1
|
Centracchio J, Parlato S, Esposito D, Andreozzi E. Accurate Localization of First and Second Heart Sounds via Template Matching in Forcecardiography Signals. SENSORS (BASEL, SWITZERLAND) 2024; 24:1525. [PMID: 38475062 DOI: 10.3390/s24051525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 02/21/2024] [Accepted: 02/23/2024] [Indexed: 03/14/2024]
Abstract
Cardiac auscultation is an essential part of physical examination and plays a key role in the early diagnosis of many cardiovascular diseases. The analysis of phonocardiography (PCG) recordings is generally based on the recognition of the main heart sounds, i.e., S1 and S2, which is not a trivial task. This study proposes a method for an accurate recognition and localization of heart sounds in Forcecardiography (FCG) recordings. FCG is a novel technique able to measure subsonic vibrations and sounds via small force sensors placed onto a subject's thorax, allowing continuous cardio-respiratory monitoring. In this study, a template-matching technique based on normalized cross-correlation was used to automatically recognize heart sounds in FCG signals recorded from six healthy subjects at rest. Distinct templates were manually selected from each FCG recording and used to separately localize S1 and S2 sounds, as well as S1-S2 pairs. A simultaneously recorded electrocardiography (ECG) trace was used for performance evaluation. The results show that the template matching approach proved capable of separately classifying S1 and S2 sounds in more than 96% of all heartbeats. Linear regression, correlation, and Bland-Altman analyses showed that inter-beat intervals were estimated with high accuracy. Indeed, the estimation error was confined within 10 ms, with negligible impact on heart rate estimation. Heart rate variability (HRV) indices were also computed and turned out to be almost comparable with those obtained from ECG. The preliminary yet encouraging results of this study suggest that the template matching approach based on normalized cross-correlation allows very accurate heart sounds localization and inter-beat intervals estimation.
Collapse
Affiliation(s)
- Jessica Centracchio
- Department of Electrical Engineering and Information Technologies, University of Naples Federico II, Via Claudio, 21, I-80125 Naples, Italy
| | - Salvatore Parlato
- Department of Electrical Engineering and Information Technologies, University of Naples Federico II, Via Claudio, 21, I-80125 Naples, Italy
| | - Daniele Esposito
- Department of Electrical Engineering and Information Technologies, University of Naples Federico II, Via Claudio, 21, I-80125 Naples, Italy
| | - Emilio Andreozzi
- Department of Electrical Engineering and Information Technologies, University of Naples Federico II, Via Claudio, 21, I-80125 Naples, Italy
| |
Collapse
|
2
|
Brložnik M, Lunka E, Avbelj V, Nemec Svete A, Domanjko Petrič A. Cardiac Electromechanical Activity in Healthy Cats and Cats with Cardiomyopathies. SENSORS (BASEL, SWITZERLAND) 2023; 23:8336. [PMID: 37837166 PMCID: PMC10574989 DOI: 10.3390/s23198336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Revised: 10/03/2023] [Accepted: 10/06/2023] [Indexed: 10/15/2023]
Abstract
Optimal heart function depends on perfect synchronization between electrical and mechanical activity. In this pilot study, we aimed to investigate the electromechanical activity of the heart in healthy cats and cats with cardiomyopathy with phonocardiography (PCG) synchronized to an electrocardiography (ECG) pilot device. We included 29 cats (12 healthy cats and 17 cats diagnosed with cardiomyopathy) and performed a clinical examination, PCG synchronized with ECG and echocardiography. We measured the following durations with the pilot PCG device synchronized with ECG: QRS (ventricular depolarization), QT interval (electrical systole), QS1 interval (electromechanical activation time (EMAT)), S1S2 (mechanical systole), QS2 interval (electrical and mechanical systole) and electromechanical window (end of T wave to the beginning of S2). The measured parameters did not differ between healthy cats and cats with cardiomyopathy; however, in cats with cardiomyopathy, EMAT/RR, QS2/RR and S1S2/RR were significantly longer than in healthy cats. This suggests that the hypertrophied myocardium takes longer to generate sufficient pressure to close the mitral valve and that electrical systole, i.e., depolarization and repolarization, and mechanical systoles are longer in cats with cardiomyopathy. The PCG synchronized with the ECG pilot device proved to be a valuable tool for evaluating the electromechanical activity of the feline heart.
Collapse
Affiliation(s)
- Maja Brložnik
- Faculty of Health Sciences, University of Ljubljana, 1000 Ljubljana, Slovenia;
- Small Animal Clinic, Veterinary Faculty, University of Ljubljana, 1000 Ljubljana, Slovenia; (E.L.); (A.N.S.)
| | - Ema Lunka
- Small Animal Clinic, Veterinary Faculty, University of Ljubljana, 1000 Ljubljana, Slovenia; (E.L.); (A.N.S.)
| | - Viktor Avbelj
- Department of Communication Systems, Jožef Stefan Institute, 1000 Ljubljana, Slovenia;
| | - Alenka Nemec Svete
- Small Animal Clinic, Veterinary Faculty, University of Ljubljana, 1000 Ljubljana, Slovenia; (E.L.); (A.N.S.)
| | - Aleksandra Domanjko Petrič
- Small Animal Clinic, Veterinary Faculty, University of Ljubljana, 1000 Ljubljana, Slovenia; (E.L.); (A.N.S.)
| |
Collapse
|
3
|
Parlato S, Centracchio J, Esposito D, Bifulco P, Andreozzi E. ECG-Free Heartbeat Detection in Seismocardiography and Gyrocardiography Signals Provides Acceptable Heart Rate Variability Indices in Healthy and Pathological Subjects. SENSORS (BASEL, SWITZERLAND) 2023; 23:8114. [PMID: 37836942 PMCID: PMC10575135 DOI: 10.3390/s23198114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 09/12/2023] [Accepted: 09/25/2023] [Indexed: 10/15/2023]
Abstract
Cardio-mechanical monitoring techniques, such as Seismocardiography (SCG) and Gyrocardiography (GCG), have received an ever-growing interest in recent years as potential alternatives to Electrocardiography (ECG) for heart rate monitoring. Wearable SCG and GCG devices based on lightweight accelerometers and gyroscopes are particularly appealing for continuous, long-term monitoring of heart rate and its variability (HRV). Heartbeat detection in cardio-mechanical signals is usually performed with the support of a concurrent ECG lead, which, however, limits their applicability in standalone cardio-mechanical monitoring applications. The complex and variable morphology of SCG and GCG signals makes the ECG-free heartbeat detection task quite challenging; therefore, only a few methods have been proposed. Very recently, a template matching method based on normalized cross-correlation (NCC) has been demonstrated to provide very accurate detection of heartbeats and estimation of inter-beat intervals in SCG and GCG signals of pathological subjects. In this study, the accuracy of HRV indices obtained with this template matching method is evaluated by comparison with ECG. Tests were performed on two public datasets of SCG and GCG signals from healthy and pathological subjects. Linear regression, correlation, and Bland-Altman analyses were carried out to evaluate the agreement of 24 HRV indices obtained from SCG and GCG signals with those obtained from ECG signals, simultaneously acquired from the same subjects. The results of this study show that the NCC-based template matching method allowed estimating HRV indices from SCG and GCG signals of healthy subjects with acceptable accuracy. On healthy subjects, the relative errors on time-domain indices ranged from 0.25% to 15%, on frequency-domain indices ranged from 10% to 20%, and on non-linear indices were within 8%. The estimates obtained on signals from pathological subjects were affected by larger errors. Overall, GCG provided slightly better performances as compared to SCG, both on healthy and pathological subjects. These findings provide, for the first time, clear evidence that monitoring HRV via SCG and GCG sensors without concurrent ECG is feasible with the NCC-based template matching method for heartbeat detection.
Collapse
Affiliation(s)
| | - Jessica Centracchio
- Department of Electrical Engineering and Information Technologies, University of Naples Federico II, Via Claudio 21, 80125 Naples, Italy; (S.P.); (D.E.); (P.B.)
| | | | | | - Emilio Andreozzi
- Department of Electrical Engineering and Information Technologies, University of Naples Federico II, Via Claudio 21, 80125 Naples, Italy; (S.P.); (D.E.); (P.B.)
| |
Collapse
|
4
|
Jaros R, Koutny J, Ladrova M, Martinek R. Novel phonocardiography system for heartbeat detection from various locations. Sci Rep 2023; 13:14392. [PMID: 37658080 PMCID: PMC10474097 DOI: 10.1038/s41598-023-41102-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 08/22/2023] [Indexed: 09/03/2023] Open
Abstract
The paper presents evaluation of the proposed phonocardiography (PCG) measurement system designed primarily for heartbeat detection to estimate heart rate (HR). Typically, HR estimation is performed using electrocardiography (ECG) or pulse wave as one of the fundamental diagnostic methodologies for assessing cardiac function. The system includes novel both sensory part and data processing procedure, which is based on signal preprocessing using Wavelet Transform (WT) and Shannon energy computation and heart sounds classification using K-means. Due to the lack of standardization in the placement of PCG sensors, the study focuses on evaluating the signal quality obtained from 7 different sensor locations on the subject's chest and investigates which locations are most suitable for recording heart sounds. The suitability of sensor localization was examined in 27 subjects by detecting the first two heart sounds (S1, S2). The HR detection sensitivity related to reference ECG from all sensor positions reached values over 88.9 and 77.4% in detection of S1 and S2, respectively. The placement in the middle of sternum showed the higher signal quality with median of the proper S1 and S2 detection sensitivity of 98.5 and 97.5%, respectively.
Collapse
Affiliation(s)
- Rene Jaros
- Department of Cybernetics and Biomedical Engineering, Faculty of Electrical Engineering and Computer Science, VSB-Technical University of Ostrava, 17. listopadu, 708 00, Ostrava, Czechia.
| | - Jiri Koutny
- Department of Cybernetics and Biomedical Engineering, Faculty of Electrical Engineering and Computer Science, VSB-Technical University of Ostrava, 17. listopadu, 708 00, Ostrava, Czechia
| | - Martina Ladrova
- Department of Cybernetics and Biomedical Engineering, Faculty of Electrical Engineering and Computer Science, VSB-Technical University of Ostrava, 17. listopadu, 708 00, Ostrava, Czechia
| | - Radek Martinek
- Department of Cybernetics and Biomedical Engineering, Faculty of Electrical Engineering and Computer Science, VSB-Technical University of Ostrava, 17. listopadu, 708 00, Ostrava, Czechia
| |
Collapse
|
5
|
Parlato S, Centracchio J, Esposito D, Bifulco P, Andreozzi E. Heartbeat Detection in Gyrocardiography Signals without Concurrent ECG Tracings. SENSORS (BASEL, SWITZERLAND) 2023; 23:6200. [PMID: 37448046 DOI: 10.3390/s23136200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 06/29/2023] [Accepted: 07/03/2023] [Indexed: 07/15/2023]
Abstract
A heartbeat generates tiny mechanical vibrations, mainly due to the opening and closing of heart valves. These vibrations can be recorded by accelerometers and gyroscopes applied on a subject's chest. In particular, the local 3D linear accelerations and 3D angular velocities of the chest wall are referred to as seismocardiograms (SCG) and gyrocardiograms (GCG), respectively. These signals usually exhibit a low signal-to-noise ratio, as well as non-negligible amplitude and morphological changes due to changes in posture and the sensors' location, respiratory activity, as well as other sources of intra-subject and inter-subject variability. These factors make heartbeat detection a complex task; therefore, a reference electrocardiogram (ECG) lead is usually acquired in SCG and GCG studies to ensure correct localization of heartbeats. Recently, a template matching technique based on cross correlation has proven to be particularly effective in recognizing individual heartbeats in SCG signals. This study aims to verify the performance of this technique when applied on GCG signals. Tests were conducted on a public database consisting of SCG, GCG, and ECG signals recorded synchronously on 100 patients with valvular heart diseases. The results show that the template matching technique identified heartbeats in GCG signals with a sensitivity and positive predictive value (PPV) of 87% and 92%, respectively. Regression, correlation, and Bland-Altman analyses carried out on inter-beat intervals obtained from GCG and ECG (assumed as reference) reported a slope of 0.995, an intercept of 4.06 ms (R2 > 0.99), a Pearson's correlation coefficient of 0.9993, and limits of agreement of about ±13 ms with a negligible bias. A comparison with the results of a previous study obtained on SCG signals from the same database revealed that GCG enabled effective cardiac monitoring in significantly more patients than SCG (95 vs. 77). This result suggests that GCG could ensure more robust and reliable cardiac monitoring in patients with heart diseases with respect to SCG.
Collapse
Affiliation(s)
- Salvatore Parlato
- Department of Electrical Engineering and Information Technologies, University of Naples Federico II, Via Claudio 21, 80125 Naples, Italy
| | - Jessica Centracchio
- Department of Electrical Engineering and Information Technologies, University of Naples Federico II, Via Claudio 21, 80125 Naples, Italy
| | - Daniele Esposito
- Department of Electrical Engineering and Information Technologies, University of Naples Federico II, Via Claudio 21, 80125 Naples, Italy
| | - Paolo Bifulco
- Department of Electrical Engineering and Information Technologies, University of Naples Federico II, Via Claudio 21, 80125 Naples, Italy
| | - Emilio Andreozzi
- Department of Electrical Engineering and Information Technologies, University of Naples Federico II, Via Claudio 21, 80125 Naples, Italy
| |
Collapse
|
6
|
Centracchio J, Parlato S, Esposito D, Bifulco P, Andreozzi E. ECG-Free Heartbeat Detection in Seismocardiography Signals via Template Matching. SENSORS (BASEL, SWITZERLAND) 2023; 23:4684. [PMID: 37430606 DOI: 10.3390/s23104684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 05/08/2023] [Accepted: 05/10/2023] [Indexed: 07/12/2023]
Abstract
Cardiac monitoring can be performed by means of an accelerometer attached to a subject's chest, which produces the Seismocardiography (SCG) signal. Detection of SCG heartbeats is commonly carried out by taking advantage of a simultaneous electrocardiogram (ECG). SCG-based long-term monitoring would certainly be less obtrusive and easier to implement without an ECG. Few studies have addressed this issue using a variety of complex approaches. This study proposes a novel approach to ECG-free heartbeat detection in SCG signals via template matching, based on normalized cross-correlation as heartbeats similarity measure. The algorithm was tested on the SCG signals acquired from 77 patients with valvular heart diseases, available from a public database. The performance of the proposed approach was assessed in terms of sensitivity and positive predictive value (PPV) of the heartbeat detection and accuracy of inter-beat intervals measurement. Sensitivity and PPV of 96% and 97%, respectively, were obtained by considering templates that included both systolic and diastolic complexes. Regression, correlation, and Bland-Altman analyses carried out on inter-beat intervals reported slope and intercept of 0.997 and 2.8 ms (R2 > 0.999), as well as non-significant bias and limits of agreement of ±7.8 ms. The results are comparable or superior to those achieved by far more complex algorithms, also based on artificial intelligence. The low computational burden of the proposed approach makes it suitable for direct implementation in wearable devices.
Collapse
Affiliation(s)
- Jessica Centracchio
- Department of Electrical Engineering and Information Technologies, University of Naples Federico II, Via Claudio 21, 80125 Naples, Italy
| | - Salvatore Parlato
- Department of Electrical Engineering and Information Technologies, University of Naples Federico II, Via Claudio 21, 80125 Naples, Italy
| | - Daniele Esposito
- Department of Electrical Engineering and Information Technologies, University of Naples Federico II, Via Claudio 21, 80125 Naples, Italy
| | - Paolo Bifulco
- Department of Electrical Engineering and Information Technologies, University of Naples Federico II, Via Claudio 21, 80125 Naples, Italy
| | - Emilio Andreozzi
- Department of Electrical Engineering and Information Technologies, University of Naples Federico II, Via Claudio 21, 80125 Naples, Italy
| |
Collapse
|
7
|
Exploring interpretable representations for heart sound abnormality detection. Biomed Signal Process Control 2023. [DOI: 10.1016/j.bspc.2023.104569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
8
|
Lee M, Wei Q, Lee S, Park H. DDM-HSA: Dual Deterministic Model-Based Heart Sound Analysis for Daily Life Monitoring. SENSORS (BASEL, SWITZERLAND) 2023; 23:2423. [PMID: 36904628 PMCID: PMC10007616 DOI: 10.3390/s23052423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 02/13/2023] [Accepted: 02/15/2023] [Indexed: 06/18/2023]
Abstract
A sudden cardiac event in patients with heart disease can lead to a heart attack in extreme cases. Therefore, prompt interventions for the particular heart situation and periodic monitoring are critical. This study focuses on a heart sound analysis method that can be monitored daily using multimodal signals acquired with wearable devices. The dual deterministic model-based heart sound analysis is designed in a parallel structure that uses two bio-signals (PCG and PPG signals) related to the heartbeat, enabling more accurate heart sound identification. The experimental results show promising performance of the proposed Model III (DDM-HSA with window and envelope filter), which had the highest performance, and S1 and S2 showed average accuracy (unit: %) of 95.39 (±2.14) and 92.55 (±3.74), respectively. The findings of this study are anticipated to provide improved technology to detect heart sounds and analyze cardiac activities using only bio-signals that can be measured using wearable devices in a mobile environment.
Collapse
Affiliation(s)
- Miran Lee
- Department of Computer and Information Engineering, Daegu University, Kyeongsan 38453, Republic of Korea
| | - Qun Wei
- Department of Biomedical Engineering, School of Medicine, Keimyung University, Daegu 42601, Republic of Korea
- Clairaudience Company Limited, Daegu 42403, Republic of Korea
| | - Soomin Lee
- Department of Biomedical Engineering, Graduate School of Medicine, Keimyung University, Daegu 42601, Republic of Korea
| | - Heejoon Park
- Department of Biomedical Engineering, School of Medicine, Keimyung University, Daegu 42601, Republic of Korea
| |
Collapse
|
9
|
Mallegni N, Molinari G, Ricci C, Lazzeri A, La Rosa D, Crivello A, Milazzo M. Sensing Devices for Detecting and Processing Acoustic Signals in Healthcare. BIOSENSORS 2022; 12:835. [PMID: 36290973 PMCID: PMC9599683 DOI: 10.3390/bios12100835] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 09/27/2022] [Accepted: 10/05/2022] [Indexed: 06/16/2023]
Abstract
Acoustic signals are important markers to monitor physiological and pathological conditions, e.g., heart and respiratory sounds. The employment of traditional devices, such as stethoscopes, has been progressively superseded by new miniaturized devices, usually identified as microelectromechanical systems (MEMS). These tools are able to better detect the vibrational content of acoustic signals in order to provide a more reliable description of their features (e.g., amplitude, frequency bandwidth). Starting from the description of the structure and working principles of MEMS, we provide a review of their emerging applications in the healthcare field, discussing the advantages and limitations of each framework. Finally, we deliver a discussion on the lessons learned from the literature, and the open questions and challenges in the field that the scientific community must address in the near future.
Collapse
Affiliation(s)
- Norma Mallegni
- Department of Civil and Industrial Engineering, University of Pisa, 56122 Pisa, Italy
| | - Giovanna Molinari
- Department of Civil and Industrial Engineering, University of Pisa, 56122 Pisa, Italy
| | - Claudio Ricci
- Department of Civil and Industrial Engineering, University of Pisa, 56122 Pisa, Italy
| | - Andrea Lazzeri
- Department of Civil and Industrial Engineering, University of Pisa, 56122 Pisa, Italy
| | - Davide La Rosa
- ISTI-CNR, Institute of Information Science and Technologies, 56124 Pisa, Italy
| | - Antonino Crivello
- ISTI-CNR, Institute of Information Science and Technologies, 56124 Pisa, Italy
| | - Mario Milazzo
- Department of Civil and Industrial Engineering, University of Pisa, 56122 Pisa, Italy
| |
Collapse
|
10
|
Centracchio J, Andreozzi E, Esposito D, Gargiulo GD. Respiratory-Induced Amplitude Modulation of Forcecardiography Signals. Bioengineering (Basel) 2022; 9:bioengineering9090444. [PMID: 36134993 PMCID: PMC9495917 DOI: 10.3390/bioengineering9090444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 08/25/2022] [Accepted: 09/05/2022] [Indexed: 11/16/2022] Open
Abstract
Forcecardiography (FCG) is a novel technique that records the weak forces induced on the chest wall by cardio-respiratory activity, by using specific force sensors. FCG sensors feature a wide frequency band, which allows us to capture respiration, heart wall motion, heart valves opening and closing (similar to the Seismocardiogram, SCG) and heart sounds, all simultaneously from a single contact point on the chest. As a result, the raw FCG sensors signals exhibit a large component related to the respiratory activity, referred to as a Forcerespirogram (FRG), with a much smaller, superimposed component related to the cardiac activity (the actual FCG) that contains both infrasonic vibrations, referred to as LF-FCG and HF-FCG, and heart sounds. Although respiration can be readily monitored by extracting the very low-frequency component of the raw FCG signal (FRG), it has been observed that the respiratory activity also influences other FCG components, particularly causing amplitude modulations (AM). This preliminary study aimed to assess the consistency of the amplitude modulations of the LF-FCG and HF-FCG signals within the respiratory cycle. A retrospective analysis was performed on the FCG signals acquired in a previous study on six healthy subjects at rest, during quiet breathing. To this aim, the AM of LF-FCG and HF-FCG were first extracted via a linear envelope (LE) operation, consisting of rectification followed by low-pass filtering; then, the inspiratory peaks were located both in the LE of LF-FCG and HF-FCG, and in the reference respiratory signal (FRG). Finally, the inter-breath intervals were extracted from the obtained inspiratory peaks, and further analyzed via statistical analyses. The AM of HF-FCG exhibited higher consistency within the respiratory cycle, as compared to the LF-FCG. Indeed, the inspiratory peaks were recognized with a sensitivity and positive predictive value (PPV) in excess of 99% in the LE of HF-FCG, and with a sensitivity and PPV of 96.7% and 92.6%, respectively, in the LE of LF-FCG. In addition, the inter-breath intervals estimated from the HF-FCG scored a higher R2 value (0.95 vs. 0.86) and lower limits of agreement (± 0.710 s vs. ±1.34 s) as compared to LF-FCG, by considering those extracted from the FRG as the reference. The obtained results are consistent with those observed in previous studies on SCG. A possible explanation of these results was discussed. However, the preliminary results obtained in this study must be confirmed on a larger cohort of subjects and in different experimental conditions.
Collapse
Affiliation(s)
- Jessica Centracchio
- Department of Electrical Engineering and Information Technologies, University of Naples Federico II, Via Claudio, 80125 Napoli, Italy
| | - Emilio Andreozzi
- Department of Electrical Engineering and Information Technologies, University of Naples Federico II, Via Claudio, 80125 Napoli, Italy
- Correspondence:
| | - Daniele Esposito
- Department of Electrical Engineering and Information Technologies, University of Naples Federico II, Via Claudio, 80125 Napoli, Italy
| | - Gaetano D. Gargiulo
- School of Engineering, Design and Built Environment, Western Sydney University, Penrith, NSW 2751, Australia
| |
Collapse
|
11
|
A Study on the Association between Korotkoff Sound Signaling and Chronic Heart Failure (CHF) Based on Computer-Assisted Diagnoses. JOURNAL OF HEALTHCARE ENGINEERING 2022; 2022:3226655. [PMID: 36090451 PMCID: PMC9458390 DOI: 10.1155/2022/3226655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 07/15/2022] [Accepted: 08/03/2022] [Indexed: 11/18/2022]
Abstract
Background Korotkoff sound (KS) is an important indicator of hypertension when monitoring blood pressure. However, its utility in noninvasive diagnosis of Chronic heart failure (CHF) has rarely been studied. Purpose In this study, we proposed a method for signal denoising, segmentation, and feature extraction for KS, and a Bayesian optimization-based support vector machine algorithm for KS classification. Methods The acquired KS signal was resampled and denoised to extract 19 energy features, 12 statistical features, 2 entropy features, and 13 Mel Frequency Cepstrum Coefficient (MFCCs) features. A controlled trial based on the VALSAVA maneuver was carried out to investigate the relationship between cardiac function and KS. To classify these feature sets, the K-Nearest Neighbors (KNN), decision tree (DT), Naive Bayes (NB), ensemble (EM) classifiers, and the proposed BO-SVM were employed and evaluated using the accuracy (Acc), sensitivity (Se), specificity (Sp), Precision (Ps), and F1 score (F1). Results The ALSAVA maneuver indicated that the KS signal could play an important role in the diagnosis of CHF. Through comparative experiments, it was shown that the best performance of the classifier was obtained by BO-SVM, with Acc (85.0%), Se (85.3%), and Sp (84.6%). Conclusions In this study, a method for noise reduction, segmentation, and classification of KS was established. In the measured data set, our method performed well in terms of classification accuracy, sensitivity, and specificity. In light of this, we believed that the methods described in this paper can be applied to the early, noninvasive detection of heart disease as well as a supplementary monitoring technique for the prognosis of patients with CHF.
Collapse
|
12
|
Torre-Cruz J, Martinez-Muñoz D, Ruiz-Reyes N, Muñoz-Montoro AJ, Puentes-Chiachio M, Canadas-Quesada FJ. Unsupervised detection and classification of heartbeats using the dissimilarity matrix in PCG signals. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2022; 221:106909. [PMID: 35649297 DOI: 10.1016/j.cmpb.2022.106909] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 04/28/2022] [Accepted: 05/23/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND AND OBJECTIVE Auscultation is the first technique applied to the early diagnose of any cardiovascular disease (CVD) in rural areas and poor-resources countries because of its low cost and non-invasiveness. However, it highly depends on the physician's expertise to recognize specific heart sounds heard through the stethoscope. The analysis of phonocardiogram (PCG) signals attempts to segment each cardiac cycle into the four cardiac states (S1, systole, S2 and diastole) in order to develop automatic systems applied to an efficient and reliable detection and classification of heartbeats. In this work, we propose an unsupervised approach, based on time-frequency characteristics shown by cardiac sounds, to detect and classify heartbeats S1 and S2. METHODS The proposed system consists of a two-stage cascade. The first stage performs a rough heartbeat detection while the second stage refines the previous one, improving the temporal localization and also classifying the heartbeats into types S1 and S2. The first contribution is a novel approach that combines the dissimilarity matrix with the frame-level spectral divergence to locate heartbeats using the repetitiveness shown by the heart sounds and the temporal relationships between the intervals defined by the events S1/S2 and non-S1/S2 (systole and diastole). The second contribution is a verification-correction-classification process based on a sliding window that allows the preservation of the temporal structure of the cardiac cycle in order to be applied in the heart sound classification. The proposed method has been assessed using the open access databases PASCAL, CirCor DigiScope Phonocardiogram and an additional sound mixing procedure considering both Additive White Gaussian Noise (AWGN) and different kinds of clinical ambient noises from a commercial database. RESULTS The proposed method outperforms the detection and classification performance of other recent state-of-the-art methods. Although our proposal achieves the best average accuracy for PCG signals without cardiac abnormalities, 99.4% in heartbeat detection and 97.2% in heartbeat classification, its worst average accuracy is always above 92% for PCG signals with cardiac abnormalities, signifying an improvement in heartbeat detection/classification above 10% compared to the other state-of-the-art methods evaluated. CONCLUSIONS The proposed method provides the best detection/classification performance in realistic scenarios where the presence of cardiac anomalies as well as different types of clinical environmental noises are active in the PCG signal. Of note, the promising modelling of the temporal structures of the heart provided by the dissimilarity matrix together with the frame-level spectral divergence, as well as the removal of a significant number of spurious heart events and recovery of missing heart events, both corrected by the proposed verification-correction-classification algorithm, suggest that our proposal is a successful tool to be applied in heart segmentation.
Collapse
Affiliation(s)
- J Torre-Cruz
- Department of Telecommunication Engineering, University of Jaen, Campus Cientifico-Tecnologico de Linares, Avda. de la Universidad, s/n, Linares 23700, Jaen, Spain.
| | - D Martinez-Muñoz
- Department of Telecommunication Engineering, University of Jaen, Campus Cientifico-Tecnologico de Linares, Avda. de la Universidad, s/n, Linares 23700, Jaen, Spain
| | - N Ruiz-Reyes
- Department of Telecommunication Engineering, University of Jaen, Campus Cientifico-Tecnologico de Linares, Avda. de la Universidad, s/n, Linares 23700, Jaen, Spain
| | - A J Muñoz-Montoro
- Department of Computer Science, University of Oviedo, Campus de Gijón, s/n, Gijón 33203, Spain
| | - M Puentes-Chiachio
- Cardiology, University Hospital of Jaen, Av. del Ejercito Espanol, 10, 23007 Jaen, Spain
| | - F J Canadas-Quesada
- Department of Telecommunication Engineering, University of Jaen, Campus Cientifico-Tecnologico de Linares, Avda. de la Universidad, s/n, Linares 23700, Jaen, Spain
| |
Collapse
|
13
|
Giordano N, Rosati S, Knaflitz M. Automated Assessment of the Quality of Phonocardographic Recordings through Signal-to-Noise Ratio for Home Monitoring Applications. SENSORS 2021; 21:s21217246. [PMID: 34770552 PMCID: PMC8588421 DOI: 10.3390/s21217246] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 10/25/2021] [Accepted: 10/27/2021] [Indexed: 11/26/2022]
Abstract
The signal quality limits the applicability of phonocardiography at the patients’ domicile. This work proposes the signal-to-noise ratio of the recorded signal as its main quality metrics. Moreover, we define the minimum acceptable values of the signal-to-noise ratio that warrantee an accuracy of the derived parameters acceptable in clinics. We considered 25 original heart sounds recordings, which we corrupted by adding noise to decrease their signal-to-noise ratio. We found that a signal-to-noise ratio equal to or higher than 14 dB warrants an uncertainty of the estimate of the valve closure latencies below 1 ms. This accuracy is higher than that required by most clinical applications. We validated the proposed method against a public database, obtaining results comparable to those obtained on our sample population. In conclusion, we defined (a) the signal-to-noise ratio of the phonocardiographic signal as the preferred metric to evaluate its quality and (b) the minimum values of the signal-to-noise ratio required to obtain an uncertainty of the latency of heart sound components compatible with clinical applications. We believe these results are crucial for the development of home monitoring systems aimed at preventing acute episodes of heart failure and that can be safely operated by naïve users.
Collapse
|
14
|
Lee S, Wei Q, Park H, Na Y, Jeong D, Lim H. Development of a Finger-Ring-Shaped Hybrid Smart Stethoscope for Automatic S1 and S2 Heart Sound Identification. SENSORS (BASEL, SWITZERLAND) 2021; 21:6294. [PMID: 34577501 PMCID: PMC8472017 DOI: 10.3390/s21186294] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 09/13/2021] [Accepted: 09/16/2021] [Indexed: 11/16/2022]
Abstract
Cardiac auscultation is one of the most popular diagnosis approaches to determine cardiovascular status based on listening to heart sounds with a stethoscope. However, heart sounds can be masked by visceral sounds such as organ movement and breathing, and a doctor's level of experience can more seriously affect the accuracy of auscultation results. To improve the accuracy of auscultation, and to allow nonmedical staff to conduct cardiac auscultation anywhere and anytime, a hybrid-type personal smart stethoscope with an automatic heart sound analysis function is presented in this paper. The device was designed with a folding finger-ring shape that can be worn on the finger and placed on the chest to measure photoplethysmogram (PPG) signals and acquire the heart sound simultaneously. The measured heart sounds are detected as phonocardiogram (PCG) signals, and the boundaries of the heart sound variation and the peaks of the PPG signal are detected in preprocessing by an advanced Shannon entropy envelope. According to the relationship between PCG and PPG signals, an automatic heart sound analysis algorithm based on calculating the time interval between the first and second heart sounds (S1, S2) and the peak of the PPG was developed and implemented via the manufactured prototype device. The prototype device underwent accuracy and usability testing with 20 young adults, and the experimental results showed that the proposed smart stethoscope could satisfactorily collect the heart sounds and PPG signals. In addition, within the developed algorithm, the device was as accurate in start-points of heart sound detection as professional physiological signal-acquisition systems. Furthermore, the experimental results demonstrated that the device was able to identify S1 and S2 heart sounds automatically with high accuracy.
Collapse
Affiliation(s)
- Soomin Lee
- Department of Biomedical Engineering, Graduate School of Medicine, Keimyung University, Daegu 42601, Korea;
| | - Qun Wei
- Department of Biomedical Engineering, School of Medicine, Keimyung University, Daegu 42601, Korea;
| | - Heejoon Park
- Department of Biomedical Engineering, School of Medicine, Keimyung University, Daegu 42601, Korea;
| | - Yuri Na
- Department of Craft Design, College of Fine Arts, Keimyung University, Daegu 42601, Korea;
| | - Donghwa Jeong
- Mechasolution Co., Ltd., Daegu 42715, Korea; (D.J.); (H.L.)
| | - Hongjoon Lim
- Mechasolution Co., Ltd., Daegu 42715, Korea; (D.J.); (H.L.)
| |
Collapse
|
15
|
Chen W, Sun Q, Chen X, Xie G, Wu H, Xu C. Deep Learning Methods for Heart Sounds Classification: A Systematic Review. ENTROPY 2021; 23:e23060667. [PMID: 34073201 PMCID: PMC8229456 DOI: 10.3390/e23060667] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 05/11/2021] [Accepted: 05/14/2021] [Indexed: 01/14/2023]
Abstract
The automated classification of heart sounds plays a significant role in the diagnosis of cardiovascular diseases (CVDs). With the recent introduction of medical big data and artificial intelligence technology, there has been an increased focus on the development of deep learning approaches for heart sound classification. However, despite significant achievements in this field, there are still limitations due to insufficient data, inefficient training, and the unavailability of effective models. With the aim of improving the accuracy of heart sounds classification, an in-depth systematic review and an analysis of existing deep learning methods were performed in the present study, with an emphasis on the convolutional neural network (CNN) and recurrent neural network (RNN) methods developed over the last five years. This paper also discusses the challenges and expected future trends in the application of deep learning to heart sounds classification with the objective of providing an essential reference for further study.
Collapse
Affiliation(s)
- Wei Chen
- Medical School, Nantong University, Nantong 226001, China; (W.C.); (G.X.); (H.W.)
- School of Information Science and Technology, Nantong University, Nantong 226019, China;
| | - Qiang Sun
- School of Information Science and Technology, Nantong University, Nantong 226019, China;
- Correspondence: (Q.S.); (C.X.)
| | - Xiaomin Chen
- School of Information Science and Technology, Nantong University, Nantong 226019, China;
| | - Gangcai Xie
- Medical School, Nantong University, Nantong 226001, China; (W.C.); (G.X.); (H.W.)
| | - Huiqun Wu
- Medical School, Nantong University, Nantong 226001, China; (W.C.); (G.X.); (H.W.)
| | - Chen Xu
- School of Information Science and Technology, Nantong University, Nantong 226019, China;
- Correspondence: (Q.S.); (C.X.)
| |
Collapse
|
16
|
Nath M, Srivastava S, Kulshrestha N, Singh D. Detection and localization of S 1 and S 2 heart sounds by 3rd order normalized average Shannon energy envelope algorithm. Proc Inst Mech Eng H 2021; 235:615-624. [PMID: 33784847 DOI: 10.1177/0954411921998108] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Adults born after 1970s are more prone to cardiovascular diseases. Death rate percentage is quite high due to heart related diseases. Therefore, there is necessity to enquire the problem or detection of heart diseases earlier for their proper treatment. As, Valvular heart disease, that is, stenosis and regurgitation of heart valve, are also a major cause of heart failure; which can be diagnosed at early-stage by detection and analysis of heart sound signal, that is, HS signal. In this proposed work, an attempt has been made to detect and localize the major heart sounds, that is, S1 and S2. The work in this article consists of three parts. Firstly, self-acquisition of Phonocardiogram (PCG) and Electrocardiogram (ECG) signal through a self-assembled, data-acquisition set-up. The Phonocardiogram (PCG) signal is acquired from all the four auscultation areas, that is, Aortic, Pulmonic, Tricuspid and Mitral on human chest, using electronic stethoscope. Secondly, the major heart sounds, that is, S1 and S2are detected using 3rd Order Normalized Average Shannon energy Envelope (3rd Order NASE) Algorithm. Further, an auto-thresholding has been used to localize time gates of S1 and S2 and that of R-peaks of simultaneously recorded ECG signal. In third part; the successful detection rate of S1 and S2, from self-acquired PCG signals is computed and compared. A total of 280 samples from same subjects as well as from different subjects (of age group 15-30 years) have been taken in which 70 samples are taken from each auscultation area of human chest. Moreover, simultaneous recording of ECG has also been performed. It was analyzed and observed that detection and localization of S1 and S2 found 74% successful for the self-acquired heart sound signal, if the heart sound data is recorded from pulmonic position of Human chest. The success rate could be much higher, if standard data base of heart sound signal would be used for the same analysis method. The, remaining three auscultations areas, that is, Aortic, Tricuspid, and Mitral have smaller success rate of detection of S1 and S2 from self-acquired PCG signals. So, this work justifies that the Pulmonic position of heart is most suitable auscultation area for acquiring PCG signal for detection and localization of S1 and S2 much accurately and for analysis purpose.
Collapse
Affiliation(s)
- Madhwendra Nath
- Department of Electronics and Communication Engineering, National Institute of Technology (NIT), Patna, India
| | - Subodh Srivastava
- Department of Electronics and Communication Engineering, National Institute of Technology (NIT), Patna, India
| | | | - Dilbag Singh
- Department of Instrumentation & Control Engineering, Dr. B. R. Ambedkar National Institute of Technology, Jalandhar, Punjab, India
| |
Collapse
|
17
|
Recognition of cardiac abnormalities from synchronized ECG and PCG signals. Phys Eng Sci Med 2020; 43:673-677. [DOI: 10.1007/s13246-020-00875-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Accepted: 04/22/2020] [Indexed: 10/24/2022]
|
18
|
Eesee AK, Qassim HM, Aziz MS. A proposed algorithm for analysing heart sounds and calculating their time intervals. BIO-ALGORITHMS AND MED-SYSTEMS 2020. [DOI: 10.1515/bams-2019-0057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
AbstractHeart sounds play a crucial role in the clinical assessment of patients. Stethoscopes are used for detecting heart sounds and diagnosing potential abnormal conditions. However, several parameters of the cardiac sounds cannot be extracted by traditional stethoscopes. This paper presents a proposed algorithm based on peaks detection. Besides its ability of filtering the heart sounds signals, the time intervals of these sounds in addition to the heart rate were calculated by the proposed algorithm in an efficient way. Signals of the heart sounds from two sources were used to evaluate the efficiency of the algorithm. The first source was the data recorded from 14 participants, whereas the second source was the free data set sponsored by PASCAL. The algorithm showed different performance accuracy for detecting the main heart sounds based on the source of the data used in the study. The accuracy was 93.6% when using the data recorded from the first source, whereas it was 76.194% for the data of the second source.
Collapse
Affiliation(s)
| | - Hassan M. Qassim
- University Presidency, Northern Technical University, Mosul, Iraq
| | - Mothanna Sh. Aziz
- Technical Engineering College, Northern Technical University, Mosul, Iraq
| |
Collapse
|
19
|
Gao S, Zheng Y, Guo X. Gated recurrent unit-based heart sound analysis for heart failure screening. Biomed Eng Online 2020; 19:3. [PMID: 31931811 PMCID: PMC6958660 DOI: 10.1186/s12938-020-0747-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Accepted: 01/06/2020] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Heart failure (HF) is a type of cardiovascular disease caused by abnormal cardiac structure and function. Early screening of HF has important implication for treatment in a timely manner. Heart sound (HS) conveys relevant information related to HF; this study is therefore based on the analysis of HS signals. The objective is to develop an efficient tool to identify subjects of normal, HF with preserved ejection fraction and HF with reduced ejection fraction automatically. METHODS We proposed a novel HF screening framework based on gated recurrent unit (GRU) model in this study. The logistic regression-based hidden semi-Markov model was adopted to segment HS frames. Normalized frames were taken as the input of the proposed model which can automatically learn the deep features and complete the HF screening without de-nosing and hand-crafted feature extraction. RESULTS To evaluate the performance of proposed model, three methods are used for comparison. The results show that the GRU model gives a satisfactory performance with average accuracy of 98.82%, which is better than other comparison models. CONCLUSION The proposed GRU model can learn features from HS directly, which means it can be independent of expert knowledge. In addition, the good performance demonstrates the effectiveness of HS analysis for HF early screening.
Collapse
Affiliation(s)
- Shan Gao
- Key Laboratory of Biorheology Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400044, China
| | - Yineng Zheng
- Department of Radiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Xingming Guo
- Key Laboratory of Biorheology Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400044, China.
| |
Collapse
|
20
|
A Review of Computer-Aided Heart Sound Detection Techniques. BIOMED RESEARCH INTERNATIONAL 2020; 2020:5846191. [PMID: 32420352 PMCID: PMC7201685 DOI: 10.1155/2020/5846191] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Revised: 07/03/2019] [Accepted: 07/29/2019] [Indexed: 01/08/2023]
Abstract
Cardiovascular diseases have become one of the most prevalent threats to human health throughout the world. As a noninvasive assistant diagnostic tool, the heart sound detection techniques play an important role in the prediction of cardiovascular diseases. In this paper, the latest development of the computer-aided heart sound detection techniques over the last five years has been reviewed. There are mainly the following aspects: the theories of heart sounds and the relationship between heart sounds and cardiovascular diseases; the key technologies used in the processing and analysis of heart sound signals, including denoising, segmentation, feature extraction and classification; with emphasis, the applications of deep learning algorithm in heart sound processing. In the end, some areas for future research in computer-aided heart sound detection techniques are explored, hoping to provide reference to the prediction of cardiovascular diseases.
Collapse
|