern QCM behaviors in terms of resonant frequency and resistance are described. We show the behavior of QCM with a viscous film based on the acoustic wave equation and Mason equivalent circuit. Then, we present various existing QCM electronic measurement methods. Furthermore, we describe the experiment on QCM with viscous loading and its interpretation based on the Mason equivalent circuit. Lastly, we review some theoretical models to describe QCM behavior with various models.
Collapse
|
5
|
Kolářová H, Víteček J, Černá A, Černík M, Přibyl J, Skládal P, Potěšil D, Ihnatová I, Zdráhal Z, Hampl A, Klinke A, Kubala L. Myeloperoxidase mediated alteration of endothelial function is dependent on its cationic charge. Free Radic Biol Med 2021; 162:14-26. [PMID: 33271281 DOI: 10.1016/j.freeradbiomed.2020.11.008] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 11/02/2020] [Accepted: 11/10/2020] [Indexed: 12/20/2022]
Abstract
Endothelial cell (EC) glycocalyx (GLX) comprise a multicomponent layer of proteoglycans and glycoproteins. Alteration of its integrity contributes to chronic vascular inflammation and leads to the development of cardiovascular diseases. Myeloperoxidase (MPO), a highly abundant enzyme released by polymorphonuclear neutrophils, binds to the GLX and deleteriously affects vascular EC functions. The focus of this study was to elucidate the mechanisms of MPO-mediated alteration of GLX molecules, and to unravel subsequent changes in endothelial integrity and function. MPO binding to GLX of human ECs and subsequent internalization was mediated by cell surface heparan sulfate chains. Moreover, interaction of MPO, which is carrying a cationic charge, with anionic glycosaminoglycans (GAGs) resulted in reduction of their relative charge. By means of micro-viscometry and atomic force microscopy, we disclosed that MPO can crosslink GAG chains. MPO-dependent modulation of GLX structure was further supported by alteration of wheat germ agglutinin staining. Increased expression of ICAM-1 documented endothelial cell activation by both catalytically active and also inactive MPO. Furthermore, MPO increased vascular permeability connected with reorganization of intracellular junctions, however, this was dependent on MPO's catalytic activity. Novel proteins interacting with MPO during transcytosis were identified by proteomic analysis. Altogether, these findings provide evidence that MPO through interaction with GAGs modulates overall charge of the GLX, causing modification of its structure and thus affecting EC function. Importantly, our results also suggest a number of proteins interacting with MPO that possess a variety of cellular localizations and functions.
Collapse
Affiliation(s)
- Hana Kolářová
- Department of Biophysics of Immune System, Institute of Biophysics of the Czech Academy of Sciences, Kralovopolska 135, Brno, Czech Republic
| | - Jan Víteček
- Department of Biophysics of Immune System, Institute of Biophysics of the Czech Academy of Sciences, Kralovopolska 135, Brno, Czech Republic
| | - Anna Černá
- Department of Biophysics of Immune System, Institute of Biophysics of the Czech Academy of Sciences, Kralovopolska 135, Brno, Czech Republic
| | - Marek Černík
- Department of Biophysics of Immune System, Institute of Biophysics of the Czech Academy of Sciences, Kralovopolska 135, Brno, Czech Republic
| | - Jan Přibyl
- Central European Institute for Technology, Masaryk University, Kamenice 5, Brno, Czech Republic
| | - Petr Skládal
- Central European Institute for Technology, Masaryk University, Kamenice 5, Brno, Czech Republic
| | - David Potěšil
- National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Kamenice 5, 62500, Brno, Czech Republic
| | - Ivana Ihnatová
- Institute of Biostatistics and Analyses, Masaryk University, Kamenice 3, Brno, Czech Republic
| | - Zbyněk Zdráhal
- Central European Institute for Technology, Masaryk University, Kamenice 5, Brno, Czech Republic; National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Kamenice 5, 62500, Brno, Czech Republic
| | - Aleš Hampl
- Faculty of Medicine, Department of Histology and Embryology, Masaryk University, Kamenice 3, 625 00, Brno, Czech Republic
| | - Anna Klinke
- Clinic of General and Interventional Cardiology/Angiology, Agnes Wittenborg Institute of Translational Cardiovascular Research, Herz- und Diabeteszentrum NRW, Ruhr-Universität Bochum, Bad Oeynhausen, Germany
| | - Lukáš Kubala
- Department of Biophysics of Immune System, Institute of Biophysics of the Czech Academy of Sciences, Kralovopolska 135, Brno, Czech Republic.
| |
Collapse
|
6
|
Stability of oxygen-rich plasma-polymerized coatings in aqueous environment. Biointerphases 2020; 15:061001. [PMID: 33126798 DOI: 10.1116/6.0000582] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
In this work, we report on the stability of oxygen-rich plasma-polymerized (pp) films in an aqueous environment. The pp films were deposited via atmospheric-pressure plasma jet treatment of polymerizable organic liquids. The monomers used for the plasma-assisted polymerization were tetrahydrofurfuryl methacrylate, 1,2,4-trivinylcyclohexane, and mixtures thereof. The pp films were deposited at different plasma input powers ranging from 3 to 7 W. The stability of the obtained pp films was studied upon long-time storage in pure water and in buffer solutions of pHs 4, 7, and 10. After 24 h of storage of the pp films in de-ionized water, all of the studied pp films experienced thickness losses along with the formation of various ringlike structures at their surface, whereas Fourier transformed infrared (FT-IR) analysis showed no changes in their chemical composition. The pp films stored in pH 10 were completely delaminated from the substrate surface, while the pp films stored for 24 h in pH 4 showed swelling behavior, partial delamination, and the formation of wrinkles at the coatings' surface. The pp films stored for 24 h in pH 7 experienced minor thickness losses and formation of wrinkles at their surface. FT-IR analysis of the pp films stored in buffer solutions of pH 4 and pH 7 showed a decrease of C=O and an increase of O-H stretching signals in all of the cases. The observed chemical changes corresponded to the hydrolysis of esters presented in the pp films' structure.
Collapse
|
7
|
Alafeef M, Moitra P, Pan D. Nano-enabled sensing approaches for pathogenic bacterial detection. Biosens Bioelectron 2020; 165:112276. [PMID: 32729465 DOI: 10.1016/j.bios.2020.112276] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 04/30/2020] [Accepted: 05/04/2020] [Indexed: 01/16/2023]
Abstract
Infectious diseases caused by pathogenic bacteria, especially antibiotic-resistant bacteria, are one of the biggest threats to global health. To date, bacterial contamination is detected using conventional culturing techniques, which are highly dependent on expert users, limited by the processing time and on-site availability. Hence, real-time and continuous monitoring of pathogen levels is required to obtain valuable information that could assist health agencies in guiding prevention and containment of pathogen-related outbreaks. Nanotechnology-based smart sensors are opening new avenues for early and rapid detection of such pathogens at the patient's point-of-care. Nanomaterials can play an essential role in bacterial sensing owing to their unique optical, magnetic, and electrical properties. Carbon nanoparticles, metallic nanoparticles, metal oxide nanoparticles, and various types of nanocomposites are examples of smart nanomaterials that have drawn intense attention in the field of microbial detection. These approaches, together with the advent of modern technologies and coupled with machine learning and wireless communication, represent the future trend in the diagnosis of infectious diseases. This review provides an overview of the recent advancements in the successful harnessing of different nanoparticles for bacterial detection. In the beginning, we have introduced the fundamental concepts and mechanisms behind the design and strategies of the nanoparticles-based diagnostic platform. Representative research efforts are highlighted for in vitro and in vivo detection of bacteria. A comprehensive discussion is then presented to cover the most commonly adopted techniques for bacterial identification, including some seminal studies to detect bacteria at the single-cell level. Finally, we discuss the current challenges and a prospective outlook on the field, together with the recommended solutions.
Collapse
Affiliation(s)
- Maha Alafeef
- Bioengineering Department, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, United States; Biomedical Engineering Department, Jordan University of Science and Technology, Irbid, 22110, Jordan; Department of Diagnostic Radiology and Nuclear Medicine, University of Maryland Baltimore School of Medicine, 670 W Baltimore St., Baltimore, MD, 21201, United States
| | - Parikshit Moitra
- Department of Diagnostic Radiology and Nuclear Medicine, University of Maryland Baltimore School of Medicine, 670 W Baltimore St., Baltimore, MD, 21201, United States; Department of Pediatrics, University of Maryland Baltimore School of Medicine, 670 W Baltimore St., Baltimore, MD, 21201, United States
| | - Dipanjan Pan
- Bioengineering Department, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, United States; Department of Diagnostic Radiology and Nuclear Medicine, University of Maryland Baltimore School of Medicine, 670 W Baltimore St., Baltimore, MD, 21201, United States; Department of Pediatrics, University of Maryland Baltimore School of Medicine, 670 W Baltimore St., Baltimore, MD, 21201, United States; Department of Chemical, Biochemical and Environmental Engineering, University of Maryland Baltimore County, 1000 Hiltop Circle, Baltimore, MD, 21250, United States.
| |
Collapse
|
8
|
Víšová I, Vrabcová M, Forinová M, Zhigunová Y, Mironov V, Houska M, Bittrich E, Eichhorn KJ, Hashim H, Schovánek P, Dejneka A, Vaisocherová-Lísalová H. Surface Preconditioning Influences the Antifouling Capabilities of Zwitterionic and Nonionic Polymer Brushes. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:8485-8493. [PMID: 32506911 DOI: 10.1021/acs.langmuir.0c00996] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Polymer brushes not only represent emerging surface platforms for numerous bioanalytical and biological applications but also create advanced surface-tethered systems to mimic real-life biological processes. In particular, zwitterionic and nonionic polymer brushes have been intensively studied because of their extraordinary resistance to nonspecific adsorption of biomolecules (antifouling characteristics) as well as the ability to be functionalized with bioactive molecules. However, the relation between antifouling behavior in real-world biological media and structural changes of polymer brushes induced by surface preconditioning in different environments remains unexplored. In this work, we use multiple methods to study the structural properties of numerous brushes under variable ionic concentrations and determine the impact of these changes on resistance to fouling from undiluted blood plasma. We describe different mechanisms of swelling, depending on both the polymer brush coating properties and the environmental conditions that affect changes in both hydration levels and thickness. Using both fluorescent and surface plasmon resonance methods, we found that the antifouling behavior of these brushes is strongly dependent on the aforementioned structural changes. Moreover, preconditioning of the brush coatings (incubation at a variable salt concentration or drying) prior to biomolecule interaction may significantly improve the antifouling performance. These results suggest a new simple approach to improve the antifouling behavior of polymer brushes. In addition, the results herein enhance the understanding for improved design of antifouling and bioresponsive brushes employed in biosensor and biomimetic applications.
Collapse
Affiliation(s)
- Ivana Víšová
- FZU-Institute of Physics of the Czech Academy of Sciences, Na Slovance 1, Prague 182 21, Czech Republic
| | - Markéta Vrabcová
- FZU-Institute of Physics of the Czech Academy of Sciences, Na Slovance 1, Prague 182 21, Czech Republic
| | - Michala Forinová
- FZU-Institute of Physics of the Czech Academy of Sciences, Na Slovance 1, Prague 182 21, Czech Republic
| | - Yulia Zhigunová
- FZU-Institute of Physics of the Czech Academy of Sciences, Na Slovance 1, Prague 182 21, Czech Republic
| | - Vasilii Mironov
- FZU-Institute of Physics of the Czech Academy of Sciences, Na Slovance 1, Prague 182 21, Czech Republic
| | - Milan Houska
- FZU-Institute of Physics of the Czech Academy of Sciences, Na Slovance 1, Prague 182 21, Czech Republic
| | - Eva Bittrich
- Leibniz-Institut für Polymerforschung Dresden e.V., Hohe Str. 6, Dresden 01069, Germany
| | - Klaus-Jochen Eichhorn
- Leibniz-Institut für Polymerforschung Dresden e.V., Hohe Str. 6, Dresden 01069, Germany
| | - Hisham Hashim
- National University of Science and Technology (MISIS), Leninskiy prospekt 2, Moscow 119049, Russia
- Faculty of Science, Tanta University, Al-Geish Street, Tanta 31527, Egypt
| | - Petr Schovánek
- FZU-Institute of Physics of the Czech Academy of Sciences, Na Slovance 1, Prague 182 21, Czech Republic
- Palacký University Olomouc, 17. listopadu 12, Olomouc 77146, Czech Republic
| | - Alexandr Dejneka
- FZU-Institute of Physics of the Czech Academy of Sciences, Na Slovance 1, Prague 182 21, Czech Republic
| | | |
Collapse
|
9
|
Sensitivity and reproducibility improvements in a human plasma immunoassay with removal of clotting factors. Anal Biochem 2019; 585:113410. [PMID: 31473245 DOI: 10.1016/j.ab.2019.113410] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 08/07/2019] [Accepted: 08/28/2019] [Indexed: 11/22/2022]
Abstract
Interferences in human plasma immunoassay are severe challenge that affects the sensitivity and reproducibility of the assay. The clotting factor fibrinogen is a negatively charged protein and is one of the most common sources of interference in immunoassays, and its removal increases the sensitivity and reproducibility. Here, we present a highly sensitive and reproducible method for the detection of prostate specific antigen (PSA) in human plasma immunoassays. Protamine sulfate, a highly positively charged protein, was used to precipitate fibrinogen via ionic interaction to improve the sensitivity and reproducibility of human plasma immunoassay. In a sandwich ELISA for PSA using plasma and protamine-treated plasma samples, the limit of detection was improved from 413 pg/mL in plasma to 235 pg/mL in protamine-treated plasma samples, and the coefficient of variation known as a measure of reproducibility was significantly lowered by protamine treatment. The use of protamine sulfate in human plasma immunoassays for detection of PSA using quartz crystal microbalance (QCM) biosensors resulted in increased sensitivity and reproducibility by about 2-fold and 3-fold, respectively, relative to when not using protamine sulfate. Based on these results, protamine sulfate was the best choice to increase the sensitivity and reproducibility in immunoassays using plasma samples.
Collapse
|
10
|
Fast fluorometric enumeration of E. coli using passive chip. J Microbiol Methods 2019; 164:105680. [DOI: 10.1016/j.mimet.2019.105680] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 07/31/2019] [Accepted: 08/01/2019] [Indexed: 01/06/2023]
|
11
|
Kadam R, Maas M, Rezwan K. Selective, Agglomerate-Free Separation of Bacteria Using Biofunctionalized, Magnetic Janus Nanoparticles. ACS APPLIED BIO MATERIALS 2019; 2:3520-3531. [DOI: 10.1021/acsabm.9b00415] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Reshma Kadam
- Advanced Ceramics, University of Bremen, Am Biologischen Garten 2, 28359 Bremen, Germany
| | - Michael Maas
- Advanced Ceramics, University of Bremen, Am Biologischen Garten 2, 28359 Bremen, Germany
- MAPEX Centre of Materials and Processes, University of Bremen, 28359 Bremen, Germany
| | - Kurosch Rezwan
- Advanced Ceramics, University of Bremen, Am Biologischen Garten 2, 28359 Bremen, Germany
- MAPEX Centre of Materials and Processes, University of Bremen, 28359 Bremen, Germany
| |
Collapse
|
12
|
Versatile Protein-A Coated Photoelectric Immunosensors with a Purple-Membrane Monolayer Transducer Fabricated by Affinity-Immobilization on a Graphene-Oxide Complexed Linker and by Shear Flow. SENSORS 2018; 18:s18124493. [PMID: 30567418 PMCID: PMC6308460 DOI: 10.3390/s18124493] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/11/2018] [Revised: 12/06/2018] [Accepted: 12/17/2018] [Indexed: 01/22/2023]
Abstract
Bacteriorhodopsin-embedded purple membranes (PM) have been demonstrated to be a sensitive photoelectric transducer for microbial detection. To efficiently prepare versatile BR-based immunosensors with protein A as antibody captures, a large, high-coverage, and uniformly oriented PM monolayer was fabricated on an electrode as an effective foundation for protein A conjugation through bis-NHS esters, by first affinity-coating biotinylated PM on an aminated surface using a complex of oxidized avidin and graphene oxide as the planar linker and then washing the coating with a shear flow. Three different polyclonal antibodies, each against Escherichia coli, Lactobacillus acidophilus, and Streptococcus mutans, respectively, were individually, effectively and readily adsorbed on the protein A coated electrodes, leading to selective and sensitive quantitative detection of their respective target cells in a single step without any labeling. A single-cell detection limit was achieved for the former two cells. AFM, photocurrent, and Raman analyses all displayed each fabricated layer as well as the captured bacteria, with AFM particularly revealing the formation of a massive continuous PM monolayer on aminated mica. The facile cell-membrane monolayer fabrication and membrane surface conjugation techniques disclosed in this study may be widely applied to the preparation of different biomembrane-based biosensors.
Collapse
|
13
|
Wang H, Wang L, Hu Q, Wang R, Li Y, Kidd M. Rapid and Sensitive Detection of Campylobacter jejuni in Poultry Products Using a Nanoparticle-Based Piezoelectric Immunosensor Integrated with Magnetic Immunoseparation. J Food Prot 2018; 81:1321-1330. [PMID: 30019963 DOI: 10.4315/0362-028x.jfp-17-381] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Campylobacter jejuni is one of the leading causes of foodborne human gastrointestinal diseases. Poultry and poultry products have been identified as the major transmission routes to humans for this pathogenic bacterium. The objective of this research was to develop a rapid and sensitive immunosensor for detection of C. jejuni in poultry products on the basis of a quartz crystal microbalance (QCM) using magnetic nanobeads (MNBs) for separation of target pathogen and gold nanoparticles for amplification of the measurement. A QCM sensor in a flow cell was prepared by immobilizing the mouse anti- C. jejuni monoclonal antibody (mAb1) on the sensor surface to specifically capture C. jejuni. Rabbit anti- C. jejuni polyclonal antibody (pAb1) was conjugated with MNBs to capture and separate C. jejuni from food matrices. MNB-pAb1- C. jejuni complexes were injected into the flow cell to bind with the mAb1 immobilized on the QCM sensor surface. Goat anti-rabbit immunoglobulin G polyclonal antibody conjugated with gold nanoparticles was injected into the flow cell to bind with pAb1 on MNBs. Finally, resonant frequency was measured with a QCM analyzer, and the change in resonant frequency was correlated to the cell number of C. jejuni. The specificity of this immunosensor was confirmed with different strains of Campylobacter, Salmonella, and other foodborne pathogens commonly colonized in the broiler gastrointestinal tract. Samples of broiler carcass wash and ground turkey were spiked with C. jejuni at different concentrations for use in tests. Results showed that the QCM immunosensor could rapidly detect C. jejuni in poultry products, with a detection limit of 20 to 30 CFU/mL without preenrichment, and a total detection time of less than 30 min. Characteristics of C. jejuni captured by the antibody immobilized on the surface of the QCM sensor were visualized by using atomic force microscopy. This highly adaptive and flexible method could provide the poultry industry a more rapid, sensitive, and effective method for detection of major foodborne pathogens in poultry products.
Collapse
Affiliation(s)
- Hong Wang
- 1 Center of Excellence for Poultry Science and
| | - Lijun Wang
- 2 Department of Biological and Agricultural Engineering, University of Arkansas, Fayetteville, Arkansas 72701, USA.,3 State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, Jiangxi 330047, People's Republic of China; and
| | - Qinqin Hu
- 2 Department of Biological and Agricultural Engineering, University of Arkansas, Fayetteville, Arkansas 72701, USA.,4 College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, Zhejiang 310058, People's Republic of China
| | - Ronghui Wang
- 2 Department of Biological and Agricultural Engineering, University of Arkansas, Fayetteville, Arkansas 72701, USA
| | - Yanbin Li
- 1 Center of Excellence for Poultry Science and.,2 Department of Biological and Agricultural Engineering, University of Arkansas, Fayetteville, Arkansas 72701, USA.,4 College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, Zhejiang 310058, People's Republic of China
| | | |
Collapse
|
14
|
Khan MS, Misra SK, Dighe K, Wang Z, Schwartz-Duval AS, Sar D, Pan D. Electrically-receptive and thermally-responsive paper-based sensor chip for rapid detection of bacterial cells. Biosens Bioelectron 2018; 110:132-140. [PMID: 29605712 DOI: 10.1016/j.bios.2018.03.044] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Accepted: 03/19/2018] [Indexed: 01/15/2023]
Abstract
Although significant technological advancements have been made in the development of analytical biosensor chips for detecting bacterial strains (E. coli, S. Mutans and B. Subtilis), critical requirements i.e. limit of detection (LOD), fast time of response, ultra-sensitivity with high reproducibility and good shelf-life with robust sensing capability have yet to be met within a single sensor chip. In order to achieve these criteria, we present an electrically-receptive thermally-responsive (ER-TR) sensor chip comprised of simple filter paper used as substrate coated with composite of poly(N-isopropylacrylamide) polymer (PNIPAm) - graphene nanoplatelet (GR) followed by evaporation of Au electrodes for capturing both Gram-positive (S. mutans and B. subtilis) and Gram-negative (E. coli) bacterial cells in real-time. Autoclave water, tap water, lake water and milk samples were tested with ER-TR chip with and without bacterial strains at varying concentration range 101-105 cells/mL. The sensor was integrated with in-house built printed circuit board (PCB) to transmit/receive electrical signals. The interaction of E. coli, S. mutans and B. subtilis cells with fibers of PNIPAm-GR resulted in a change of electrical resistance and the readout was monitored wirelessly in real-time using MATLAB algorithm. Finally, prepared ER-TR chip exhibited the reproducibility of 85-97% with shelf-life of up to four weeks after testing with lake water sample.
Collapse
Affiliation(s)
- Muhammad S Khan
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL, USA; Biomedical Research Center, Carle Foundation Hospital, Urbana, IL, USA
| | - Santosh K Misra
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL, USA; Biomedical Research Center, Carle Foundation Hospital, Urbana, IL, USA.
| | - Ketan Dighe
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL, USA; Biomedical Research Center, Carle Foundation Hospital, Urbana, IL, USA
| | - Zhen Wang
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL, USA; Biomedical Research Center, Carle Foundation Hospital, Urbana, IL, USA
| | - Aaron S Schwartz-Duval
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL, USA; Biomedical Research Center, Carle Foundation Hospital, Urbana, IL, USA
| | - Dinabandhu Sar
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL, USA; Biomedical Research Center, Carle Foundation Hospital, Urbana, IL, USA
| | - Dipanjan Pan
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL, USA; Biomedical Research Center, Carle Foundation Hospital, Urbana, IL, USA; Beckman Institute for Advanced Science & Technology, University of Illinois at Urbana-Champaign, IL, USA; Department of Materials Science and Engineering, University of Illinois-Urbana Champaign, IL, USA; Carle Illinois College of Medicine, Urbana, IL 61801, USA.
| |
Collapse
|
15
|
Lee H, Hwang J, Park Y, Kwon D, Lee S, Kang I, Jeon S. Immunomagnetic separation and size-based detection of Escherichia coli O157 at the meniscus of a membrane strip. RSC Adv 2018; 8:26266-26270. [PMID: 35541965 PMCID: PMC9082759 DOI: 10.1039/c8ra04739a] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2018] [Accepted: 07/18/2018] [Indexed: 01/06/2023] Open
Abstract
We developed a facile method for the detection of pathogenic bacteria using gold-coated magnetic nanoparticle clusters (Au@MNCs) and porous nitrocellulose strips. Au@MNCs were synthesized and functionalized with half-fragments of Escherichia coli O157 antibodies. After the nanoparticles were used to capture E. coli O157 in milk and dispersed in a buffer solution, one end of a test strip was dipped into the solution. Due to the size difference between the E. coli–Au@MNC complexes (approximately 1 μm) and free Au@MNCs (approximately 180 nm), only E. coli–Au@MNC complexes accumulated at the meniscus of the test strip and induced a color change. The color intensity of the meniscus was proportional to the E. coli concentration, and the detection limit for E. coli in milk was 103 CFU mL−1 by the naked eye. The presence of E. coli–Au@MNC complexes at the meniscus was confirmed using a real-time PCR assay. The developed method was highly selective for E. coli when compared with Salmonella typhimurium, Listeria monocytogenes, and Staphylococcus aureus. E. coli–Au/MNC complexes accumulate at the meniscus of the test strip where the flow velocity reaches a maximum.![]()
Collapse
Affiliation(s)
- Hyeonjeong Lee
- Department of Chemical Engineering
- Pohang University of Science and Technology (POSTECH)
- Pohang
- Republic of Korea
| | - Jeongin Hwang
- Department of Chemical Engineering
- Pohang University of Science and Technology (POSTECH)
- Pohang
- Republic of Korea
| | - Yunsung Park
- Department of Chemical Engineering
- Pohang University of Science and Technology (POSTECH)
- Pohang
- Republic of Korea
| | - Donghoon Kwon
- Department of Chemical Engineering
- Pohang University of Science and Technology (POSTECH)
- Pohang
- Republic of Korea
| | - Sanghee Lee
- Department of Chemical Engineering
- Pohang University of Science and Technology (POSTECH)
- Pohang
- Republic of Korea
| | - Inseok Kang
- Department of Chemical Engineering
- Pohang University of Science and Technology (POSTECH)
- Pohang
- Republic of Korea
| | - Sangmin Jeon
- Department of Chemical Engineering
- Pohang University of Science and Technology (POSTECH)
- Pohang
- Republic of Korea
| |
Collapse
|
16
|
Idil N, Mattiasson B. Imprinting of Microorganisms for Biosensor Applications. SENSORS (BASEL, SWITZERLAND) 2017; 17:E708. [PMID: 28353629 PMCID: PMC5421668 DOI: 10.3390/s17040708] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Revised: 03/17/2017] [Accepted: 03/21/2017] [Indexed: 01/01/2023]
Abstract
There is a growing need for selective recognition of microorganisms in complex samples due to the rapidly emerging importance of detecting them in various matrices. Most of the conventional methods used to identify microorganisms are time-consuming, laborious and expensive. In recent years, many efforts have been put forth to develop alternative methods for the detection of microorganisms. These methods include use of various components such as silica nanoparticles, microfluidics, liquid crystals, carbon nanotubes which could be integrated with sensor technology in order to detect microorganisms. In many of these publications antibodies were used as recognition elements by means of specific interactions between the target cell and the binding site of the antibody for the purpose of cell recognition and detection. Even though natural antibodies have high selectivity and sensitivity, they have limited stability and tend to denature in conditions outside the physiological range. Among different approaches, biomimetic materials having superior properties have been used in creating artificial systems. Molecular imprinting is a well suited technique serving the purpose to develop highly selective sensing devices. Molecularly imprinted polymers defined as artificial recognition elements are of growing interest for applications in several sectors of life science involving the investigations on detecting molecules of specific interest. These polymers have attractive properties such as high bio-recognition capability, mechanical and chemical stability, easy preparation and low cost which make them superior over natural recognition reagents. This review summarizes the recent advances in the detection and quantification of microorganisms by emphasizing the molecular imprinting technology and its applications in the development of sensor strategies.
Collapse
Affiliation(s)
- Neslihan Idil
- Department of Biology, Faculty of Sciences, Hacettepe University, 06800 Ankara, Turkey.
| | - Bo Mattiasson
- Department of Biotechnology, Lund University, 22362 Lund, Sweden.
- CapSenze Biosystems AB, 22363 Lund, Sweden.
| |
Collapse
|
17
|
Jin Y, Xie Y, Wu K, Huang Y, Wang F, Zhao R. Probing the Dynamic Interaction between Damaged DNA and a Cellular Responsive Protein Using a Piezoelectric Mass Biosensor. ACS APPLIED MATERIALS & INTERFACES 2017; 9:8490-8497. [PMID: 28218519 DOI: 10.1021/acsami.6b15077] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
The binding events between damaged DNA and recognition biomolecules are of great interest for understanding the activity of DNA-damaging drugs and the related DNA repair networks. Herein, a simple and sensitive sensor system was tailored for real-time probing of the dynamic molecular recognition between cisplatin-damaged-DNA (cisPt-DNA) and a cellular responsive protein, high-mobility-group box 1 (HMGB1). By integration of flow injection analysis (FIA) with quartz crystal microbalance (QCM), the interaction time-course of cisPt-DNA and HMGB1 domain A (HMGB1a) was investigated. The highly specific sensing interface was carefully designed and fabricated using cisPt-DNA as recognition element. A hybrid self-assembled monolayer consisting of cysteamine and mercaptohexanol was introduced to resist nonspecific adsorption. The calculated kinetic parameters (kass and kdiss) and the dissociation constant (KD) demonstrated the rapid recognition and tight binding of HMGB1a toward cisPt-DNA. Molecular docking was employed to simulate the complex formed by cisPt-DNA and HMGB1a. The tight binding of such a DNA-damage responsive complex is appealing for the downstream molecular recognition event related to the resistance to DNA repair. This continuous-flow QCM biosensor is an ideal tool for studying specific interactions between drug-damaged-DNAs and their recognition proteins in a physiological-relevant environment, and will provide a potential sensor platform for rapid screening and evaluating metal anticancer drugs.
Collapse
Affiliation(s)
- Yulong Jin
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences , Beijing 100190, China
- University of Chinese Academy of Sciences , Beijing 100049, China
| | - Yunfeng Xie
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences , Beijing 100190, China
- University of Chinese Academy of Sciences , Beijing 100049, China
| | - Kui Wu
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences , Beijing 100190, China
- University of Chinese Academy of Sciences , Beijing 100049, China
| | - Yanyan Huang
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences , Beijing 100190, China
- University of Chinese Academy of Sciences , Beijing 100049, China
| | - Fuyi Wang
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences , Beijing 100190, China
- University of Chinese Academy of Sciences , Beijing 100049, China
| | - Rui Zhao
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences , Beijing 100190, China
- University of Chinese Academy of Sciences , Beijing 100049, China
| |
Collapse
|
18
|
Poller AM, Spieker E, Lieberzeit PA, Preininger C. Surface Imprints: Advantageous Application of Ready2use Materials for Bacterial Quartz-Crystal Microbalance Sensors. ACS APPLIED MATERIALS & INTERFACES 2017; 9:1129-1135. [PMID: 27936575 DOI: 10.1021/acsami.6b13888] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Four different materials (two ab initio synthesized polyurethanes; ready-to-use: Epon1002F and poly(vinyl alcohol)/N-methyl-4(4'-formylstyryl)pyridinium methosulfate acetal) for the generation of Escherichia coli surface imprints are compared in this work. The use of commercially available, ready-to-use materials instead of self-synthesized polymers represents an innovative and convenient way of molecular imprint fabrication. This was herein investigated for large, biological templates. Fully synthesized imprint materials (polyurethanes) were developed and optimized regarding their OH excess and the use of catalyst in the polymerization reaction. No to low OH excess (0-10%) and a noncatalyzed synthesis were determined to be superior for the imprinting of the Gram-negative bacteria. Imprints were characterized using atomic force microscopy, with Epon1002F yielding the most distinguished imprints, along with a smooth surface. The imprints were afterward tested as plastic antibody coatings in a mass-sensitive quartz-crystal microbalance measurement. Dilutions of E. coli suspensions, down to a limit of detection of 1.4 × 107 CFU/mL, were successfully measured. Best results were obtained with Epon1002F and self-synthesized, stoichiometric polyurethane. Since ready-to-use Epon1002F was superior in terms of signal intensities and sensitivity, it can advantageously replace self-synthesized polymers for the generation of imprinted sensor surfaces. Easy day-to-day reproducibility and further shortening of imprint fabrication time are other advantages of employing the ready-to-use material instead of conventionally synthesized polymers.
Collapse
Affiliation(s)
- Anna-Maria Poller
- AIT - Austrian Institute of Technology, Konrad-Lorenz-Straße 24, 3430 Tulln, Austria
| | - Eva Spieker
- Department of Physical Chemistry, Faculty for Chemistry, University of Vienna , Währinger Straße 42, 1090 Wien, Austria
| | - Peter A Lieberzeit
- Department of Physical Chemistry, Faculty for Chemistry, University of Vienna , Währinger Straße 42, 1090 Wien, Austria
| | - Claudia Preininger
- AIT - Austrian Institute of Technology, Konrad-Lorenz-Straße 24, 3430 Tulln, Austria
| |
Collapse
|
19
|
Farka Z, Juřík T, Pastucha M, Skládal P. Enzymatic Precipitation Enhanced Surface Plasmon Resonance Immunosensor for the Detection of Salmonella in Powdered Milk. Anal Chem 2016; 88:11830-11836. [DOI: 10.1021/acs.analchem.6b03511] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- Zdeněk Farka
- CEITEC
MU and ‡Department of Biochemistry, Faculty of Science, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic
| | - Tomáš Juřík
- CEITEC
MU and ‡Department of Biochemistry, Faculty of Science, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic
| | - Matěj Pastucha
- CEITEC
MU and ‡Department of Biochemistry, Faculty of Science, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic
| | - Petr Skládal
- CEITEC
MU and ‡Department of Biochemistry, Faculty of Science, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic
| |
Collapse
|
20
|
Hayden O. One Binder to Bind Them All. SENSORS 2016; 16:s16101665. [PMID: 27735880 PMCID: PMC5087453 DOI: 10.3390/s16101665] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Revised: 09/25/2016] [Accepted: 10/04/2016] [Indexed: 12/04/2022]
Abstract
High quality binders, such as antibodies, are of critical importance for chemical sensing applications. With synthetic alternatives, such as molecularly imprinted polymers (MIPs), less sensor development time and higher stability of the binder can be achieved. In this feature paper, I will discuss the impact of synthetic binders from an industrial perspective and I will challenge the molecular imprinting community on the next step to leapfrog the current status quo of MIPs for (bio)sensing. Equally important, but often neglected as an effective chemical sensor, is a good match of transducer and MIP coating for a respective application. To demonstrate an application-driven development, a biosensing use case with surface-imprinted layers on piezoacoustic sensors is reported. Depending on the electrode pattern for the transducer, the strong mechanical coupling of the analyte with the MIP layer coated device allows the adoption of the sensitivity from cell mass to cell viability with complete reversibility.
Collapse
Affiliation(s)
- Oliver Hayden
- Siemens Healthcare GmbH, Strategy and Innovation, Technology Center, In-Vitro DX & Bioscience, Günther-Scharowsky-Str. 1, 91058 Erlangen, Germany.
| |
Collapse
|
21
|
|
22
|
Farka Z, Juřík T, Pastucha M, Kovář D, Lacina K, Skládal P. Rapid Immunosensing ofSalmonellaTyphimurium Using Electrochemical Impedance Spectroscopy: the Effect of Sample Treatment. ELECTROANAL 2016. [DOI: 10.1002/elan.201600093] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Zdeněk Farka
- CEITEC MU; Masaryk University; Kamenice 5 625 00 Brno Czech Republic
| | - Tomáš Juřík
- CEITEC MU; Masaryk University; Kamenice 5 625 00 Brno Czech Republic
| | - Matěj Pastucha
- CEITEC MU; Masaryk University; Kamenice 5 625 00 Brno Czech Republic
| | - David Kovář
- CEITEC MU; Masaryk University; Kamenice 5 625 00 Brno Czech Republic
| | - Karel Lacina
- CEITEC MU; Masaryk University; Kamenice 5 625 00 Brno Czech Republic
| | - Petr Skládal
- CEITEC MU; Masaryk University; Kamenice 5 625 00 Brno Czech Republic
- Department of Biochemistry, Faculty of Science; Masaryk University; Kotlářská 2 611 37 Brno Czech Republic
| |
Collapse
|