1
|
Buglak AA, Nguyen MT. Interactions of coinage metal nanoclusters with low-molecular-weight biocompounds. Biophys Rev 2024; 16:441-477. [PMID: 39309127 PMCID: PMC11415565 DOI: 10.1007/s12551-024-01200-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 05/21/2024] [Indexed: 09/25/2024] Open
Abstract
Nowadays, coinage metal nanoclusters (NCs) are largely presented in diagnostics, bioimaging, and biocatalysis due to their high biocompatibility, chemical stability, and sensitivity to surrounding biomolecules. Silver and gold NCs are usually characterized by intense luminescence and photostability, which is in great demand in the detection of organic compounds, ions, pH, temperature, etc. The experimental synthesis of metal NCs often occurs on biopolymer templates, mostly DNA and proteins. However, this review mainly focuses on the interactions with small biomolecules (SBMs) of a molecular weight less than 1000 Da: amino acids, nucleobases, thiolates, oligopeptides, etc. Such molecules can serve as the templates for an eco-friendly facile one-pot synthesis of biocompatible luminescent NCs. The latter aspect makes NCs suitable for diagnostics and intracellular bioimaging. Another important aspect is the interaction of clusters with biomarkers, which is largely exploited by nanosensors: biomarker detection often occurs through either fluorescence emission "turn-on" or "turn-off" mechanisms. Moreover, as theoretical studies show, electronic absorption spectra and Raman spectra of the metal-organic complexes allow efficient detection of various analytes. In this regard, both theoretical and experimental studies of SBM complexes with metal NCs are in great demand. Therefore, this review aims to summarize up-to-date studies on the interaction of small biomolecules with coinage metal NCs from both theoretical and experimental viewpoints.
Collapse
Affiliation(s)
- Andrey A. Buglak
- Faculty of Physics, St. Petersburg State University, 199034 Saint-Petersburg, Russia
| | - Minh Tho Nguyen
- Laboratory for Chemical Computation and Modeling, Institute for Computational Science and Artificial Intelligence, Van Lang University, Ho Chi Minh City, 70000 Vietnam
- Faculty of Applied Technology, School of Technology, Van Lang University, Ho Chi Minh City, 70000 Vietnam
| |
Collapse
|
2
|
Nanomaterials for fluorescent assay of bilirubin. Anal Biochem 2023; 666:115078. [PMID: 36754137 DOI: 10.1016/j.ab.2023.115078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 01/23/2023] [Accepted: 02/04/2023] [Indexed: 02/10/2023]
Abstract
The accumulation of bilirubin in blood is associated with many diseases. Sensitive and accurate detection of bilirubin is of great significance for personal health care. The rapid development of fluorescent nanomaterials promotes rapid development in the bilirubin assay. In this review, traditional methods for detection of bilirubin are briefly presented to compare with fluorescent nanosensors. Subsequently, the recent progress of different types of fluorescent nanomaterials for determination of bilirubin is summarized. Further, the performance of fluorescent nanosensors and conventional techniques for sensing bilirubin are compared. To this end, the challenges and prospects concerning the topics are discussed. This review will provide some introductory knowledge for researchers to understand the status and importance of fluorescent nanosensors for sensing bilirubin.
Collapse
|
3
|
Xiao W, Xiong Y, Li Y, Chen Z, Li H. Non-Enzymatically Colorimetric Bilirubin Sensing Based on the Catalytic Structure Disruption of Gold Nanocages. SENSORS (BASEL, SWITZERLAND) 2023; 23:s23062969. [PMID: 36991679 PMCID: PMC10053977 DOI: 10.3390/s23062969] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 03/03/2023] [Accepted: 03/06/2023] [Indexed: 06/12/2023]
Abstract
As an essential indicator of liver function, bilirubin is of great significance for clinical diagnosis. A non-enzymatic sensor has been established for sensitive bilirubin detection based on the bilirubin oxidation catalyzed by unlabeled gold nanocages (GNCs). GNCs with dual-localized surface plasmon resonance (LSPR) peaks were prepared by a one-pot method. One peak around 500 nm was ascribed to gold nanoparticles (AuNPs), and the other located in the near-infrared region was the typical peak of GNCs. The catalytic oxidation of bilirubin by GNCs was accompanied by the disruption of cage structure, releasing free AuNPs from the nanocage. This transformation changed the dual peak intensities in opposite trend, and made it possible to realize the colorimetric sensing of bilirubin in a ratiometric mode. The absorbance ratios showed good linearity to bilirubin concentrations in the range of 0.20~3.60 μmol/L with a detection limit of 39.35 nM (3σ, n = 3). The sensor exhibited excellent selectivity for bilirubin over other coexisting substances. Bilirubin in real human serum samples was detected with recoveries ranging from 94.5 to 102.6%. The method for bilirubin assay is simple, sensitive and without complex biolabeling.
Collapse
Affiliation(s)
- Wenxiang Xiao
- School of Life and Environmental Sciences, Guilin University of Electronic Technology, Guilin 541004, China
- Guangxi Colleges and Universities Key Laboratory of Biomedical Sensing and Intelligent Instrument, Guilin University of Electronic Technology, Guilin 541004, China
| | - Yinan Xiong
- School of Life and Environmental Sciences, Guilin University of Electronic Technology, Guilin 541004, China
| | - Yaoxin Li
- School of Life and Environmental Sciences, Guilin University of Electronic Technology, Guilin 541004, China
| | - Zhencheng Chen
- School of Life and Environmental Sciences, Guilin University of Electronic Technology, Guilin 541004, China
- Guangxi Colleges and Universities Key Laboratory of Biomedical Sensing and Intelligent Instrument, Guilin University of Electronic Technology, Guilin 541004, China
| | - Hua Li
- School of Life and Environmental Sciences, Guilin University of Electronic Technology, Guilin 541004, China
- Guangxi Colleges and Universities Key Laboratory of Biomedical Sensing and Intelligent Instrument, Guilin University of Electronic Technology, Guilin 541004, China
| |
Collapse
|
4
|
Kuo HC, Ye ZT, Tseng SF, Tsou SX, Huang SW, Tsai CW. Noninvasive direct bilirubin detection by spectral analysis of color images using a Mini-LED light source. NANOSCALE RESEARCH LETTERS 2023; 18:16. [PMID: 36795165 DOI: 10.1186/s11671-023-03794-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Accepted: 01/08/2023] [Indexed: 05/24/2023]
Abstract
Urine test paper is a standard, noninvasive detection method for direct bilirubin, but this method can only achieve qualitative analysis and cannot achieve quantitative analysis. This study used Mini-LEDs as the light source, and direct bilirubin was oxidized to biliverdin by an enzymatic method with ferric chloride (FeCl3) for labeling. Images were captured with a smartphone and evaluated for red (R), green (G), and blue (B) colors to analyze the linear relationship between the spectral change of the test paper image and the direct bilirubin concentration. This method achieved noninvasive detection of bilirubin. The experimental results demonstrated that Mini-LEDs can be used as the light source to analyze the grayscale value of the image RGB. For the direct bilirubin concentration range of 0.1-2 mg/dL, the green channel had the highest coefficient of determination coefficient (R2) of 0.9313 and a limit of detection of 0.56 mg/dL. With this method, direct bilirubin concentrations higher than 1.86 mg/dL can be quantitatively analyzed with the advantage of rapid and noninvasive detection.
Collapse
Affiliation(s)
- Hsin-Ching Kuo
- Ditmanson Medical Foundation Chia-Yi Christian Hospital, Chiayi City, Taiwan, ROC
| | - Zhi-Ting Ye
- Department of Mechanical Engineering, Advanced Institute of Manufacturing with High-Tech Innovations, National Chung Cheng University, 168, University Rd., Min-Hsiung, Chia-Yi, 62102, Taiwan, ROC.
| | - Shen Fu Tseng
- Department of Mechanical Engineering, Advanced Institute of Manufacturing with High-Tech Innovations, National Chung Cheng University, 168, University Rd., Min-Hsiung, Chia-Yi, 62102, Taiwan, ROC
| | - Shang Xuan Tsou
- Department of Mechanical Engineering, Advanced Institute of Manufacturing with High-Tech Innovations, National Chung Cheng University, 168, University Rd., Min-Hsiung, Chia-Yi, 62102, Taiwan, ROC
| | - Shih Wei Huang
- Department of Mechanical Engineering, Advanced Institute of Manufacturing with High-Tech Innovations, National Chung Cheng University, 168, University Rd., Min-Hsiung, Chia-Yi, 62102, Taiwan, ROC
| | - Chun-Wei Tsai
- Department of Engineering, i-Wavefront Technology Ltd., 6F.-5, NO. 95, Minquan Rd., Xindian Dist., New Taipei City, 231625, Taiwan, ROC.
| |
Collapse
|
5
|
Swierczewski M, Bürgi T. Langmuir and Langmuir-Blodgett Films of Gold and Silver Nanoparticles. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:2135-2151. [PMID: 36739536 PMCID: PMC9933884 DOI: 10.1021/acs.langmuir.2c02715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 12/06/2022] [Indexed: 06/18/2023]
Abstract
Recently the focus of the Langmuir-Blodgett technique as a method of choice to transfer monolayers from the air/water interface onto solid substrates in a controllable fashion has been shifting toward purely hydrophobic gold and silver nanoparticles. The fundamental interactions between particles that become relevant in the absence of polar groups range from dispersive attractions from the metal cores and repulsions between ligand shells to weaker entropic factors. The layer evolution is explored, starting with interfacial self-assembly upon solution spreading and domain and circular island formation, which subsequently merge into a complete monolayer and finally form multilayers or macroscopic wrinkles. Moreover, structural properties such as the core:ligand size ratio are investigated in the context of dispersive forces, whereby the nanoparticles with small cores and long ligands tend not to aggregate sufficiently to produce continuous films, those with large cores and short ligands were found to aggregate irreversibly, and those in between the two extremes were concluded to be able to form highly organized crystalline films. Similarly, the characteristics of the spreading solution such as the concentration and the solvent type crucially influence the film crystallinity, with the deciding factor being the degree of affinity between the capping ligand and the solvent used for spreading. Finally, the most common strategies employed to enhance the mechanical stability of the metal nanoparticle films along with the recent attempts to functionalize the particles in attempts to improve their applicability in the industry are summarized and evaluated in relation to their future prospects. One of the objectives of this feature article is to elucidate the differences between hydrophobic metal nanoparticles and typical amphiphilic molecules that the majority of the literature in the field describes and to familiarize the reader with the knowledge required to design Langmuir-Blodgett nanoparticle systems as well as the strategies to improve existing ones.
Collapse
Affiliation(s)
- Michal Swierczewski
- Department of Physical Chemistry, University of Geneva, 30 Quai Ernest-Ansermet, Geneva 4CH-1211, Switzerland
| | - Thomas Bürgi
- Department of Physical Chemistry, University of Geneva, 30 Quai Ernest-Ansermet, Geneva 4CH-1211, Switzerland
| |
Collapse
|
6
|
Nanomechanical and structural study of Au38 nanocluster Langmuir-Blodgett films using bimodal atomic force microscopy and X-ray reflectivity. J Colloid Interface Sci 2023; 630:28-36. [DOI: 10.1016/j.jcis.2022.10.081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 09/30/2022] [Accepted: 10/16/2022] [Indexed: 11/06/2022]
|
7
|
Kateshiya MR, Desai ML, Malek NI, Kailasa SK. Advances in Ultra-small Fluorescence Nanoprobes for Detection of Metal Ions, Drugs, Pesticides and Biomarkers. J Fluoresc 2022; 33:775-798. [PMID: 36538145 DOI: 10.1007/s10895-022-03115-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Accepted: 12/07/2022] [Indexed: 12/24/2022]
Abstract
Identification of trace level chemical species (drugs, pesticides, metal ions and biomarkers) plays key role in environmental monitoring. Recently, fluorescence assay has shown significant advances in detecting of trace level drugs, pesticides, metal ions and biomarkers in real samples. Ultra-small nanostructure materials (metal nanoclusters (NCs), quantum dots (QDs) and carbon dots (CDs)) have been integrated with fluorescence spectrometer for sensitive and selective analysis of trace level target analytes in various samples including environmental and biological samples. This review summarizes the properties of metal NCs and ligand chemistry for the fabrication of metal NCs. We also briefly summarized the synthetic routes for the preparation of QDs and CDs. Advances of ultra-small fluorescent nanosensors (NCs, QDs and CDs) for sensing of metal ions, drugs, pesticides and biomarkers in various sample matrices are briefly discussed. Additionally, we discuss the recent challenges and future perspectives of ultra-small materials as fluorescent sensors for assaying of wide variety of target analytes in real samples.
Collapse
|
8
|
Nanoengineering and green chemistry-oriented strategies toward nanocelluloses for protein sensing. Adv Colloid Interface Sci 2022; 308:102758. [PMID: 36037672 DOI: 10.1016/j.cis.2022.102758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 07/31/2022] [Accepted: 08/18/2022] [Indexed: 11/24/2022]
Abstract
As one of the most important functional organic macromolecules of life, proteins not only participate in the cell metabolism and gene regulation, they also earnestly protect the body's immunity system, leading to a powerful biological shield and homeostasis. Advances in nanomaterials are boosting the significant progress in various applications, including the sensing and examination of proteins in trace amount. Nanocellulose-oriented protein sensing is at the forefront of this revolution. The inherent feature of high biocompatibility, low cytotoxicity, high specific area, good durability and marketability endow nanocellulose with great superiority in protein sensing. Here, we highlight the recent progress of protein sensing using nanocellulose as the biosensor in trace amount. Besides, various kinds of construction strategies for nanocelluloses-based biosensors are discussed in detail, to enhance the agility and accuracy of clinical/medical diagnostics. Finally, several challenges in the approbatory identification of new approaches for the marketization of biomedical sensing that need further expedition in the future are highlighted.
Collapse
|
9
|
Xiao W, Yang Z, Liu J, Chen Z, Li H. Sensitive cholesterol determination by β-cyclodextrin recognition based on fluorescence enhancement of gold nanoclusters. Microchem J 2022. [DOI: 10.1016/j.microc.2021.107125] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
10
|
Ahmmed E, Mondal A, Chandra Saha N, Dhara K, Chattopadhyay P. A deoxygenation-switch-based red-emitting fluorogenic light-up probe for the detection of highly toxic free bilirubin in human blood serum. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2021; 13:5651-5659. [PMID: 34787603 DOI: 10.1039/d1ay01717a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Reaction-based chemical switches are attracting great interest due to their high selectivity, and their use has become a powerful technique for developing fluorogenic probes. Herein, a benzorhodol-derivative-attached N-oxide probe (DEBNox) has been designed as a new fluorogenic probe for the detection of the biologically toxic species bilirubin based on a deoxygenation switching mechanism. Upon reaction with added Fe3+, bilirubin produces Fe2+ ions in situ, which in turn promote a deoxygenation reaction with DEBNox to generate the corresponding high-red-fluorescence (λem: ∼623 nm) benzorhodol derivative (DEB). This type of Fe3+-mediated response helps the probe to act as a qualified turn on selective fluorescence sensor for bilirubin with a detection range as low as 33 nM. Moreover, the probe was successfully employed to detect free bilirubin in human blood serum specimens with acceptable accuracy and reliability. This DEBNox-based light-up strategy also facilitates the construction of reliable and highly sensitive assays based on a paper-based strategy, similar to pH-indicator paper, as is demonstrated here via bilirubin detection in real serum samples. These findings could be useful for developing powerful diagnostic tools for the detection of free bilirubin in the near further.
Collapse
Affiliation(s)
- Ejaj Ahmmed
- Department of Chemistry, The University of Burdwan, Burdwan-713104, West Bengal, India.
| | - Asit Mondal
- Department of Chemistry, The University of Burdwan, Burdwan-713104, West Bengal, India.
| | - Nimai Chandra Saha
- Vice Chancellor's Research Group, The University of Burdwan, Burdwan, West Bengal, 713104, India
| | - Koushik Dhara
- Department of Chemistry, Sambhu Nath College, Labpur, Birbhum 731303, West Bengal, India
| | - Pabitra Chattopadhyay
- Department of Chemistry, The University of Burdwan, Burdwan-713104, West Bengal, India.
| |
Collapse
|
11
|
Fluorescent sensing of free bilirubin at nanomolar level using a Langmuir-Blodgett film of glucuronic acid-functionalized gold nanoclusters. Anal Bioanal Chem 2021; 413:7009-7019. [PMID: 34535815 DOI: 10.1007/s00216-021-03660-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Revised: 08/21/2021] [Accepted: 09/10/2021] [Indexed: 10/20/2022]
Abstract
Serum bilirubin is an important indicator to assess liver function and diagnose various types of liver diseases. The level of serum bilirubin is also negatively correlated with the risk of cardiovascular disease and cancer. We had fabricated a fluorescent film sensor aiming at free bilirubin detection at the nanomolar level. Gold nanoclusters capped by human serum albumin (HSA-AuNCs) were utilized as a fluorescent platform for bilirubin biorecognition. HSA-AuNCs were functionalized with glucuronic acid to increase the binding sites for bilirubin. An ultrathin film of glucuronic acid-functionalized gold nanoclusters was obtained by the Langmuir-Blodgett (LB) technique. When exposed to bilirubin, the interaction between free bilirubin and the functionalized AuNCs resulted in fluorescent quenching of the film. Good linearity could be achieved for the quenching efficiency versus the logarithm of free bilirubin concentration over a concentration range of 1.00 nM~5.00 μM. The limit of detection (LOD) was calculated to be (2.70 ± 0.14) × 10-1 nM (S/N = 3). The film sensor presents a good anti-interference capability towards common substances coexisting with bilirubin in serum. Satisfactory results achieved in the tests of real serum samples indicate that the LB film sensor can be used for bilirubin determination in nanomolar concentration.
Collapse
|
12
|
Anand SK, Mathew MR, Girish Kumar K. A dual channel optical sensor for biliverdin and bilirubin using glutathione capped copper nanoclusters. J Photochem Photobiol A Chem 2021. [DOI: 10.1016/j.jphotochem.2021.113379] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
13
|
Romeo MV, López-Martínez E, Berganza-Granda J, Goñi-de-Cerio F, Cortajarena AL. Biomarker sensing platforms based on fluorescent metal nanoclusters. NANOSCALE ADVANCES 2021; 3:1331-1341. [PMID: 36132872 PMCID: PMC9419537 DOI: 10.1039/d0na00796j] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Accepted: 01/10/2021] [Indexed: 05/07/2023]
Abstract
Metal nanoclusters (NCs) and their unique properties are increasing in importance and their applications are covering a wide range of areas. Their remarkable fluorescence properties and easy synthesis procedure and the possibility of functionalizing them for the detection of specific targets, such as biomarkers, make them a very interesting biosensing tool. Nowadays the detection of biomarkers related to different diseases is critical. In this context, NCs scaffolded within an appropriate molecule can be used to detect and quantify biomarkers through specific interactions and fluorescence properties of the NCs. These methods include analytical detection and biolocalization using imaging techniques. This review covers a selection of recent strategies to detect biomarkers related to diverse diseases (from infectious, inflammatory, or tumour origin) using fluorescent nanoclusters.
Collapse
Affiliation(s)
- María V Romeo
- GAIKER Technology Centre, Basque Research and Technology Alliance (BRTA) Technological Park of Bizkaia, Building 202 E-48170 Zamudio Spain
- Center for Cooperative Research in Biomaterials (CIC biomaGUNE), Basque Research and Technology Alliance (BRTA) Paseo de Miramon 182 20014 Donostia San Sebastián Spain
| | - Elena López-Martínez
- Center for Cooperative Research in Biomaterials (CIC biomaGUNE), Basque Research and Technology Alliance (BRTA) Paseo de Miramon 182 20014 Donostia San Sebastián Spain
| | - Jesús Berganza-Granda
- GAIKER Technology Centre, Basque Research and Technology Alliance (BRTA) Technological Park of Bizkaia, Building 202 E-48170 Zamudio Spain
| | - Felipe Goñi-de-Cerio
- GAIKER Technology Centre, Basque Research and Technology Alliance (BRTA) Technological Park of Bizkaia, Building 202 E-48170 Zamudio Spain
| | - Aitziber L Cortajarena
- Center for Cooperative Research in Biomaterials (CIC biomaGUNE), Basque Research and Technology Alliance (BRTA) Paseo de Miramon 182 20014 Donostia San Sebastián Spain
- Ikerbasque, Basque Foundation for Science Plaza Euskadi 5 48009 Bilbao Spain
| |
Collapse
|
14
|
Xiao W, Zhi D, Pan Q, Liang Y, Zhou F, Chen Z. A ratiometric bilirubin sensor based on a fluorescent gold nanocluster film with dual emissions. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2020; 12:5691-5698. [PMID: 33205788 DOI: 10.1039/d0ay01781g] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Bilirubin originates from hemoglobin metabolism and is an important biomarker for liver function. A ratiometric film sensor based on gold nanoclusters (AuNCs) was fabricated for highly sensitive determination of free bilirubin (fBR). Using bovine serum albumin (BSA) as a template, AuNCs that can emit blue and red fluorescence were prepared by the hydrothermal method at different pH values. Two kinds of AuNCs were incorporated into a single film by the layer-by-layer assembly (LBL) technique. The obtained thin-film showed dual fluorescence peaks excited at 372 nm, corresponding to the blue (443 nm) and red (622 nm) emissions of AuNCs respectively. When fBR interacted with the film, both fluorescence peaks were quenched at different degrees. A ratiometric method for fBR detection was established based on the fluorescence intensity ratio of the two emissions. The linear calibration curve for fBR lay in the concentration range of 0.01-2.00 μmol L-1 with a detection limit of 8.90 ± 0.34 nmol L-1 (S/N = 3). The film sensor showed a quick and sensitive response to fBR and could detect fBR in real samples with satisfactory results.
Collapse
Affiliation(s)
- Wenxiang Xiao
- School of Life and Environmental Sciences, Guilin University of Electronic Technology, Guilin 541004, China.
| | | | | | | | | | | |
Collapse
|