1
|
Zhao Q, Chen Z, Shan CW, Zhan T, Han CY, Han GC, Feng XZ, Kraatz HB. Construction and evaluation of AuNPs enhanced electrochemical immunosensors with [Fe(CN) 6] 3-/4- and PPy probe for highly sensitive detection of human chorionic gonadotropin. Int J Biol Macromol 2024; 273:132963. [PMID: 38852725 DOI: 10.1016/j.ijbiomac.2024.132963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 05/24/2024] [Accepted: 06/04/2024] [Indexed: 06/11/2024]
Abstract
Human chorionic gonadotropin (HCG), a vital protein for pregnancy determination and a marker for trophoblastic diseases, finds application in monitoring early pregnancy and ectopic pregnancy. This study presents an innovative approach employing electrochemical immunosensors for enhanced HCG detection, utilizing Anti-HCG antibodies and gold nanoparticles (AuNPs) in the sensor platform. Two sensor configurations were optimized: BSA/Anti-HCG/c-AuNPs/MEL/e-AuNPs/SPCE with [Fe(CN)6]3-/4- as a redox probe (1) and BSA/Anti-HCG/PPy/e-AuNPs/SPCE using polypyrrole (PPy) as a redox probe (2). The first sensor offers linear correlation in the 0.10-500.00 pg∙mL-1 HCG range, with a limit of detection (LOD) of 0.06 pg∙mL-1, sensitivity of 32.25 μA∙pg-1∙mL∙cm-2, RSD <2.47 %, and a recovery rate of 101.03-104.81 %. The second sensor widens the HCG detection range (40.00 fg∙mL-1-5.00 pg∙mL-1) with a LOD of 16.53 fg∙mL-1, ensuring precision (RSD <1.04 %) and a recovery range of 94.61-106.07 % in serum samples. These electrochemical immunosensors have transformative potential in biomarker detection, offering enhanced sensitivity, selectivity, and stability for advanced healthcare diagnostics.
Collapse
Affiliation(s)
- Qi Zhao
- School of Life and Environmental Sciences, Guangxi Human Physiological Information Non Invasive Detection Engineering Technology Research Center, Guangxi Colleges and Universities Key Laboratory of Biomedical Sensors and Intelligent Instruments, Guilin University of Electronic Technology, Guilin 541004, PR China
| | - Zhencheng Chen
- School of Life and Environmental Sciences, Guangxi Human Physiological Information Non Invasive Detection Engineering Technology Research Center, Guangxi Colleges and Universities Key Laboratory of Biomedical Sensors and Intelligent Instruments, Guilin University of Electronic Technology, Guilin 541004, PR China
| | - Chen-Wei Shan
- School of Life and Environmental Sciences, Guangxi Human Physiological Information Non Invasive Detection Engineering Technology Research Center, Guangxi Colleges and Universities Key Laboratory of Biomedical Sensors and Intelligent Instruments, Guilin University of Electronic Technology, Guilin 541004, PR China
| | - Tao Zhan
- School of Life and Environmental Sciences, Guangxi Human Physiological Information Non Invasive Detection Engineering Technology Research Center, Guangxi Colleges and Universities Key Laboratory of Biomedical Sensors and Intelligent Instruments, Guilin University of Electronic Technology, Guilin 541004, PR China
| | - Chen-Yang Han
- School of Life and Environmental Sciences, Guangxi Human Physiological Information Non Invasive Detection Engineering Technology Research Center, Guangxi Colleges and Universities Key Laboratory of Biomedical Sensors and Intelligent Instruments, Guilin University of Electronic Technology, Guilin 541004, PR China
| | - Guo-Cheng Han
- School of Life and Environmental Sciences, Guangxi Human Physiological Information Non Invasive Detection Engineering Technology Research Center, Guangxi Colleges and Universities Key Laboratory of Biomedical Sensors and Intelligent Instruments, Guilin University of Electronic Technology, Guilin 541004, PR China.
| | - Xiao-Zhen Feng
- School of Life and Environmental Sciences, Guangxi Human Physiological Information Non Invasive Detection Engineering Technology Research Center, Guangxi Colleges and Universities Key Laboratory of Biomedical Sensors and Intelligent Instruments, Guilin University of Electronic Technology, Guilin 541004, PR China.
| | - Heinz-Bernhard Kraatz
- Department of Physical and Environmental Sciences, University of Toronto Scarborough, Toronto, Ontario M1C 1A4, Canada.
| |
Collapse
|
2
|
Villegas-Cantoran DS, Gómez CL, Gómez-Pavón LDC, Zaca-Morán P, Castillo-López DN, Luis-Ramos A, Muñoz-Pacheco JM. Quantification of hCG Hormone Using Tapered Optical Fiber Decorated with Gold Nanoparticles. SENSORS (BASEL, SWITZERLAND) 2023; 23:8538. [PMID: 37896633 PMCID: PMC10610987 DOI: 10.3390/s23208538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 10/04/2023] [Accepted: 10/13/2023] [Indexed: 10/29/2023]
Abstract
In this study, a novel technique for the quantification of the human chorionic gonadotropin (hCG) hormone using localized surface plasmons and a tapered optical fiber decorated with gold nanoparticles (Au-NPs) is reported. The tapered optical fiber fabrication process involves stretching a single-mode optical fiber using the flame-brushing system. The waist of the tapered optical fiber reaches a diameter of 3 μm. Decoration of the taper is achieved through the photodeposition of 100 nm Au-NPs using the drop-casting technique and a radiation source emitting at 1550 nm. The presence of the hCG hormone in the sample solutions is verified by Fourier-transform infrared spectroscopy (FTIR), revealing the presence of bands related to functional groups, such as C=O (1630 cm-1), which are associated with proteins and lipids, components of the hCG hormone. Quantification tests for hormone concentrations were carried out by measuring the optical power response of the tapered optical fiber with Au-NPs under the influence of hCG hormone concentrations, ranging from 1 mIU/mL to 100,000 mIU/mL. In the waist of the tapered optical fiber, the evanescent field is amplified because of localized surface plasmons generated by the nanoparticles and the laser radiation through the optical fiber. Experimental results demonstrated a proportional relationship between measured radiation power and hCG concentration, with the optical power response decreasing from 4.45 mW down to 2.5 mW, as the hCG hormone concentration increased from 1 mIU/mL up to 100,000 mIU/mL. Furthermore, the spectral analysis demonstrated a spectral shift of 14.2 nm with the increment of the hCG hormone concentration. The measurement system exhibits promising potential as a sensor for applications in the biomedical and industrial fields.
Collapse
Affiliation(s)
- David Saúl Villegas-Cantoran
- Grupo de Sistemas Fotónicos y Nanoóptica, Facultad de Ciencias de la Electrónica, Benemérita Universidad Autónoma de Puebla, Puebla 72570, Mexico; (D.S.V.-C.); (D.N.C.-L.); (A.L.-R.); (J.M.M.-P.)
| | - Celia Lizeth Gómez
- Instituto de Ciencias, Ecocampus Valsequillo, Benemérita Universidad Autónoma de Puebla, Puebla 72570, Mexico; (C.L.G.); (P.Z.-M.)
| | - Luz del Carmen Gómez-Pavón
- Grupo de Sistemas Fotónicos y Nanoóptica, Facultad de Ciencias de la Electrónica, Benemérita Universidad Autónoma de Puebla, Puebla 72570, Mexico; (D.S.V.-C.); (D.N.C.-L.); (A.L.-R.); (J.M.M.-P.)
| | - Placido Zaca-Morán
- Instituto de Ciencias, Ecocampus Valsequillo, Benemérita Universidad Autónoma de Puebla, Puebla 72570, Mexico; (C.L.G.); (P.Z.-M.)
| | - Dulce Natalia Castillo-López
- Grupo de Sistemas Fotónicos y Nanoóptica, Facultad de Ciencias de la Electrónica, Benemérita Universidad Autónoma de Puebla, Puebla 72570, Mexico; (D.S.V.-C.); (D.N.C.-L.); (A.L.-R.); (J.M.M.-P.)
| | - Arnulfo Luis-Ramos
- Grupo de Sistemas Fotónicos y Nanoóptica, Facultad de Ciencias de la Electrónica, Benemérita Universidad Autónoma de Puebla, Puebla 72570, Mexico; (D.S.V.-C.); (D.N.C.-L.); (A.L.-R.); (J.M.M.-P.)
| | - Jesús Manuel Muñoz-Pacheco
- Grupo de Sistemas Fotónicos y Nanoóptica, Facultad de Ciencias de la Electrónica, Benemérita Universidad Autónoma de Puebla, Puebla 72570, Mexico; (D.S.V.-C.); (D.N.C.-L.); (A.L.-R.); (J.M.M.-P.)
| |
Collapse
|
3
|
Yang D, Wang L, Jia T, Lian T, Yang K, Li X, Wang X, Xue C. Au/Fe 3O 4-based nanozymes with peroxidase-like activity integrated in immunochromatographic strips for highly-sensitive biomarker detection. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2023; 15:663-674. [PMID: 36655548 DOI: 10.1039/d2ay01815b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Because of their simplicity, rapidity, and cost-effectiveness, immunochromatographic strips (ICTs) have been widely used as an effective tool in various fields. However, typical strips for the preliminary screening suffer from limited detection sensitivity, particularly in biomarker detection with trace concentration. Herein, to tackle this challenge, we integrated homemade gold-decorated Fe3O4 nanoparticles (Au/Fe3O4 NPs) with flexible strips, exploring the excellent peroxidase-like activity of this labeled material, and then enhancing the detection sensitivity via signal amplification. The limit of detection (LOD) of the strips is as low as 0.05 mIU mL-1 when human chorionic gonadotropin (hCG) is as a biomarker model, which is 500 times lower than that of the traditional color-based strip. Overall, our results demonstrated the potential for Au/Fe3O4 NP based-ICTs for the rapid detection of the biomarker in an instrument-free and point-of-care testing format.
Collapse
Affiliation(s)
- Dong Yang
- College of Chemistry and Chemical Engineering, Shaanxi University of Science & Technology, Xi'an 710021, China.
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science & Technology, Xi'an 710021, China.
- Xi'an Key Laboratory of Advanced Performance Materials and Polymers, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Lixia Wang
- Xi'an Key Laboratory of Advanced Performance Materials and Polymers, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Tongtong Jia
- College of Chemistry and Chemical Engineering, Shaanxi University of Science & Technology, Xi'an 710021, China.
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science & Technology, Xi'an 710021, China.
- Xi'an Key Laboratory of Advanced Performance Materials and Polymers, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Ting Lian
- School of Clinical Medicine, Xi'an Medical University, Xi'an 710021, China
| | - Kadi Yang
- College of Chemistry and Chemical Engineering, Shaanxi University of Science & Technology, Xi'an 710021, China.
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science & Technology, Xi'an 710021, China.
- Xi'an Key Laboratory of Advanced Performance Materials and Polymers, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Xuhua Li
- College of Chemistry and Chemical Engineering, Shaanxi University of Science & Technology, Xi'an 710021, China.
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science & Technology, Xi'an 710021, China.
- Xi'an Key Laboratory of Advanced Performance Materials and Polymers, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Xue Wang
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science & Technology, Xi'an 710021, China.
- Key Laboratory of Chemical Additives for China National Light Industry, Xi'an 710021, China
| | - Chaohua Xue
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science & Technology, Xi'an 710021, China.
| |
Collapse
|
4
|
Innovations in the synthesis of graphene nanostructures for bio and gas sensors. BIOMATERIALS ADVANCES 2023; 145:213234. [PMID: 36502548 DOI: 10.1016/j.bioadv.2022.213234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 11/11/2022] [Accepted: 11/30/2022] [Indexed: 12/12/2022]
Abstract
Sensors play a significant role in modern technologies and devices used in industries, hospitals, healthcare, nanotechnology, astronomy, and meteorology. Sensors based upon nanostructured materials have gained special attention due to their high sensitivity, precision accuracy, and feasibility. This review discusses the fabrication of graphene-based biosensors and gas sensors, which have highly efficient performance. Significant developments in the synthesis routes to fabricate graphene-based materials with improved structural and surface properties have boosted their utilization in sensing applications. The higher surface area, better conductivity, tunable structure, and atom-thick morphology of these hybrid materials have made them highly desirable for the fabrication of flexible and stable sensors. Many publications have reported various modification approaches to improve the selectivity of these materials. In the current work, a compact and informative review focusing on the most recent developments in graphene-based biosensors and gas sensors has been designed and delivered. The research community has provided a complete critical analysis of the most robust case studies from the latest fabrication routes to the most complex challenges. Some significant ideas and solutions have been proposed to overcome the limitations regarding the field of biosensors and hazardous gas sensors.
Collapse
|
5
|
Gao D, Cheng F, Wang X, Yang H, Liu C, Li C, Yang EM, Cheng G, He W. Developing G value as an indicator for assessing the molecular status of immobilized antibody. Colloids Surf B Biointerfaces 2022; 217:112593. [PMID: 35665639 DOI: 10.1016/j.colsurfb.2022.112593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Revised: 05/08/2022] [Accepted: 05/21/2022] [Indexed: 10/18/2022]
Abstract
Antibody-functionalized nanoparticles (Ab-NPs) are widely used in bioassays due to their excellent affinity, specificity toward antigen, and ease of operation. However, the uncontrollable molecular status of antibodies on NPs severely limits their applications. This work aims at developing a simple method to evaluate the antigen-binding activity of Ab-NPs using two parameters, i.e., antibody adsorption amount and antigen-binding strength. Herein, we proposed a mathematical expression, G, to quantitively describe the amount and strength of Ab-NPs. G value could be used to assess the antigen-binding performance of NPs influenced by surface and solution factors. Seven types of polymers with different surface properties, including four positively and three negatively charged polymer brushes, were grown from silica NPs via surface-initiated atom transfer radical polymerization (SI-ATRP). A pair of antigen and antibody, human chorionic gonadotropin (hCG) and anti-hCG, were selected to screen the antibody immobilization property of polymer brushes. Among them, the G values of 2 polymer-NPs with opposite charges reached maximum, resulting in low detection limits for hCG, where pDMAEA-NP and pMMA-NP represent Poly[N,N-(dimethylamino)ethyl acrylate]-NP and poly(methyl methacrylate)-NP, respectively. The G value of Ab-NPs makes it feasible to estimate the molecular status of the adsorbed antibodies on surfaces, thus showing great potential for in vitro biosensing and bioseparation.
Collapse
Affiliation(s)
- Dongdong Gao
- Department of Pharmaceutical Sciences, School of Chemical Engineering, Dalian University of Technology, Dalian 116023, China; State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116023, China; Department of Polymer Science & Engineering, School of Chemical Engineering, Dalian University of Technology, Dalian 116023, China
| | - Fang Cheng
- Department of Pharmaceutical Sciences, School of Chemical Engineering, Dalian University of Technology, Dalian 116023, China; State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116023, China; Department of Polymer Science & Engineering, School of Chemical Engineering, Dalian University of Technology, Dalian 116023, China; Ningbo Institute of Dalian University of Technology, Ningbo 315211, China.
| | - Xinglong Wang
- Department of Pharmaceutical Sciences, School of Chemical Engineering, Dalian University of Technology, Dalian 116023, China; State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116023, China
| | - Heqing Yang
- Department of Pharmaceutical Sciences, School of Chemical Engineering, Dalian University of Technology, Dalian 116023, China; State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116023, China
| | - Chong Liu
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116023, China; Department of Polymer Science & Engineering, School of Chemical Engineering, Dalian University of Technology, Dalian 116023, China
| | - Chunmei Li
- Tsinglan School, Songshan Lake, Dongguan 523000, China
| | | | - Gang Cheng
- Department of Chemical Engineering, University of Illinois at Chicago, Chicago, Illinois 60607, United States
| | - Wei He
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116023, China; Department of Polymer Science & Engineering, School of Chemical Engineering, Dalian University of Technology, Dalian 116023, China
| |
Collapse
|
6
|
Lu Y, Wang H, Shi XM, Ding C, Fan GC. Photoanode-supported cathodic immunosensor for sensitive and specific detection of human chorionic gonadotropin. Anal Chim Acta 2022; 1199:339560. [DOI: 10.1016/j.aca.2022.339560] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 01/18/2022] [Accepted: 01/27/2022] [Indexed: 12/14/2022]
|
7
|
Li H, Cai T, Ren Y, Huang J, Jiang H, Hou Y, Tang C, Yang J, Zhao J, Yu P. A simple unlabeled human chorionic gonadotropin biosensor based on a peptide aptamer. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2021; 13:4442-4451. [PMID: 34490875 DOI: 10.1039/d1ay01105g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
As an essential biochemical indicator in the fields of pregnancy and oncology, human chorionic gonadotropin (HCG) can be evaluated using colloidal gold immunochromatographic paper and quantified using a biochemical analyzer based on the principle of the antibody sandwich method. In view of the inaccuracy of the former and the complication of the latter, this study constructed an accurate, sensitive and simple unlabeled biosensor based on peptide aptamer CGGGPPLRINRHILTR for HCG detection. Molecular Operating Environment (MOE) was used to simulate the aptamer and protein docking, and western blot (WB) was used to verify the binding effect and ratio. The peptide aptamer was characterized and was then reduced with tris-(2-carboxyethyl)-phosphine hydrochloride (TCEP). After electrochemical deposition of chloroauric acid on the screen-printed electrode (SPE), the aptamer was self-assembled on the electrode surface under optimal conditions. The active site of the electrode surface was blocked with 6-mercapto-1-hexanol (MCH) and BSA. The electrochemical impedance spectrum (EIS) was used to quantify HCG in the matrix. Showing a good linear relationship in the range of 5-1500 mIU mL-1, with a detection limit of 1 mIU mL-1, the biosensor remained stable at room temperature for 14 days. Because of its small size, stability, sensitivity and accuracy, this biosensor has great potential to become a portable diagnostic device for HCG.
Collapse
Affiliation(s)
- Huanhuan Li
- Xiangya School of Pharmaceutical Sciences, Central South University, No. 172, Tongzipo Road, Changsha 410013, Hunan Province, China
| | - Tongji Cai
- Xiangya School of Pharmaceutical Sciences, Central South University, No. 172, Tongzipo Road, Changsha 410013, Hunan Province, China
| | - Yi Ren
- Xiangya School of Pharmaceutical Sciences, Central South University, No. 172, Tongzipo Road, Changsha 410013, Hunan Province, China
| | - Jing Huang
- Xiangya School of Pharmaceutical Sciences, Central South University, No. 172, Tongzipo Road, Changsha 410013, Hunan Province, China
| | - Hanbing Jiang
- Xiangya School of Pharmaceutical Sciences, Central South University, No. 172, Tongzipo Road, Changsha 410013, Hunan Province, China
| | - Yucui Hou
- Xiangya School of Pharmaceutical Sciences, Central South University, No. 172, Tongzipo Road, Changsha 410013, Hunan Province, China
| | - Chunhua Tang
- Xiangya School of Pharmaceutical Sciences, Central South University, No. 172, Tongzipo Road, Changsha 410013, Hunan Province, China
| | - Jie Yang
- Xiangya School of Pharmaceutical Sciences, Central South University, No. 172, Tongzipo Road, Changsha 410013, Hunan Province, China
| | - Jia Zhao
- Changsha Cinotohi Technology Co., Ltd, No. 229, West Tongzipo Road, Changsha, Hunan 410013, China
| | - Peng Yu
- Xiangya School of Pharmaceutical Sciences, Central South University, No. 172, Tongzipo Road, Changsha 410013, Hunan Province, China
| |
Collapse
|
8
|
Chiu NF, Wang YH, Chen CY. Clinical Application for Screening Down's Syndrome by Using Carboxylated Graphene Oxide-Based Surface Plasmon Resonance Aptasensors. Int J Nanomedicine 2020; 15:8131-8149. [PMID: 33144830 PMCID: PMC7594198 DOI: 10.2147/ijn.s270938] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Accepted: 09/29/2020] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Advanced medical detection technology requires high sensitivity and accuracy to increase the disease detection rate. We showed that carboxyl-functionalized graphene oxide (carboxyl-GO) biosensing materials are capable of accurate detection. METHODS We developed a carboxylated GO-based surface plasmon resonance (SPR) aptasensor suitable for screening Down's syndrome in clinical serum. This biosensing material could rapidly and accurately detect hCG protein with a low concentration to identify fetal Down's syndrome. The developed carboxyl-GO-based SPR aptasensor showed excellent sensitivity and limit of detection without the use of antibodies and without any specific preference. RESULTS hCG protein detection limits of 1 pM in buffer samples and 1.9 pM in clinical serum samples were achieved. The results showed that the carboxyl-GO-based chip could detect hCG well below the normal physiological level of serum protein (5.0 mIU/mL). High affinity, sensitivity, and better detection limit were obtained in the range of 1.9 pM to 135 pM. The results showed a 5k-fold dilution factor, and that an SPR angle shift of more than 20 millidegrees (mo) was associated with a significant risk of fetal Down's syndrome compared to normal pregnant women. The results clearly showed that the detection of hCG protein in serum samples from pregnant women at 12-19 weeks could be used to screen Down's syndrome with high selectivity and sensitivity. CONCLUSION Our findings suggest the potential application of carboxyl-GO film in proof-of-concept studies for serum assays as a new type of SPR material. In addition, peptide and carboxyl-GO films may be conducive to the development of future point of care testing and rapid diagnostic devices for other diseases such as cancer.
Collapse
Affiliation(s)
- Nan-Fu Chiu
- Laboratory of Nano-Photonics and Biosensors, Institute of Electro-Optical Engineering, National Taiwan Normal University, Taipei City 11677, Taiwan
- Department of Life Science, National Taiwan Normal University, Taipei City 11677, Taiwan
| | - Ying-Hao Wang
- Laboratory of Nano-Photonics and Biosensors, Institute of Electro-Optical Engineering, National Taiwan Normal University, Taipei City 11677, Taiwan
- Department of Obstetrics and Gynecology, Mackay Memorial Hospital, Taipei City 10449, Taiwan
| | - Chen-Yu Chen
- Department of Obstetrics and Gynecology, Mackay Memorial Hospital, Taipei City 10449, Taiwan
- Department of Medicine, Mackay Medical College, Taipei City 25245, Taiwan
| |
Collapse
|
9
|
Electrochemiluminescence immunoassay of human chorionic gonadotropin using silver carbon quantum dots and functionalized polymer nanospheres. Mikrochim Acta 2020; 187:482. [PMID: 32749541 DOI: 10.1007/s00604-020-04450-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Accepted: 07/12/2020] [Indexed: 02/08/2023]
Abstract
A composite, reduced graphene oxide (rGO) doped with silver nanoparticles (Ag NPs), was prepared by using binary reductants of sodium citrate and hydrazine hydrate. Carbon quantum dots (CQDs) synthesized by papaya peel combined with silver ions to form a CQDs-loaded silver nanoparticle (AgCQDs) nanocomposite. Polymer nanospheres (PNS) were generated via the infinite coordination polymer of ferrocene dicarboxylic acid and employed as carriers to load AgCQDs. The prepared AgCQDs@PNS-PEI has good biocompatibility and electrical conductivity and can be used as a matrix for the immobilization of a secondary antibody (Ab2). A sandwich-type electrochemiluminescence (ECL) immunosensor using AgCQDs@PNS-PEI nanocomposite as probe has been developed for the detection of human chorionic gonadotropin (HCG). The proposed immunosensor exhibits a linear range from 0.00100 to 500 mIU mL-1 and the detection limit is 0.33 μIU mL-1 (S/N = 3) under optimal conditions. The sensor exhibits excellent selectivity, good reproducibility, and high stability. These features demonstrate that the proposed method has promising potential for clinical protein detection and displays a new strategy to fabricate an immunosensor. Graphical abstract.
Collapse
|
10
|
Dąbrowski M, Zimińska A, Kalecki J, Cieplak M, Lisowski W, Maksym R, Shao S, D'Souza F, Kuhn A, Sharma PS. Facile Fabrication of Surface-Imprinted Macroporous Films for Chemosensing of Human Chorionic Gonadotropin Hormone. ACS APPLIED MATERIALS & INTERFACES 2019; 11:9265-9276. [PMID: 30714713 DOI: 10.1021/acsami.8b17951] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
We present an improved approach for the preparation of highly selective and homogeneous molecular cavities in molecularly imprinted polymers (MIPs) via the combination of surface imprinting and semi-covalent imprinting. Toward that, first, a colloidal crystal mold was prepared via the Langmuir-Blodgett (LB) technique. Then, human chorionic gonadotropin (hCG) template protein was immobilized on the colloidal crystal mold. Later, hCG derivatization with electroactive functional monomers via amide chemistry was performed. In a final step, optimized potentiostatic polymerization of 2,3'-bithiophene enabled depositing an MIP film as the macroporous structure. This synergistic strategy resulted in the formation of molecularly imprinted cavities exclusively on the internal surface of the macropores, which were accessible after dissolution of silica molds. The recognition of hCG by the macroporous MIP film was transduced with the help of electric transducers, namely, extended-gate field-effect transistors (EG-FET) and capacitive impedimetry (CI). These readout strategies offered the ability to create chemosensors for the label-free determination of the hCG hormone. Other than the simple confirmation of pregnancy, hCG assay is a common tool for the diagnosis and follow-up of ectopic pregnancy or trophoblast tumors. Concentration measurements with these EG-FET and CI-based devices allowed real-time measurements of hCG in the range of 0.8-50 and 0.17-2.0 fM, respectively, in 10 mM carbonate buffer (pH = 10). Moreover, the selectivity of chemosensors with respect to protein interferences was very high.
Collapse
Affiliation(s)
- Marcin Dąbrowski
- Institute of Physical Chemistry , Polish Academy of Sciences , Kasprzaka 44/52 , 01-224 Warsaw , Poland
| | - Agnieszka Zimińska
- Institute of Physical Chemistry , Polish Academy of Sciences , Kasprzaka 44/52 , 01-224 Warsaw , Poland
- Department of Biomaterials Chemistry, Faculty of Pharmacy with Laboratory Medicine Division , Medical University of Warsaw , Banacha 1 , 02-097 Warsaw , Poland
| | - Jakub Kalecki
- Institute of Physical Chemistry , Polish Academy of Sciences , Kasprzaka 44/52 , 01-224 Warsaw , Poland
| | - Maciej Cieplak
- Institute of Physical Chemistry , Polish Academy of Sciences , Kasprzaka 44/52 , 01-224 Warsaw , Poland
| | - Wojciech Lisowski
- Institute of Physical Chemistry , Polish Academy of Sciences , Kasprzaka 44/52 , 01-224 Warsaw , Poland
| | - Radosław Maksym
- Department of Reproductive Health, Center of Postgraduate Medical Education , St. Sophia Hospital , Zelazna 90 , 01-004 Warsaw , Poland
| | - Shuai Shao
- Department of Chemistry , University of North Texas , 1155 Union Circle No. 305070 , Denton , Texas 76203-5017 , United States
| | - Francis D'Souza
- Department of Chemistry , University of North Texas , 1155 Union Circle No. 305070 , Denton , Texas 76203-5017 , United States
| | - Alexander Kuhn
- University of Bordeaux, CNRS UMR 5255, Bordeaux INP, ENSCBP , 16 Avenue Pey Berland , 33607 Pessac , France
| | - Piyush S Sharma
- Institute of Physical Chemistry , Polish Academy of Sciences , Kasprzaka 44/52 , 01-224 Warsaw , Poland
| |
Collapse
|
11
|
Gu H, Tang H, Xiong P, Zhou Z. Biomarkers-based Biosensing and Bioimaging with Graphene for Cancer Diagnosis. NANOMATERIALS (BASEL, SWITZERLAND) 2019; 9:E130. [PMID: 30669634 PMCID: PMC6358776 DOI: 10.3390/nano9010130] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/26/2018] [Revised: 01/14/2019] [Accepted: 01/16/2019] [Indexed: 01/20/2023]
Abstract
At the onset of cancer, specific biomarkers get elevated or modified in body fluids or tissues. Early diagnosis of these biomarkers can greatly improve the survival rate or facilitate effective treatment with different modalities. Potential nanomaterial-based biosensing and bioimaging are the main techniques in nanodiagnostics because of their ultra-high selectivity and sensitivity. Emerging graphene, including two dimensional (2D) graphene films, three dimensional (3D) graphene architectures and graphene hybrids (GHs) nanostructures, are attracting increasing interests in the field of biosensing and bioimaging. Due to their remarkable optical, electronic, and thermal properties; chemical and mechanical stability; large surface area; and good biocompatibility, graphene-based nanomaterials are applicable alternatives as versatile platforms to detect biomarkers at the early stage of cancer. Moreover, currently, extensive applications of graphene-based biosensing and bioimaging has resulted in promising prospects in cancer diagnosis. We also hope this review will provide critical insights to inspire more exciting researches to address the current remaining problems in this field.
Collapse
Affiliation(s)
- Hui Gu
- Key Laboratory of Theoretical Organic Chemistry and Functional Molecule of Ministry of Education, Hunan Provincial Key Laboratory of Controllable Preparation and Functional Application of Fine Polymers, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan, Hunan 411201, China.
| | - Huiling Tang
- Key Laboratory of Theoretical Organic Chemistry and Functional Molecule of Ministry of Education, Hunan Provincial Key Laboratory of Controllable Preparation and Functional Application of Fine Polymers, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan, Hunan 411201, China.
| | - Ping Xiong
- Key Laboratory of Theoretical Organic Chemistry and Functional Molecule of Ministry of Education, Hunan Provincial Key Laboratory of Controllable Preparation and Functional Application of Fine Polymers, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan, Hunan 411201, China.
| | - Zhihua Zhou
- Key Laboratory of Theoretical Organic Chemistry and Functional Molecule of Ministry of Education, Hunan Provincial Key Laboratory of Controllable Preparation and Functional Application of Fine Polymers, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan, Hunan 411201, China.
| |
Collapse
|
12
|
Yan W, Wang K, Xu H, Huo X, Jin Q, Cui D. Machine Learning Approach to Enhance the Performance of MNP-Labeled Lateral Flow Immunoassay. NANO-MICRO LETTERS 2019; 11:7. [PMID: 34137967 PMCID: PMC7770769 DOI: 10.1007/s40820-019-0239-3] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Accepted: 12/29/2018] [Indexed: 05/04/2023]
Abstract
The use of magnetic nanoparticle (MNP)-labeled immunochromatography test strips (ICTSs) is very important for point-of-care testing (POCT). However, common diagnostic methods cannot accurately analyze the weak magnetic signal from ICTSs, limiting the applications of POCT. In this study, an ultrasensitive multiplex biosensor was designed to overcome the limitations of capturing and normalization of the weak magnetic signal from MNPs on ICTSs. A machine learning model for sandwich assays was constructed and used to classify weakly positive and negative samples, which significantly enhanced the specificity and sensitivity. The potential clinical application was evaluated by detecting 50 human chorionic gonadotropin (HCG) samples and 59 myocardial infarction serum samples. The quantitative range for HCG was 1-1000 mIU mL-1 and the ideal detection limit was 0.014 mIU mL-1, which was well below the clinical threshold. Quantitative detection results of multiplex cardiac markers showed good linear correlations with standard values. The proposed multiplex assay can be readily adapted for identifying other biomolecules and also be used in other applications such as environmental monitoring, food analysis, and national security.
Collapse
Affiliation(s)
- Wenqiang Yan
- Department of Instrument Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Engineering Research Center for Intelligent Diagnosis and Treatment Instrument, Key Laboratory of Thin Film and Microfabrication (Ministry of Education), Shanghai Jiao Tong University, Shanghai, 200240, People's Republic of China
| | - Kan Wang
- Department of Instrument Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Engineering Research Center for Intelligent Diagnosis and Treatment Instrument, Key Laboratory of Thin Film and Microfabrication (Ministry of Education), Shanghai Jiao Tong University, Shanghai, 200240, People's Republic of China.
| | - Hao Xu
- School of Naval Architecture, Ocean and Civil Engineering, Shanghai Jiao Tong University, Shanghai, 200240, People's Republic of China
| | - Xuyang Huo
- Department of Biomedical Engineering, JiLin Medical University, JiLin, 132013, People's Republic of China.
| | - Qinghui Jin
- State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, 200050, People's Republic of China
- Faculty of Electrical Engineering and Computer Science, Ningbo University, Ningbo, 315211, People's Republic of China
| | - Daxiang Cui
- Department of Instrument Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Engineering Research Center for Intelligent Diagnosis and Treatment Instrument, Key Laboratory of Thin Film and Microfabrication (Ministry of Education), Shanghai Jiao Tong University, Shanghai, 200240, People's Republic of China.
| |
Collapse
|
13
|
Zhang A, Guo W, Ke H, Zhang X, Zhang H, Huang C, Yang D, Jia N, Cui D. Sandwich-format ECL immunosensor based on Au star@BSA-Luminol nanocomposites for determination of human chorionic gonadotropin. Biosens Bioelectron 2018; 101:219-226. [DOI: 10.1016/j.bios.2017.10.040] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Revised: 10/10/2017] [Accepted: 10/16/2017] [Indexed: 02/03/2023]
|
14
|
Wang L, Zhang Y, Wu A, Wei G. Designed graphene-peptide nanocomposites for biosensor applications: A review. Anal Chim Acta 2017; 985:24-40. [PMID: 28864192 DOI: 10.1016/j.aca.2017.06.054] [Citation(s) in RCA: 106] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Revised: 06/20/2017] [Accepted: 06/30/2017] [Indexed: 12/16/2022]
Abstract
The modification of graphene with biomacromolecules like DNA, protein, peptide, and others extends the potential applications of graphene materials in various fields. The bound biomacromolecules could improve the biocompatibility and bio-recognition ability of graphene-based nanocomposites, therefore could greatly enhance their biosensing performances on both selectivity and sensitivity. In this review, we presented a comprehensive introduction and discussion on recent advance in the synthesis and biosensor applications of graphene-peptide nanocomposites. The biofunctionalization of graphene with specifically designed peptides, and the synthesis strategies of graphene-peptide (monomer, nanofibrils, and nanotubes) nanocomposites were demonstrated. On the other hand, the fabrication of graphene-peptide nanocomposite based biosensor architectures for electrochemical, fluorescent, electronic, and spectroscopic biosensing were further presented. This review includes nearly all the studies on the fabrication and applications of graphene-peptide based biosensors recently, which will promote the future developments of graphene-based biosensors in biomedical detection and environmental analysis.
Collapse
Affiliation(s)
- Li Wang
- Key Laboratory of Preparation and Application of Environmental Friendly Materials (Jilin Normal University), Ministry of Education, Changchun, 130103, PR China.
| | - Yujie Zhang
- CAS Key Laboratory of Magnetic Materials and Devices, Key Laboratory of Additive Manufacturing Materials of Zhejiang Province, Division of Functional Materials and Nanodevices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, Zhejiang, 315201, PR China
| | - Aiguo Wu
- CAS Key Laboratory of Magnetic Materials and Devices, Key Laboratory of Additive Manufacturing Materials of Zhejiang Province, Division of Functional Materials and Nanodevices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, Zhejiang, 315201, PR China
| | - Gang Wei
- Faculty of Production Engineering, University of Bremen, Bremen, D-28359, Germany.
| |
Collapse
|
15
|
Cao L, Fang C, Zeng R, Zhao X, Jiang Y, Chen Z. Paper-based microfluidic devices for electrochemical immunofiltration analysis of human chorionic gonadotropin. Biosens Bioelectron 2017; 92:87-94. [DOI: 10.1016/j.bios.2017.02.002] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Revised: 01/24/2017] [Accepted: 02/01/2017] [Indexed: 12/21/2022]
|
16
|
Yüce M, Kurt H. How to make nanobiosensors: surface modification and characterisation of nanomaterials for biosensing applications. RSC Adv 2017. [DOI: 10.1039/c7ra10479k] [Citation(s) in RCA: 78] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
This report aims to provide the audience with a guideline for construction and characterisation of nanobiosensors that are based on widely used affinity probes including antibodies and aptamers.
Collapse
Affiliation(s)
- Meral Yüce
- Sabanci University
- Nanotechnology Research and Application Centre
- Istanbul
- Turkey
| | - Hasan Kurt
- Istanbul Medipol University
- School of Engineering and Natural Sciences
- Istanbul
- Turkey
| |
Collapse
|