1
|
Song L, Cui C, Lin T, Kong X, Shi K. A series of anthracene-derived dyes for Cu 2+-assisted CO sensing and bio-imaging: synthesis, performance, and mechanism. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 320:124565. [PMID: 38875925 DOI: 10.1016/j.saa.2024.124565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 05/12/2024] [Accepted: 05/29/2024] [Indexed: 06/16/2024]
Abstract
Endogenous CO acts as an important messenger for signal transduction and therapeutic effect in the human body. Fluorescent imaging appears to be a promising method for endogenous CO recognition, but traditional luminescent probes based on Pd-complexes suffered from defects of high cost. In this work, four anthracene-derived dyes having an = N-N = group were synthesized for Cu2+-assisted CO sensing. Their molecular structure, photophysical performance and spectral response to Cu2+ and CO were analyzed in detail. The optimal probe showed good selectivity and quenching effect to Cu2+, with PLQY (photoluminescence quantum yield) decreased from 0.33 to 0.04. The quenching mechanism was found as a static quenching mechanism by forming a non-fluorescent complex with Cu2+ (stoichiometric ratio = 1:1), as revealed by single crystal, EPR (electron paramagnetic resonance), and XPS (X-ray photoelectron spectroscopy) analysis. Such quenching effect could be reversed by CO, showing recovered fluorescence, with PLQY recovered to 0.32 within 328 s. Discussion on cellular endogenous CO imaging was included as well.
Collapse
Affiliation(s)
- Lina Song
- Department of Clinical Laboratory, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Chunguo Cui
- Department of Breast Surgery, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Tiantian Lin
- Provincial Key Laboratory for Gene Diagnosis of Cardiovascular Disease, Jilin Provincial Engineering Laboratory for Endothelial Function and Genetic Diagnosis, Department of Cardiology, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Xiao Kong
- Provincial Key Laboratory for Gene Diagnosis of Cardiovascular Disease, Jilin Provincial Engineering Laboratory for Endothelial Function and Genetic Diagnosis, Department of Cardiology, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Kaiyao Shi
- Provincial Key Laboratory for Gene Diagnosis of Cardiovascular Disease, Jilin Provincial Engineering Laboratory for Endothelial Function and Genetic Diagnosis, Department of Cardiology, China-Japan Union Hospital of Jilin University, Changchun, China.
| |
Collapse
|
2
|
Poimenova IA, Sozarukova MM, Ratova DMV, Nikitina VN, Khabibullin VR, Mikheev IV, Proskurnina EV, Proskurnin MA. Analytical Methods for Assessing Thiol Antioxidants in Biological Fluids: A Review. Molecules 2024; 29:4433. [PMID: 39339429 PMCID: PMC11433793 DOI: 10.3390/molecules29184433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 09/13/2024] [Accepted: 09/15/2024] [Indexed: 09/30/2024] Open
Abstract
Redox metabolism is an integral part of the glutathione system, encompassing reduced and oxidized glutathione, hydrogen peroxide, and associated enzymes. This core process orchestrates a network of thiol antioxidants like thioredoxins and peroxiredoxins, alongside critical thiol-containing proteins such as mercaptoalbumin. Modifications to thiol-containing proteins, including oxidation and glutathionylation, regulate cellular signaling influencing gene activities in inflammation and carcinogenesis. Analyzing thiol antioxidants, especially glutathione, in biological fluids offers insights into pathological conditions. This review discusses the analytical methods for biothiol determination, mainly in blood plasma. The study includes all key methodological aspects of spectroscopy, chromatography, electrochemistry, and mass spectrometry, highlighting their principles, benefits, limitations, and recent advancements that were not included in previously published reviews. Sample preparation and factors affecting thiol antioxidant measurements are discussed. The review reveals that the choice of analytical procedures should be based on the specific requirements of the research. Spectrophotometric methods are simple and cost-effective but may need more specificity. Chromatographic techniques have excellent separation capabilities but require longer analysis times. Electrochemical methods enable real-time monitoring but have disadvantages such as interference. Mass spectrometry-based approaches have high sensitivity and selectivity but require sophisticated instrumentation. Combining multiple techniques can provide comprehensive information on thiol antioxidant levels in biological fluids, enabling clearer insights into their roles in health and disease. This review covers the time span from 2010 to mid-2024, and the data were obtained from the SciFinder® (ACS), Google Scholar (Google), PubMed®, and ScienceDirect (Scopus) databases through a combination search approach using keywords.
Collapse
Affiliation(s)
- Iuliia A. Poimenova
- Analytical Chemistry Division, Department of Chemistry, Lomonosov Moscow State University, 1-3 Leninskie Gory, 119234 Moscow, Russia; (I.A.P.); (M.M.S.); (D.-M.V.R.); (V.N.N.); (V.R.K.)
| | - Madina M. Sozarukova
- Analytical Chemistry Division, Department of Chemistry, Lomonosov Moscow State University, 1-3 Leninskie Gory, 119234 Moscow, Russia; (I.A.P.); (M.M.S.); (D.-M.V.R.); (V.N.N.); (V.R.K.)
- Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences, 117901 Moscow, Russia;
| | - Daria-Maria V. Ratova
- Analytical Chemistry Division, Department of Chemistry, Lomonosov Moscow State University, 1-3 Leninskie Gory, 119234 Moscow, Russia; (I.A.P.); (M.M.S.); (D.-M.V.R.); (V.N.N.); (V.R.K.)
| | - Vita N. Nikitina
- Analytical Chemistry Division, Department of Chemistry, Lomonosov Moscow State University, 1-3 Leninskie Gory, 119234 Moscow, Russia; (I.A.P.); (M.M.S.); (D.-M.V.R.); (V.N.N.); (V.R.K.)
| | - Vladislav R. Khabibullin
- Analytical Chemistry Division, Department of Chemistry, Lomonosov Moscow State University, 1-3 Leninskie Gory, 119234 Moscow, Russia; (I.A.P.); (M.M.S.); (D.-M.V.R.); (V.N.N.); (V.R.K.)
- Federal State Budgetary Institution of Science Institute of African Studies, Russian Academy of Sciences, Spiridonovka St., 30/1, 123001 Moscow, Russia
| | - Ivan V. Mikheev
- Analytical Chemistry Division, Department of Chemistry, Lomonosov Moscow State University, 1-3 Leninskie Gory, 119234 Moscow, Russia; (I.A.P.); (M.M.S.); (D.-M.V.R.); (V.N.N.); (V.R.K.)
| | - Elena V. Proskurnina
- Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences, 117901 Moscow, Russia;
- Laboratory of Molecular Biology, Research Centre for Medical Genetics, 1 Moskvorechye St., 115522 Moscow, Russia
| | - Mikhail A. Proskurnin
- Analytical Chemistry Division, Department of Chemistry, Lomonosov Moscow State University, 1-3 Leninskie Gory, 119234 Moscow, Russia; (I.A.P.); (M.M.S.); (D.-M.V.R.); (V.N.N.); (V.R.K.)
| |
Collapse
|
3
|
Fei Y, Liu H, Sun K, Zhang O. Series of Fluorescent Dyes Derived from Triphenylamine Structure for Cu 2+ and In-Cell Carbon Monoxide Sensing: Synthesis and Performance. ACS OMEGA 2024; 9:37737-37747. [PMID: 39281903 PMCID: PMC11391447 DOI: 10.1021/acsomega.4c03137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 07/20/2024] [Accepted: 08/21/2024] [Indexed: 09/18/2024]
Abstract
In this paper, triphenylamine served as the structural core and was bonded to aromatic groups having various substituents [-OH, -OMe, or -N(Et)2] by a =N-N= chain and then connected with aromatic groups having various substituents [-OH, -OMe, or -N(Et)2]. The geometric and electronic properties of these probes were examined. It was found that the presence of electron donors enhanced the selectivity and emission quantum yield (QY). When exposed to Cu2+, the fluorescence intensity decreased. The optimal probe (T5) showed a significant decrease in emission QY from 17.1 to 0.5% and recovered to 16.8% after exposure to CO for 342 s. The sensing mechanism was revealed to be static quenching, forming a nonfluorescent adduct between probe and Cu2+. After reacting with CO, Cu2+ was reduced to Cu+, and the probe emission was recovered. The bioimaging performance of the optimal probe was assessed as well.
Collapse
Affiliation(s)
- Yulang Fei
- Department of Biomedical Research Center, Medical College, Xijing University, Xi 'an 710123, Shaanxi Province, China
- The First Affiliated Hospital of Nanyang Medical College, Nanyang 473061, Henan Province, China
| | - Han Liu
- Department of the Spleen and Stomach Diseases, Xi'an Hospital of Traditional Chinese Medicine, Xi 'an 710000, Shaanxi Province, China
| | - Kai Sun
- The First Affiliated Hospital of Nanyang Medical College, Nanyang 473061, Henan Province, China
| | - Ou Zhang
- The First Affiliated Hospital of Nanyang Medical College, Nanyang 473061, Henan Province, China
| |
Collapse
|
4
|
Shimizu M, Koizumi Y, Aikawa S, Fukushima Y. Colorimetric detection of glutathione by an anionic pyridylazo dye-based Cu2+ complex in the presence of a cationic polyelectrolyte. J INCL PHENOM MACRO 2023. [DOI: 10.1007/s10847-023-01183-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
|
5
|
Liu L, Duan H, Wang H, Miao J, Wu Z, Li C, Lu Y. Lysosome-Targeting Fluorescence Sensor for Sequential Detection and Imaging of Cu 2+ and Homocysteine in Living Cells. ACS OMEGA 2022; 7:34249-34257. [PMID: 36188316 PMCID: PMC9520687 DOI: 10.1021/acsomega.2c03691] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 09/06/2022] [Indexed: 06/16/2023]
Abstract
A conjugated polymer-based fluorescence sensor, namely, PTNPy, was constructed on the basis of a polythiophene scaffold coupled with dimethylpyridylamine (DPA) groups in side chains for the consecutive detection and quantification of Cu2+ and Hcy in a perfect aqueous medium. A dramatic fluorescence quenching of PTNPy by the addition of Cu2+ was observed in Tris-HCl buffer solution (2 mM, pH 7.4), demonstrating a quick (<1 min) and highly selective response to Cu2+ with a low limit of detection of 6.79 nM. Subsequently, the Cu2+-quenched fluorescence of PTNPy can be completely recovered by homocysteine (Hcy), showing excellent selectivity to Hcy over other competitive species such as cysteine and glutathione. Thanks to the low cytotoxicity and lysosomal targeting ability of PTNPy, it was further applied as an optical sensor for the sequential imaging of Cu2+ and Hcy in HeLa cells. More importantly, Hcy concentration was linearly related to the fluorescence intensity of PTNPy in living cells, demonstrating huge potential for real-time monitoring the fluctuation of Hcy levels in living cells.
Collapse
Affiliation(s)
- Lihua Liu
- School
of Materials Science & Engineering, Tianjin Key Laboratory for
Photoelectric Materials and Devices, Key Laboratory of Display Materials
& Photoelectric Devices, Ministry of Education, Tianjin University of Technology, Tianjin 300384, P. R. China
| | - Hongfei Duan
- School
of Materials Science & Engineering, Tianjin Key Laboratory for
Photoelectric Materials and Devices, Key Laboratory of Display Materials
& Photoelectric Devices, Ministry of Education, Tianjin University of Technology, Tianjin 300384, P. R. China
| | - Haohui Wang
- College
of Chemistry, Nankai University, Tianjin 300071, P. R. China
| | - Jieru Miao
- School
of Materials Science & Engineering, Tianjin Key Laboratory for
Photoelectric Materials and Devices, Key Laboratory of Display Materials
& Photoelectric Devices, Ministry of Education, Tianjin University of Technology, Tianjin 300384, P. R. China
| | - Zhihui Wu
- School
of Materials Science & Engineering, Tianjin Key Laboratory for
Photoelectric Materials and Devices, Key Laboratory of Display Materials
& Photoelectric Devices, Ministry of Education, Tianjin University of Technology, Tianjin 300384, P. R. China
| | - Chenxi Li
- College
of Chemistry, Nankai University, Tianjin 300071, P. R. China
| | - Yan Lu
- School
of Materials Science & Engineering, Tianjin Key Laboratory for
Photoelectric Materials and Devices, Key Laboratory of Display Materials
& Photoelectric Devices, Ministry of Education, Tianjin University of Technology, Tianjin 300384, P. R. China
| |
Collapse
|
6
|
Shcherbatykh AA, Chernov’yants MS, Voloshin NA, Chernyshev AV. Spiropyran 5,6′-dichloro-1,3,3-trimethylspiro[indoline-2,2′-2H-pyrano[3,2-h]quinoline] application as a spectorphotometric and fluorescent probe for glutathione and cysteine sensing. CHEMICAL PAPERS 2022. [DOI: 10.1007/s11696-022-02259-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
7
|
Kumar A, Virender, Mohan B, Solovev AA, Saini M, Kumar Sharma H. Development of 2-Hydroxy-Naphthaldehyde Functionalized Schiff Base Chemosensor for Spectroscopic and Colorimetric Detection of Cu2+ and Pd2+ ions. Microchem J 2022. [DOI: 10.1016/j.microc.2022.107561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
8
|
Recent Advances on the Development of Chemosensors for the Detection of Mercury Toxicity: A Review. SEPARATIONS 2021. [DOI: 10.3390/separations8100192] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
The harmful impact of mercury on biological systems is of great concern. Regardless of the efforts made by the regulating agencies, a decrease in Hg2+ concentration has not been realized, and hence mercury accumulation in the environment remains of utmost concern. Designing novel and efficient probes for recognition and detection of toxic metals in environmental samples has been of primary importance. Among the available techniques, probe designs involving the study of spectral properties has been preferred because of its obvious ease of instrumentation. Furthermore, occurrence of significant changes in the visible portion of electronic spectra enables detection by the naked eye, thereby endorsing the preference for development of probes with off-on binary responses to aid in the in-field sample analysis. The prominence is further streamlined to the use of fluorescence to help characterize on-response the cellular detection of Hg2+ with ease. In order to overcome the problem of developing efficient probes or sensors bearing fluorescence on-response mechanism that can work effectively in physiological conditions, various methodologies, such as chemo-dosimetric reaction mechanisms for the designing of new luminescent ligands, are being adopted. Additionally, modified charge transfer processes are also being considered for optical detection of the mercury (II) ion. In this review, all such possible techniques have been discussed in detail.
Collapse
|
9
|
Pundi A, Chang CJ, Chen YS, Chen JK, Yeh JM, Zhuang CS, Lee MC. An aniline trimer-based multifunctional sensor for colorimetric Fe 3+, Cu 2+ and Ag + detection, and its complex for fluorescent sensing of L-tryptophan. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2021; 247:119075. [PMID: 33096391 DOI: 10.1016/j.saa.2020.119075] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 09/29/2020] [Accepted: 10/09/2020] [Indexed: 06/11/2023]
Abstract
The detection of metal ions and amino acids by the aniline oligomer-based receptor has not been reported yet, to the best of our knowledge. In this study, an efficient multifunctional cation-amino acid sensor (CAS) with aniline moiety and chiral thiourea binding site was synthesized by the reaction of aniline trimer and (S)-(+)-1-phenyl ethyl isothiocyanate. CAS can sense Fe3+, Cu2+, Ag+ ions, and L-tryptophan. These results can be recognized by the naked eye. The appropriate pH range for the quantitative analysis of Fe3+, Cu2+, and Ag+ by CAS in DMSO/water (30 vol% water) was evaluated. The interaction between CCS and metal ions was analyzed by 1H NMR titration. The detection limits of CAS for the Cu2+, Ag+, and Fe3+ were 0.214, 0.099, and 0.147 μM, respectively. Moreover, the CASCu2+ complex can act as a turn-on fluorescence sensor for L-tryptophan. On the contrary, there is no response upon the addition of other amino acids, such as L-histidine, L-proline, L-phenylalanine, L-threonine, L-methionine, L-tyrosine, and L-cystine to CASCu2+ complex.
Collapse
Affiliation(s)
- Arul Pundi
- Department of Chemical Engineering, Feng Chia University, 100, Wenhwa Road, Seatwen, Taichung 40724, Taiwan, ROC
| | - Chi-Jung Chang
- Department of Chemical Engineering, Feng Chia University, 100, Wenhwa Road, Seatwen, Taichung 40724, Taiwan, ROC.
| | - Yi-Shao Chen
- Department of Chemical Engineering, Feng Chia University, 100, Wenhwa Road, Seatwen, Taichung 40724, Taiwan, ROC
| | - Jem-Kun Chen
- Department of Materials Science and Engineering, National Taiwan University of Science and Technology, 43, Sec. 4, Keelung Rd, Taipei 106, Taiwan, ROC
| | - Jui-Ming Yeh
- Department of Chemistry, Chung-Yuan Christian University, Chung Li, Taoyuan County 32023, Taiwan, ROC
| | - Cai-Shan Zhuang
- Department of Chemical Engineering, Feng Chia University, 100, Wenhwa Road, Seatwen, Taichung 40724, Taiwan, ROC
| | - Ming-Ching Lee
- Department of Surgery, Taichung Veterans General Hospital, 1650 Taiwan Boulevard Section 4, Taichung, 40705, Taiwan, ROC
| |
Collapse
|
10
|
Hien NK, Van Bay M, Tran PD, Khanh NT, Luyen ND, Vo QV, Van DU, Nam PC, Quang DT. A coumarin derivative-Cu 2+ complex-based fluorescent chemosensor for detection of biothiols. RSC Adv 2020; 10:36265-36274. [PMID: 35517943 PMCID: PMC9057049 DOI: 10.1039/d0ra05651k] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Accepted: 09/14/2020] [Indexed: 12/19/2022] Open
Abstract
Herein, a novel fluorescent sensor has been developed for the detection of biothiols based on theoretical calculations of the stability constant of the complex between a Cu2+ ion and (E)-3-((2-(benzo[d]thiazol-2-yl)hydrazono)methyl)-7-(diethylamino) coumarin (BDC) as a fluorescent ligand. In this study, on the basis of density functional theory method, the Gibbs free energy of ligand-exchange reaction and the solvation model were carried out using thermodynamic cycles. The obtained results are in good agreement with the experimental data. The BDC-Cu2+ complex can be used as a fluorescent sensor for the detection of biothiols in the presence of non-thiol containing amino acids, with a detection limit for cysteine at 0.3 μM. Moreover, theoretical calculations of excited states were used to elucidate variations in the fluorescence properties. The computed results show that the excited doublet states D2 and D1 are dark doublet states, which quench the fluorescence of the complex.
Collapse
Affiliation(s)
- Nguyen Khoa Hien
- Mientrung Institute for Scientific Research, Vietnam Academy of Science and Technology Hue 530000 Vietnam
| | - Mai Van Bay
- University of Education, Hue University Hue 530000 Vietnam
- The University of Danang -University of Science and Education Danang 550000 Vietnam
| | - Phan Diem Tran
- Mientrung Institute for Scientific Research, Vietnam Academy of Science and Technology Hue 530000 Vietnam
| | - Nguyen Tan Khanh
- Faculty of Pharmacy, Hue University of Medicine and Pharmacy Hue 530000 Vietnam
| | | | - Quan V Vo
- Faculty of Chemical Technology-Environment, The University of Danang-University of Technology and Education 48 Cao Thang Danang 550000 Vietnam
| | | | - Pham Cam Nam
- The University of Danang -University of Science and Technology Danang 550000 Vietnam
| | | |
Collapse
|
11
|
Wang Y, Feng H, Li H, Yang X, Jia H, Kang W, Meng Q, Zhang Z, Zhang R. A Copper (II) Ensemble-Based Fluorescence Chemosensor and Its Application in the 'Naked-Eye' Detection of Biothiols in Human Urine. SENSORS (BASEL, SWITZERLAND) 2020; 20:E1331. [PMID: 32121408 PMCID: PMC7085593 DOI: 10.3390/s20051331] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 02/27/2020] [Accepted: 02/27/2020] [Indexed: 12/20/2022]
Abstract
Quick and effective detection of biothiols in biological fluids has gained increasing attention due to its vital biological functions. In this paper, a novel reversible fluorescence chemosensor (L-Cu2+) based on a benzocoumarin-Cu2+ ensemble has been developed for the detection of biothiols (Cys, Hcy and GSH) in human urine. The chemosensing ensemble (L-Cu2+) contains a 2:1 stoichiometry structure between fluorescent ligand L and paramagnetic Cu2+. L was found to exclusively bond with Cu2+ ions accompanied with a dramatic fluorescence quenching maximum at 443 nm and an increase of an absorbance band centered at 378 nm. Then, the in situ generated fluorescence sluggish ensemble, L-Cu2+, was successfully used as a chemosensor for the detection of biothiols with a fluorescence "OFF-ON" response modality. Upon the addition of biothiols, the decomplexation of L-Cu2+ led to the liberation of the fluorescent ligand, L, resulting in the recovery of fluorescence and absorbance spectra. Studies revealed that L-Cu2+ possesses simple synthesis, excellent stability, high sensitivity, reliability at a broad pH range and desired renewability (at least 5 times). The practical application of L-Cu2+ was then demonstrated by the detection of biothiols in human urine sample.
Collapse
Affiliation(s)
- Yue Wang
- School of Chemical Engineering, University of Science and Technology Liaoning, Anshan 114051, China; (Y.W.); (X.Y.); (H.J.)
| | - Huan Feng
- School of Chemical Engineering, University of Science and Technology Liaoning, Anshan 114051, China; (Y.W.); (X.Y.); (H.J.)
| | - Haibo Li
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, Department of Chemistry, Liaocheng University, Liaocheng 252059, China; (H.L.); (W.K.)
| | - Xinyi Yang
- School of Chemical Engineering, University of Science and Technology Liaoning, Anshan 114051, China; (Y.W.); (X.Y.); (H.J.)
| | - Hongmin Jia
- School of Chemical Engineering, University of Science and Technology Liaoning, Anshan 114051, China; (Y.W.); (X.Y.); (H.J.)
| | - Wenjun Kang
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, Department of Chemistry, Liaocheng University, Liaocheng 252059, China; (H.L.); (W.K.)
| | - Qingtao Meng
- School of Chemical Engineering, University of Science and Technology Liaoning, Anshan 114051, China; (Y.W.); (X.Y.); (H.J.)
| | - Zhiqiang Zhang
- School of Chemical Engineering, University of Science and Technology Liaoning, Anshan 114051, China; (Y.W.); (X.Y.); (H.J.)
| | - Run Zhang
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane 4072, Australia;
| |
Collapse
|
12
|
Chao D, Pan Y, Gao XW. A long-lived Donor-Acceptor fluorescent probe for sequential detection of Cu 2+ and biothiols. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2020; 227:117770. [PMID: 31708463 DOI: 10.1016/j.saa.2019.117770] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2019] [Revised: 10/25/2019] [Accepted: 11/04/2019] [Indexed: 06/10/2023]
Abstract
A new long-lived Donor-Acceptor (D-A) fluorophore based on carbazolyl dicyanobenzene was developed as an ON-OFF-ON multifunctional fluorescent probe 1 for sequential detection of Cu2+ and biothiols (Cys, Hcy and GSH). The fluorescence of probe 1 can be significantly and selectively quenched by Cu2+. Meanwhile, the fluorescence lifetime decreased from 2.1 μs to 18.5 ns. The limit of detection was determined to be 33.6 nM. Upon addition of biothiols (Cys, Hcy and GSH), the generated ensemble 1-Cu2+ displayed a "turn-on" fluorescent response at 555 nm and an obvious recovery in fluorescence lifetime and UV-vis absorption within 1 min. The limit of detection for Cys, Hcy and GSH were calculated by fluorescence titration experiments to be 0.19, 0.21 and 0.29 μM, respectively. The ensemble 1-Cu2+ was further successfully applied in bioimaging.
Collapse
Affiliation(s)
- Duobin Chao
- School of Materials Science and Chemical Engineering, Ningbo University, Zhejiang 315211, China.
| | - Yaping Pan
- School of Petroleum and Chemical Engineering, Dalian University of Technology, Panjin, Liaoning 124221, China
| | - Xue-Wang Gao
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials Technical Institute of Physics and Chemistry, University of Chinese Academy of Sciences Chinese Academy of Sciences, Beijing 100190, China
| |
Collapse
|
13
|
Using calculations of the electronically excited states for investigation of fluorescent sensors: A review. VIETNAM JOURNAL OF CHEMISTRY 2019. [DOI: 10.1002/vjch.201900089] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
14
|
Determination of Cu2+ in drinking water using a hydroxyjulolidine-dihydroperimidine colorimetric sensor. J INCL PHENOM MACRO 2018. [DOI: 10.1007/s10847-018-0862-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
15
|
Fanna DJ, Lima LM, Craze AR, Trinchi A, Wuhrer R, Lindoy LF, Wei G, Reynolds JK, Li F. Ultrasensitive Colorimetric and Ratiometric Detection of Cu 2+: Acid-Base Properties, Complexation, and Binding Studies. ACS OMEGA 2018; 3:10471-10480. [PMID: 31459173 PMCID: PMC6645550 DOI: 10.1021/acsomega.8b01483] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Accepted: 08/20/2018] [Indexed: 05/13/2023]
Abstract
Herein, we report the synthesis and characterization of a chemosensor, 5-(diethylamino)-2-(2,3-dihydro-1H-perimidin-2-yl)phenol (HL), synthesized from a condensation between 4-(diethylamino)salicylaldehyde and 1,8-diaminonaphthalene. Upon investigation of the sensing properties of HL, it was found that this sensor may be employed for simple yet efficient detection of Cu2+ in aqueous methanol solutions. The selective and ratiometric response to Cu2+ yielded an outstandingly low limit of detection of 3.7 nM by spectrophotometry and is also useful as a naked-eye sensor from 2.5 μM. The system was studied by spectrophotometric pH titrations to determine Cu2+ binding constants and complex speciation. Binding of Cu2+ to HL occurs in 1:1 stoichiometry, in good agreement with high-resolution electrospray ionization mass spectrometry (ESI-HRMS) results, Cu2+ titrations, and Job's plot experiments, while the coordination geometry was tentatively assigned as square pyramidal by spectroscopic studies.
Collapse
Affiliation(s)
- Daniel J. Fanna
- School of Science
and Health, Western Sydney University, Locked Bag 1797, Penrith, New South Wales 2751, Australia
- CSIRO Manufacturing, P.O. Box 218, Lindfield, New South Wales 2070, Australia
| | - Luís M.
P. Lima
- Instituto de Tecnologia Química e Biológica
António Xavier, Universidade Nova
de Lisboa, Av. da República, 2780-157 Oeiras, Portugal
| | - Alexander R. Craze
- School of Science
and Health, Western Sydney University, Locked Bag 1797, Penrith, New South Wales 2751, Australia
| | - Adrian Trinchi
- CSIRO Manufacturing, Private
Bag 33, Clayton, Victoria 3169, Australia
| | - Richard Wuhrer
- Advanced Materials
Characterisation Facility, Western Sydney
University, Locked Bag 1797, Penrith, New South Wales 2751, Australia
| | - Leonard F. Lindoy
- School of Chemistry, University of Sydney, Sydney, New South Wales 2006, Australia
| | - Gang Wei
- CSIRO Manufacturing, P.O. Box 218, Lindfield, New South Wales 2070, Australia
| | - Jason K. Reynolds
- School of Science
and Health, Western Sydney University, Locked Bag 1797, Penrith, New South Wales 2751, Australia
| | - Feng Li
- School of Science
and Health, Western Sydney University, Locked Bag 1797, Penrith, New South Wales 2751, Australia
| |
Collapse
|
16
|
Lee S, Li J, Zhou X, Yin J, Yoon J. Recent progress on the development of glutathione (GSH) selective fluorescent and colorimetric probes. Coord Chem Rev 2018. [DOI: 10.1016/j.ccr.2018.03.021] [Citation(s) in RCA: 148] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
17
|
Kim SY, Lee SY, Jung JM, Kim MS, Kim C. Selective detection of Cu2+ and S2− by a colorimetric chemosensor: Experimental and theoretical calculations. Inorganica Chim Acta 2018. [DOI: 10.1016/j.ica.2017.12.016] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
18
|
Sumran G, Aggarwal R, Hooda M, Sanz D, Claramunt RM. Unusual synthesis of azines and their oxidative degradation to carboxylic acid using iodobenzene diacetate. SYNTHETIC COMMUN 2018. [DOI: 10.1080/00397911.2017.1407791] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Garima Sumran
- Department of Chemistry, D.A.V. College (Lahore), Ambala City, Haryana, India
| | - Ranjana Aggarwal
- Department of Chemistry, Kurukshetra University, Kurukshetra, Haryana, India
| | - Mona Hooda
- Department of Chemistry, Kurukshetra University, Kurukshetra, Haryana, India
| | - Dionisia Sanz
- Departamento de Química y Bio-orgánica, Facultad de Ciencias, UNED, Madrid, Spain
| | - Rosa M. Claramunt
- Departamento de Química y Bio-orgánica, Facultad de Ciencias, UNED, Madrid, Spain
| |
Collapse
|
19
|
Wang Y, Meng Q, Han Q, He G, Hu Y, Feng H, Jia H, Zhang R, Zhang Z. Selective and sensitive detection of cysteine in water and live cells using a coumarin–Cu2+ fluorescent ensemble. NEW J CHEM 2018. [DOI: 10.1039/c8nj03809k] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
A coumarin–Cu2+ ensemble based fluorescent chemosensor was developed for the selective detection of cysteine in aqueous media and live cells.
Collapse
Affiliation(s)
- Yue Wang
- School of Chemical Engineering
- University of Science and Technology Liaoning
- Anshan
- P. R. China
| | - Qingtao Meng
- School of Chemical Engineering
- University of Science and Technology Liaoning
- Anshan
- P. R. China
- Key Laboratory for Functional Material
| | - Qian Han
- School of Chemical Engineering
- University of Science and Technology Liaoning
- Anshan
- P. R. China
| | - Guangjie He
- Department of Forensic Medicine
- Xinxiang Medical University
- XinXiang
- P. R. China
| | - Yaoyun Hu
- School of Chemical Engineering
- University of Science and Technology Liaoning
- Anshan
- P. R. China
| | - Huan Feng
- School of Chemical Engineering
- University of Science and Technology Liaoning
- Anshan
- P. R. China
| | - Hongmin Jia
- School of Chemical Engineering
- University of Science and Technology Liaoning
- Anshan
- P. R. China
| | - Run Zhang
- Australian Institute for Bioengineering and Nanotechnology
- The University of Queensland
- Brisbane
- Australia
| | - Zhiqiang Zhang
- Key Laboratory for Functional Material
- Educational Department of Liaoning Province
- University of Science and Technology Liaoning
- Anshan 114051
- P. R. China
| |
Collapse
|
20
|
Moriuchi-Kawakami T, Hisada Y, Higashikado A, Inoue T, Fujimori K, Moriuchi T. Bis(1-pyrenylmethyl)-2-benzyl-2-methyl-malonate as a Cu 2+ Ion-Selective Fluoroionophore. Molecules 2017; 22:molecules22091415. [PMID: 28841193 PMCID: PMC6151551 DOI: 10.3390/molecules22091415] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Revised: 08/22/2017] [Accepted: 08/23/2017] [Indexed: 01/02/2023] Open
Abstract
A new malonate possessing two pyrene moieties was synthesized as a fluoroionophore, and its structure and fluorescence spectroscopic properties were investigated. When excited at 344 nm in acetonitrile/chloroform (9:1, v/v), the synthesized bispyrenyl malonate has the fluorescence of intramolecular excimer (λem = 467 nm) emissions and not a pyrene monomer emission (λem = 394 nm). A large absolute fluorescence quantum yield was obtained in the solid state (ΦPL = 0.65) rather than in solution (ΦPL = 0.13). X-ray crystallography analysis clarified the molecular structure and alignment of the bispyrenyl malonate in the crystal phase, elucidating its fluorescence spectroscopic properties. Such analysis also suggests there are intramolecular C-H···π interactions and intermolecular π···π interactions between the pyrenyl rings. Interestingly, the synthesized bispyrenyl malonate exhibits excellent fluorescence sensing for the Cu2+ ion. Remarkable fluorescence intensity enhancement was only observed with the addition of the Cu2+ ion.
Collapse
Affiliation(s)
- Takayo Moriuchi-Kawakami
- Department of Applied Chemistry, Faculty of Engineering, Osaka Institute of Technology, 5-16-1 Omiya, Asahi, Osaka 535-8585, Japan.
| | - Youji Hisada
- Department of Applied Chemistry, Faculty of Engineering, Osaka Institute of Technology, 5-16-1 Omiya, Asahi, Osaka 535-8585, Japan.
| | - Akihisa Higashikado
- Department of Applied Chemistry, Faculty of Engineering, Osaka Institute of Technology, 5-16-1 Omiya, Asahi, Osaka 535-8585, Japan.
| | - Tsubasa Inoue
- Department of Applied Chemistry, Faculty of Engineering, Osaka Institute of Technology, 5-16-1 Omiya, Asahi, Osaka 535-8585, Japan.
| | - Keiichi Fujimori
- Department of Applied Chemistry, Faculty of Engineering, Osaka Institute of Technology, 5-16-1 Omiya, Asahi, Osaka 535-8585, Japan.
| | - Toshiyuki Moriuchi
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, 2-1 Yamada-oka, Suita, Osaka 565-0871, Japan.
| |
Collapse
|
21
|
Kim MS, Jung JM, Kang JH, Ahn HM, Kim PG, Kim C. A new indazole-based colorimetric chemosensor for sequential detection of Cu2+ and GSH in aqueous solution. Tetrahedron 2017. [DOI: 10.1016/j.tet.2017.06.051] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
22
|
Goh H, Nam TK, Singh A, Singh N, Jang DO. Dipodal colorimetric sensor for Ag+ and its resultant complex for iodide sensing using a cation displacement approach in water. Tetrahedron Lett 2017. [DOI: 10.1016/j.tetlet.2017.01.098] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
23
|
Synthesis of a fluorogenic probe for thiols based on a coumarin schiff base copper complex and its use for the detection of glutathione. Tetrahedron 2017. [DOI: 10.1016/j.tet.2016.12.012] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
24
|
Goh H, Ko YG, Nam TK, Singh A, Singh N, Jang DO. A benzimidazole-based fluorescent chemosensor for Cu2+ recognition and its complex for sensing H2PO4− by a Cu2+ displacement approach in aqueous media. Tetrahedron Lett 2016. [DOI: 10.1016/j.tetlet.2016.08.074] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|