1
|
Aggarwal R, Saini D, Mitra R, Sonkar SK, Sonker AK, Westman G. From Bulk Molybdenum Disulfide (MoS 2) to Suspensions of Exfoliated MoS 2 in an Aqueous Medium and Their Applications. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:9855-9872. [PMID: 38687994 DOI: 10.1021/acs.langmuir.3c03116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2024]
Abstract
Two-dimensional (2D) layered materials like graphene, transition-metal dichalcogenides (TMDs), boron nitrides, etc., exhibit unique and fascinating properties, such as high surface-to-volume ratio, inherent mechanical flexibility and robustness, tunable bandgap, and high carrier mobility, which makes them an apt candidate for flexible electronics with low consumption of power. Because of these properties, they are in tremendous demand for advancement in energy, environmental, and biomedical sectors developed through various technologies. The production and scalability of these materials must be sustainable and ecofriendly to utilize these unique properties in the real world. Here, in this current review, we review molybdenum disulfide (MoS2 nanosheets) in detail, focusing on exfoliated MoS2 in water and the applicability of aqueous MoS2 suspensions in various fields. The exfoliation of MoS2 results in the formation of single or few-layered MoS2. Therefore, this Review focuses on the few layers of exfoliated MoS2 that have the additional properties of 2D layered materials and higher excellent compatibility for integration than existing conventional Si tools. Hence, a few layers of exfoliated MoS2 are widely explored in biosensing, gas sensing, catalysis, photodetectors, energy storage devices, a light-emitting diode (LED), adsorption, etc. This review covers the numerous methodologies to exfoliate MoS2, focusing on the various published methodologies to obtain nanosheets of MoS2 from water solutions and their use.
Collapse
Affiliation(s)
- Ruchi Aggarwal
- Department of Chemistry, Malaviya National Institute of Technology, Jaipur 302017, India
| | - Deepika Saini
- Department of Chemistry, Malaviya National Institute of Technology, Jaipur 302017, India
| | - Richa Mitra
- Department of Microtechnology and Nanoscience, Chalmers University of Technology, SE-41296 Gothenburg, Sweden
- Low Temperature Laboratory, Department of Applied Physics, Aalto University, Espoo 02150, Finland
| | - Sumit Kumar Sonkar
- Department of Chemistry, Malaviya National Institute of Technology, Jaipur 302017, India
| | - Amit Kumar Sonker
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology, Gothenburg, 41296, Sweden
- Wallenberg Wood Science Centre (WWSC), Chalmers University of Technology, Gothenburg, 41296, Sweden
- BA5409 cellulose films and coatings, VTT Technical Research Center of Finland, Tietotie 4E, Espoo 02150, Finland
| | - Gunnar Westman
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology, Gothenburg, 41296, Sweden
- Wallenberg Wood Science Centre (WWSC), Chalmers University of Technology, Gothenburg, 41296, Sweden
| |
Collapse
|
2
|
Galvani M, Freddi S, Sangaletti L. Disclosing Fast Detection Opportunities with Nanostructured Chemiresistor Gas Sensors Based on Metal Oxides, Carbon, and Transition Metal Dichalcogenides. SENSORS (BASEL, SWITZERLAND) 2024; 24:584. [PMID: 38257677 PMCID: PMC11154330 DOI: 10.3390/s24020584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 01/09/2024] [Accepted: 01/12/2024] [Indexed: 01/24/2024]
Abstract
With the emergence of novel sensing materials and the increasing opportunities to address safety and life quality priorities of our society, gas sensing is experiencing an outstanding growth. Among the characteristics required to assess performances, the overall speed of response and recovery is adding to the well-established stability, selectivity, and sensitivity features. In this review, we focus on fast detection with chemiresistor gas sensors, focusing on both response time and recovery time that characterize their dynamical response. We consider three classes of sensing materials operating in a chemiresistor architecture, exposed to the most investigated pollutants, such as NH3, NO2, H2S, H2, ethanol, and acetone. Among sensing materials, we first selected nanostructured metal oxides, which are by far the most used chemiresistors and can provide a solid ground for performance improvement. Then, we selected nanostructured carbon sensing layers (carbon nanotubes, graphene, and reduced graphene), which represent a promising class of materials that can operate at room temperature and offer many possibilities to increase their sensitivities via functionalization, decoration, or blending with other nanostructured materials. Finally, transition metal dichalcogenides are presented as an emerging class of chemiresistive layers that bring what has been learned from graphene into a quite large portfolio of chemo-sensing platforms. For each class, studies since 2019 reporting on chemiresistors that display less than 10 s either in the response or in the recovery time are listed. We show that for many sensing layers, the sum of both response and recovery times is already below 10 s, making them promising devices for fast measurements to detect, e.g., sudden bursts of dangerous emissions in the environment, or to track the integrity of packaging during food processing on conveyor belts at pace with industrial production timescales.
Collapse
Affiliation(s)
- Michele Galvani
- Surface Science and Spectroscopy Lab at I-Lamp, Department of Mathematics and Physics, Via della Garzetta 48, 25133 Brescia, Italy; (M.G.); (S.F.)
| | - Sonia Freddi
- Surface Science and Spectroscopy Lab at I-Lamp, Department of Mathematics and Physics, Via della Garzetta 48, 25133 Brescia, Italy; (M.G.); (S.F.)
- Institute of Photonics and Nanotechnologies-Consiglio Nazionale delle Ricerche (IFN-CNR), Laboratory for Nanostructure Epitaxy and Spintronics on Silicon (LNESS), Via Anzani 42, 22100 Como, Italy
| | - Luigi Sangaletti
- Surface Science and Spectroscopy Lab at I-Lamp, Department of Mathematics and Physics, Via della Garzetta 48, 25133 Brescia, Italy; (M.G.); (S.F.)
| |
Collapse
|
3
|
Yao X, Wang R, Wu L, Song H, Zhao J, Liu F, Fu K, Wang Z, Wang F, Liu J. Highly Efficient NO 2 Sensors Based on Al-ZnOHF under UV Assistance. MATERIALS (BASEL, SWITZERLAND) 2023; 16:3577. [PMID: 37176459 PMCID: PMC10180258 DOI: 10.3390/ma16093577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 04/26/2023] [Accepted: 05/04/2023] [Indexed: 05/15/2023]
Abstract
Zinc hydroxyfluoride (ZnOHF) is a newly found resistive semiconductor used as a gas-sensing material with excellent selectivity to NO2 because of its unique energy band structure. In this paper, Al3+ doping and UV radiation were used to further improve the gas-sensing performance of ZnOHF. The optimized 0.5 at.% Al-ZnOHF sample exhibits improved sensitivity to 10 ppm NO2 at a lower temperature (100 °C) under UV assistance, as well as a short response/recovery time (35 s/96 s). The gas-sensing mechanism demonstrates that Al3+ doping increases electron concentration and promotes electron transfer of the nanorods by reducing the bandgap of ZnOHF, and the photogenerated electrons and holes with high activity under UV irradiation provide new reaction routes in the gas adsorption and desorption process, effectively promoting the gas-sensing process. The synergistic effect of Al3+ and UV radiation contribute to the enhanced performance of Al-ZnOHF.
Collapse
Affiliation(s)
- Xingyu Yao
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials, Ministry of Education and School of Materials Science and Engineering, Shandong University, Jinan 250061, China; (X.Y.)
| | - Rutao Wang
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials, Ministry of Education and School of Materials Science and Engineering, Shandong University, Jinan 250061, China; (X.Y.)
| | - Lili Wu
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials, Ministry of Education and School of Materials Science and Engineering, Shandong University, Jinan 250061, China; (X.Y.)
| | - Haixiang Song
- Henan Joint International Research Laboratory of Nanocomposite Sensing Materials, School of Chemical and Environmental Engineering, Anyang Institute of Technology, Anyang 455000, China
| | - Jinbo Zhao
- School of Materials Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
| | - Fei Liu
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials, Ministry of Education and School of Materials Science and Engineering, Shandong University, Jinan 250061, China; (X.Y.)
| | - Kaili Fu
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials, Ministry of Education and School of Materials Science and Engineering, Shandong University, Jinan 250061, China; (X.Y.)
| | - Zhou Wang
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials, Ministry of Education and School of Materials Science and Engineering, Shandong University, Jinan 250061, China; (X.Y.)
| | - Fenglong Wang
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials, Ministry of Education and School of Materials Science and Engineering, Shandong University, Jinan 250061, China; (X.Y.)
| | - Jiurong Liu
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials, Ministry of Education and School of Materials Science and Engineering, Shandong University, Jinan 250061, China; (X.Y.)
| |
Collapse
|
4
|
Ryu J, Shim S, Song J, Park J, Kim HS, Lee SK, Shin JC, Mun J, Kang SW. Effect of Measurement System Configuration and Operating Conditions on 2D Material-Based Gas Sensor Sensitivity. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:573. [PMID: 36770534 PMCID: PMC9919673 DOI: 10.3390/nano13030573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 01/27/2023] [Accepted: 01/28/2023] [Indexed: 06/18/2023]
Abstract
Gas sensors applied in real-time detection of toxic gas leakage, air pollution, and respiration patterns require a reliable test platform to evaluate their characteristics, such as sensitivity and detection limits. However, securing reliable characteristics of a gas sensor is difficult, owing to the structural difference between the gas sensor measurement platform and the difference in measurement methods. This study investigates the effect of measurement conditions and system configurations on the sensitivity of two-dimensional (2D) material-based gas sensors. Herein, we developed a testbed to evaluate the response characteristics of MoS2-based gas sensors under a NO2 gas flow, which allows variations in their system configurations. Additionally, we demonstrated that the distance between the gas inlet and the sensor and gas inlet orientation influences the sensor performance. As the distance to the 2D gas sensor surface decreased from 4 to 2 mm, the sensitivity of the sensor improved to 9.20%. Furthermore, when the gas inlet orientation was perpendicular to the gas sensor surface, the sensitivity of the sensor was the maximum (4.29%). To attain the optimum operating conditions of the MoS2-based gas sensor, the effects of measurement conditions, such as gas concentration and temperature, on the sensitivity of the gas sensor were investigated.
Collapse
Affiliation(s)
- Jongwon Ryu
- Advanced Instrumentation Institute, Korea Research Institute of Standards and Science, Daejeon 34113, Republic of Korea
| | - Seob Shim
- Advanced Instrumentation Institute, Korea Research Institute of Standards and Science, Daejeon 34113, Republic of Korea
| | - Jeongin Song
- Advanced Instrumentation Institute, Korea Research Institute of Standards and Science, Daejeon 34113, Republic of Korea
- Department of Physics, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Jaeseo Park
- Advanced Instrumentation Institute, Korea Research Institute of Standards and Science, Daejeon 34113, Republic of Korea
- Precision Measurement, University of Science and Technology, Daejeon 34113, Republic of Korea
| | - Ha Sul Kim
- Department of Physics, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Seoung-Ki Lee
- School of Materials Science and Engineering, Pusan National University, Busan 46241, Republic of Korea
| | - Jae Cheol Shin
- Division of Electronics and Electrical Engineering, Dongguk University, Seoul 04620, Republic of Korea
| | - Jihun Mun
- Advanced Instrumentation Institute, Korea Research Institute of Standards and Science, Daejeon 34113, Republic of Korea
| | - Sang-Woo Kang
- Advanced Instrumentation Institute, Korea Research Institute of Standards and Science, Daejeon 34113, Republic of Korea
- Precision Measurement, University of Science and Technology, Daejeon 34113, Republic of Korea
| |
Collapse
|
5
|
Nazir G, Rehman A, Hussain S, Hakami O, Heo K, Amin MA, Ikram M, Patil SA, Din MAU. Bias-Modified Schottky Barrier Height-Dependent Graphene/ReSe 2 van der Waals Heterostructures for Excellent Photodetector and NO 2 Gas Sensing Applications. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:3713. [PMID: 36364489 PMCID: PMC9658387 DOI: 10.3390/nano12213713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 10/19/2022] [Accepted: 10/20/2022] [Indexed: 06/16/2023]
Abstract
Herein, we reported a unique photo device consisting of monolayer graphene and a few-layer rhenium diselenide (ReSe2) heterojunction. The prepared Gr/ReSe2-HS demonstrated an excellent mobility of 380 cm2/Vs, current on/off ratio ~ 104, photoresponsivity (R ~ 74 AW-1 @ 82 mW cm-2), detectivity (D* ~ 1.25 × 1011 Jones), external quantum efficiency (EQE ~ 173%) and rapid photoresponse (rise/fall time ~ 75/3 µs) significantly higher to an individual ReSe2 device (mobility = 36 cm2 V-1s-1, Ion/Ioff ratio = 1.4 × 105-1.8 × 105, R = 11.2 AW-1, D* = 1.02 × 1010, EQE ~ 26.1%, rise/fall time = 2.37/5.03 s). Additionally, gate-bias dependent Schottky barrier height (SBH) estimation for individual ReSe2 (45 meV at Vbg = 40 V) and Gr/ReSe2-HS (9.02 meV at Vbg = 40 V) revealed a low value for the heterostructure, confirming dry transfer technique to be successful in fabricating an interfacial defects-free junction. In addition, HS is fully capable to demonstrate an excellent gas sensing response with rapid response/recovery time (39/126 s for NO2 at 200 ppb) and is operational at room temperature (26.85 °C). The proposed Gr/ReSe2-HS is capable of demonstrating excellent electro-optical, as well as gas sensing, performance simultaneously and, therefore, can be used as a building block to fabricate next-generation photodetectors and gas sensors.
Collapse
Affiliation(s)
- Ghazanfar Nazir
- Department of Nanotechnology and Advanced Materials Engineering, Sejong University, Seoul 05006, Korea
| | - Adeela Rehman
- Department of Mechanical Engineering, College of Engineering, Kyung Hee University, Yongin 17104, Korea
| | - Sajjad Hussain
- Department of Nanotechnology and Advanced Materials Engineering, Sejong University, Seoul 05006, Korea
| | - Othman Hakami
- Department of Chemistry, Faculty of Science, Jazan University, Jazan, Saudi Arabia
| | - Kwang Heo
- Department of Nanotechnology and Advanced Materials Engineering, Sejong University, Seoul 05006, Korea
| | - Mohammed A. Amin
- Department of Chemistry, College of Science, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Muhammad Ikram
- Solar Cell Applications Research Lab, Department of Physics, Government College University Lahore, Lahore 54000, Punjab, Pakistan
| | - Supriya A. Patil
- Department of Nanotechnology and Advanced Materials Engineering, Sejong University, Seoul 05006, Korea
| | | |
Collapse
|
6
|
A comprehensive review of synthesis, structure, properties, and functionalization of MoS2; emphasis on drug delivery, photothermal therapy, and tissue engineering applications. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103767] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
7
|
Sethulekshmi AS, Appukuttan S, Joseph K, Aprem AS, Sisupal SB. MoS 2 based nanomaterials: Advanced antibacterial agents for future. J Control Release 2022; 348:158-185. [PMID: 35662576 DOI: 10.1016/j.jconrel.2022.05.047] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Revised: 05/23/2022] [Accepted: 05/26/2022] [Indexed: 02/08/2023]
Abstract
Bacterial infections are yet another serious threat to human health. Misuse or overuse of conventional antibiotics has led to the arrival of various super resistant bacteria along with many serious side effects to human body. In this exigent circumstance, the use of nanomaterial based antibacterial agents is one of the most appropriate solutions to fight against bacteria thereby causing an inhibition to bacterial proliferation. Recent studies show that, due to the large surface area, high biocompatibility, strong near-infrared (NIR) absorption and low cytotoxicity, molybdenum disulphide (MoS2), an extraordinary member in the transition metal dichalcogenides (TMDs) is extensively explored in the obliteration of many drug resistant bacteria, photothermal therapy and drug delivery. MoS2 based nanomaterials can effectively prevent bacterial growth through many mechanisms. Through this review, we have tried to provide an inclusive knowledge on the recent progress of antibacterial studies in MoS2 based nanomaterials including MoS2 nanosheets, nanoflowers, quantum dot (QD), hybrid nanocomposites and polymer nanocomposites. Moreover, toxicity of MoS2 based nanomaterials is described at the end of the review.
Collapse
Affiliation(s)
- A S Sethulekshmi
- Department of Chemistry, Amrita Vishwa Vidyapeetham, Amritapuri, Kollam, Kerala, India
| | - Saritha Appukuttan
- Department of Chemistry, Amrita Vishwa Vidyapeetham, Amritapuri, Kollam, Kerala, India..
| | - Kuruvilla Joseph
- Department of Chemistry, Indian Institute of Space Science and Technology, Valiyamala PO, Kerala, India.
| | - Abi Santhosh Aprem
- Corporate R&D Centre, HLL Lifecare Ltd. Akkulam, Trivandrum, Kerala, India.
| | | |
Collapse
|
8
|
Szary MJ, Florjan DM, Bąbelek JA. Selective Detection of Carbon Monoxide on P-Block Doped Monolayers of MoTe 2. ACS Sens 2022; 7:272-285. [PMID: 35044171 PMCID: PMC8805155 DOI: 10.1021/acssensors.1c02246] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Accepted: 01/04/2022] [Indexed: 12/29/2022]
Abstract
CO and CO2 are among the most commonly monitored gases. However, the currently available semiconductor sensors require heating to ∼400 °C in order to operate effectively. This increases the power demand and shortens their lifespan. Consequently, new material prospects are being investigated. The adoption of novel two-dimensional layered materials is one of the pursued solutions. MoS2 and MoTe2 sheets have already been shown sensitive to NO2 and NH3 even at room temperature. However, their response to other compounds is limited. Hence, this work investigates, by employing density functional theory (DFT) calculations, the doping of Al, Si, P, S, and Cl atoms into the Te vacancy of MoTe2, and its impact on the sensing characteristics for CO and CO2. The computations predict that P doping significantly enhances the molecule-sheet charge transfer (up to +436%) while having only a little effect on the adsorption energy (molecular dynamics show that the molecule can effectively diffuse at 300 K). On the other hand, the doping has a limited impact on the adsorption of CO2. The relative (CO/CO2) response of P-doped MoTe2 is 5.6 compared to the 1.5 predicted for the pristine sheet. Thus, the doping should allow for more selective detection of CO in CO/CO2 mixtures.
Collapse
Affiliation(s)
- Maciej J. Szary
- Institute of Physics, Poznan University of Technology, ul. Piotrowo 3, 61-138 Poznan, Poland
| | - Dominik M. Florjan
- Institute of Physics, Poznan University of Technology, ul. Piotrowo 3, 61-138 Poznan, Poland
| | - Jakub A. Bąbelek
- Institute of Physics, Poznan University of Technology, ul. Piotrowo 3, 61-138 Poznan, Poland
| |
Collapse
|
9
|
Wang J, Zhang X, Liu L, Wang Z. Adsorption of SF 6 Decomposition Products by the S Vacancy Structure and Edge Structure of SnS 2: A Density Functional Theory Study. ACS OMEGA 2021; 6:28131-28139. [PMID: 34723011 PMCID: PMC8552320 DOI: 10.1021/acsomega.1c04210] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 10/01/2021] [Indexed: 06/13/2023]
Abstract
Detecting the composition and concentration of SF6 decomposition products is an effective method to evaluate the state of gas-insulated switchgear. Based on density functional theory, in this work we investigated the adsorption properties of four typical SF6 decomposition products (H2S, SO2, SOF2, SO2F2) on an SnS2 S vacancy structure (SnS2-Sv) and SnS2 edge structure (SnS2-edge). By calculating the adsorption energy, charge transfer, and comparing the density of states (DOS) of each system before and after the adsorption of gas molecules, the physical and chemical interactions between SnS2 with different structures and gas molecules were investigated. The results show that SnS2-Sv has the largest adsorption energy for SO2 and has obvious chemical interactions. The S vacancy can effectively capture an O atom in SO2, causing SO2 to firmly adsorb in the S vacancy. In addition, the adsorption of the four gases on the SnS2-edge is physical adsorption, in which the 50% S edge structure has the largest adsorption energy for H2S, reaching -0.52 eV, and there is also a large charge transfer between the 50% S edge structure and H2S. Although the adsorption energy of SnS2-edge to the four gases is smaller than SnS2-Sv, it is still greater than the pristine SnS2. This paper explores the adsorption properties of SnS2-Sv and SnS2-edge for SF6 decomposition products, providing insights for the development of SnS2-based gas sensors.
Collapse
Affiliation(s)
- Jincong Wang
- Hubei
Engineering Research Center for Safety Monitoring of New Energy and
Power Grid Equipment, Hubei University of
Technology, Wuhan 430068, China
| | - Xiaoxing Zhang
- Hubei
Engineering Research Center for Safety Monitoring of New Energy and
Power Grid Equipment, Hubei University of
Technology, Wuhan 430068, China
- State
Key Laboratory of Power Transmission Equipment & System Security
and New Technology, Chongqing University, Chongqing 400044, China
| | - Li Liu
- Hubei
Engineering Research Center for Safety Monitoring of New Energy and
Power Grid Equipment, Hubei University of
Technology, Wuhan 430068, China
| | - Zengting Wang
- Hubei
Engineering Research Center for Safety Monitoring of New Energy and
Power Grid Equipment, Hubei University of
Technology, Wuhan 430068, China
| |
Collapse
|
10
|
Mouloua D, Kotbi A, Deokar G, Kaja K, El Marssi M, EL Khakani MA, Jouiad M. Recent Progress in the Synthesis of MoS 2 Thin Films for Sensing, Photovoltaic and Plasmonic Applications: A Review. MATERIALS (BASEL, SWITZERLAND) 2021; 14:3283. [PMID: 34198592 PMCID: PMC8231843 DOI: 10.3390/ma14123283] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Revised: 06/08/2021] [Accepted: 06/10/2021] [Indexed: 11/16/2022]
Abstract
In the surge of recent successes of 2D materials following the rise of graphene, molybdenum disulfide (2D-MoS2) has been attracting growing attention from both fundamental and applications viewpoints, owing to the combination of its unique nanoscale properties. For instance, the bandgap of 2D-MoS2, which changes from direct (in the bulk form) to indirect for ultrathin films (few layers), offers new prospects for various applications in optoelectronics. In this review, we present the latest scientific advances in the field of synthesis and characterization of 2D-MoS2 films while highlighting some of their applications in energy harvesting, gas sensing, and plasmonic devices. A survey of the physical and chemical processing routes of 2D-MoS2 is presented first, followed by a detailed description and listing of the most relevant characterization techniques used to study the MoS2 nanomaterial as well as theoretical simulations of its interesting optical properties. Finally, the challenges related to the synthesis of high quality and fairly controllable MoS2 thin films are discussed along with their integration into novel functional devices.
Collapse
Affiliation(s)
- Driss Mouloua
- Laboratory of Physics of Condensed Matter, University of Picardie Jules Verne, 33 Saint Leu, 80039 Amiens, France; (D.M.); (A.K.); (M.E.M.)
- Institut National de la Recherche Scientifique, Centre-Énergie, Matériaux et Télécommunications, 1650, Blvd, Lionel–Boulet, Varennes, QC J3X-1S2, Canada
| | - Ahmed Kotbi
- Laboratory of Physics of Condensed Matter, University of Picardie Jules Verne, 33 Saint Leu, 80039 Amiens, France; (D.M.); (A.K.); (M.E.M.)
| | - Geetanjali Deokar
- Physical Science and Engineering Division, Kaust University, Thuwal 23955-6900, Saudi Arabia;
| | - Khaled Kaja
- Laboratoire National de métrologie et d’essais (LNE), 29 av. Roger Hannequin, 78197 Trappes, France;
| | - Mimoun El Marssi
- Laboratory of Physics of Condensed Matter, University of Picardie Jules Verne, 33 Saint Leu, 80039 Amiens, France; (D.M.); (A.K.); (M.E.M.)
| | - My Ali EL Khakani
- Institut National de la Recherche Scientifique, Centre-Énergie, Matériaux et Télécommunications, 1650, Blvd, Lionel–Boulet, Varennes, QC J3X-1S2, Canada
| | - Mustapha Jouiad
- Laboratory of Physics of Condensed Matter, University of Picardie Jules Verne, 33 Saint Leu, 80039 Amiens, France; (D.M.); (A.K.); (M.E.M.)
| |
Collapse
|
11
|
Yao X, Zhao J, Jin Z, Jiang Z, Xu D, Wang F, Zhang X, Song H, Pan D, Chen Y, Wei R, Guo Z, Liu J, Naik N, Wang R, Wu L. Flower-like Hydroxyfluoride-Sensing Platform toward NO 2 Detection. ACS APPLIED MATERIALS & INTERFACES 2021; 13:26278-26287. [PMID: 34047540 DOI: 10.1021/acsami.1c02176] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
We report for the first time using zinc hydroxyfluoride (ZnOHF) for efficient NO2 gas detection. The prepared ZnOHF had a unique flower-like architecture self-assembled by nanorods with a diameter of 150 nm and length of 2-3 μm. The sensing performance toward NO2 detection indicated that the prepared ZnOHF exhibited high response (82.71), short response/recovery time (13 s/35 s) to 10 ppm of NO2, and excellent selectivity at 200 °C, greatly outperforming the ZnO raw material. ZnOHF could work in a wide detection window ranging from 100 ppb to 50 ppm, implying its practical application prospects in both industry and daily life. The excellent sensing behavior of ZnOHF originated mainly from the negligible oxygen ions adsorbed on the material surface, which was caused by the higher work function of ZnOHF. Therefore, almost all conduction band electrons can be used in the NO2 gas sensing.
Collapse
Affiliation(s)
- Xingyu Yao
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials, Ministry of Education and School of Materials Science and Engineering, Shandong University, Jinan, Shandong 250061, China
| | - Jinbo Zhao
- School of Materials Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, Shandong 250353, China
| | - Zhidong Jin
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials, Ministry of Education and School of Materials Science and Engineering, Shandong University, Jinan, Shandong 250061, China
| | - Zhen Jiang
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials, Ministry of Education and School of Materials Science and Engineering, Shandong University, Jinan, Shandong 250061, China
| | - Dongmei Xu
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials, Ministry of Education and School of Materials Science and Engineering, Shandong University, Jinan, Shandong 250061, China
| | - Fenglong Wang
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials, Ministry of Education and School of Materials Science and Engineering, Shandong University, Jinan, Shandong 250061, China
| | - Xiaomei Zhang
- School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong 250100, China
| | - Haixiang Song
- Henan Joint International Research Laboratory of Nanocomposite Sensing Materials, School of Chemical and Environmental Engineering, Anyang Institute of Technology, Anyang 455000, China
| | - Duo Pan
- Integrated Composites Laboratory (ICL), Department of Chemical and Biomolecular Engineering, University of Tennessee, Knoxville, Tennessee 37966, United States
| | - Yunxia Chen
- School of Mechanical Engineering, Shanghai Dianji University, Shanghai 201306, China
| | - Renbo Wei
- School of Chemical Engineering, Northwest University, Xi'an 710069, China
| | - Zhanhu Guo
- Integrated Composites Laboratory (ICL), Department of Chemical and Biomolecular Engineering, University of Tennessee, Knoxville, Tennessee 37966, United States
| | - Jiurong Liu
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials, Ministry of Education and School of Materials Science and Engineering, Shandong University, Jinan, Shandong 250061, China
| | - Nithesh Naik
- Department of Mechanical & Manufacturing Engineering, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
| | - Rutao Wang
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials, Ministry of Education and School of Materials Science and Engineering, Shandong University, Jinan, Shandong 250061, China
| | - Lili Wu
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials, Ministry of Education and School of Materials Science and Engineering, Shandong University, Jinan, Shandong 250061, China
| |
Collapse
|
12
|
Agrawal AV, Kumar N, Kumar M. Strategy and Future Prospects to Develop Room-Temperature-Recoverable NO 2 Gas Sensor Based on Two-Dimensional Molybdenum Disulfide. NANO-MICRO LETTERS 2021; 13:38. [PMID: 33425474 PMCID: PMC7780921 DOI: 10.1007/s40820-020-00558-3] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Accepted: 10/29/2020] [Indexed: 05/12/2023]
Abstract
Nitrogen dioxide (NO2), a hazardous gas with acidic nature, is continuously being liberated in the atmosphere due to human activity. The NO2 sensors based on traditional materials have limitations of high-temperature requirements, slow recovery, and performance degradation under harsh environmental conditions. These limitations of traditional materials are forcing the scientific community to discover future alternative NO2 sensitive materials. Molybdenum disulfide (MoS2) has emerged as a potential candidate for developing next-generation NO2 gas sensors. MoS2 has a large surface area for NO2 molecules adsorption with controllable morphologies, facile integration with other materials and compatibility with internet of things (IoT) devices. The aim of this review is to provide a detailed overview of the fabrication of MoS2 chemiresistance sensors in terms of devices (resistor and transistor), layer thickness, morphology control, defect tailoring, heterostructure, metal nanoparticle doping, and through light illumination. Moreover, the experimental and theoretical aspects used in designing MoS2-based NO2 sensors are also discussed extensively. Finally, the review concludes the challenges and future perspectives to further enhance the gas-sensing performance of MoS2. Understanding and addressing these issues are expected to yield the development of highly reliable and industry standard chemiresistance NO2 gas sensors for environmental monitoring.
Collapse
Affiliation(s)
- Abhay V. Agrawal
- Functional and Renewable Energy Materials Laboratory, Indian Institute of Technology Ropar, Rupnagar, Punjab 140001 India
| | - Naveen Kumar
- Functional and Renewable Energy Materials Laboratory, Indian Institute of Technology Ropar, Rupnagar, Punjab 140001 India
| | - Mukesh Kumar
- Functional and Renewable Energy Materials Laboratory, Indian Institute of Technology Ropar, Rupnagar, Punjab 140001 India
| |
Collapse
|
13
|
Rathi K, Kumar AN, Pal K. Fabrication of flexible La-MoS 2 hybrid-heterostructure based sensor for NO 2 gas sensing at room temperature. NANOTECHNOLOGY 2020; 31:395504. [PMID: 32531771 DOI: 10.1088/1361-6528/ab9c55] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Transition metal dichalcogenides (TMDs) materials are from the two-dimensional (2D) materials family and have many benefits, comprising high carrier mobility and conductivity, high optical transparency, outstanding mechanical flexibility, and chemical stability, and are also favorable gas sensing materials because of their high surface-area-to-volume ratio. Nevertheless, their low gas-sensing performance in terms of low response, partial recovery, and poor selectivity obstruct the apprehension as high-performance 2D TMDs gas sensing materials. At this time, we explain the enhancement in gas-sensing performance of molybdenum disulfide (MoS2) nanoflakes (NF) by decorating with Lanthanum (La) at room temperature (25 °C). Our experiments show that the dynamic sensing response of the La decorated few-layered MoS2 (La@MoS2) sensor increases by ∼6 times than the pristine few-layered MoS2, which positions it first-ever reported values for NO2 gas detection. The sensitivity of the MoS2 and La@MoS2 found 0.627 and 3.346 ppm-1, respectively, towards NO2 gas. It is noteworthy that La has introduced to MoS2, and its selectivity towards the volatile organic compounds (VOCs) and other toxic gases improved drastically. Our outcomes show that the suggested method represents a successful approach for improving the gas sensing response of 2D TMDs sensors.
Collapse
Affiliation(s)
- Keerti Rathi
- Centre of Nanotechnology, Indian Institute of Technology Roorkee, Roorkee 247667 India
| | | | | |
Collapse
|
14
|
|
15
|
Lee D, Jang AR, Kim JY, Lee G, Jung DW, Lee TI, Lee JO, Kim JJ. Phase-dependent gas sensitivity of MoS 2 chemical sensors investigated with phase-locked MoS 2. NANOTECHNOLOGY 2020; 31:225504. [PMID: 32069439 DOI: 10.1088/1361-6528/ab776b] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
In the present study, phase-dependent gas sensitivities of MoS2 chemical sensors were examined. While 1T-phase MoS2 (1T-MoS2) has shown better chemical sensitivity than has 2H-phase MoS2 (2H-MoS2), the instability of the 1T phase has been hindering applications of 1T-MoS2 as chemical sensors. Here, the chemical sensitivity of MoS2 locked in its 1T phase by using a ZnO phase lock was investigated. To develop MoS2 chemical sensors locked in the 1T phase, we synthesized a multi-dimensional nanomaterial by growing ZnO nanorods onto MoS2 nanosheets (ZnO@1T-MoS2). Raman spectroscopy and x-ray photoelectron spectroscopy analyses of such phase-locked 1T-MoS2 subjected to flash light irradiation 100 times confirmed its robustness. ZnO nanomaterials hybridized on MoS2 nanosheets not only froze the MoS2 at its 1T phase, but also increased the active surface area for chemical sensing. The resulting hybridized material showed better response, namely better sensitivity, to NO2 gas exposure at room temperature than did 1T-MoS2 and 2H-MoS2. This result indicated that increased surface area and heterojunction formation between MoS2 and ZnO constitute a more promising route for improving sensitivity than using the 1T phase itself.
Collapse
Affiliation(s)
- Doeun Lee
- Advanced Materials Division, Korea Research Institute of Chemical Technology (KRICT), Gajeong-ro 141, Daejeon 34114, Republic of Korea. Department of Physics, Jeonbuk National University, Jeonju 54896, Republic of Korea
| | | | | | | | | | | | | | | |
Collapse
|
16
|
Thang NT, Hong LT, Thoan NH, Hung CM, Van Duy N, Van Hieu N, Hoa ND. Controlled synthesis of ultrathin MoS 2 nanoflowers for highly enhanced NO 2 sensing at room temperature. RSC Adv 2020; 10:12759-12771. [PMID: 35492112 PMCID: PMC9051214 DOI: 10.1039/d0ra00121j] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Accepted: 03/24/2020] [Indexed: 01/14/2023] Open
Abstract
Fabrication of a high-performance room-temperature (RT) gas sensor is important for the future integration of sensors into smart, portable and Internet-of-Things (IoT)-based devices. Herein, we developed a NO2 gas sensor based on ultrathin MoS2 nanoflowers with high sensitivity at RT. The MoS2 flower-like nanostructures were synthesised via a simple hydrothermal method with different growth times of 24, 36, 48, and 60 h. The synthesised MoS2 nanoflowers were subsequently characterised by scanning electron microscopy, X-ray diffraction, Raman spectroscopy, energy-dispersive X-ray spectroscopy and transmission electron microscopy. The petal-like nanosheets in pure MoS2 agglomerated to form a flower-like structure with Raman vibrational modes at 378 and 403 cm-1 and crystallisation in the hexagonal phase. The specific surface areas of the MoS2 grown at different times were measured by using the Brunauer-Emmett-Teller method. The largest specific surface area of 56.57 m2 g-1 was obtained for the MoS2 nanoflowers grown for 48 h. This sample also possessed the smallest activation energy of 0.08 eV. The gas-sensing characteristics of sensors based on the synthesised MoS2 nanostructures were investigated using oxidising and reducing gases, such as NO2, SO2, H2, CH4, CO and NH3, at different concentrations and at working temperatures ranging from RT to 150 °C. The sensor based on the MoS2 nanoflowers grown for 48 h showed a high gas response of 67.4% and high selectivity to 10 ppm NO2 at RT. This finding can be ascribed to the synergistic effects of largest specific surface area, smallest crystallite size and lowest activation energy of the MoS2-48 h sample among the samples. The sensors also exhibited a relative humidity-independent sensing characteristic at RT and a low detection limit of 84 ppb, thereby allowing their practical application to portable IoT-based devices.
Collapse
Affiliation(s)
- Nguyen Tat Thang
- International Training Institute for Materials Science (ITIMS), Hanoi University of Science and Technology (HUST) No. 1-Dai Co Viet Str. 100000 Hanoi Vietnam +84 24 38692963 +84 24 38680787
| | - Le Thi Hong
- International Training Institute for Materials Science (ITIMS), Hanoi University of Science and Technology (HUST) No. 1-Dai Co Viet Str. 100000 Hanoi Vietnam +84 24 38692963 +84 24 38680787
| | - Nguyen Hoang Thoan
- School of Engineering Physics, Hanoi University of Science and Technology (HUST) No. 1-Dai Co Viet Str. 100000 Hanoi Vietnam
| | - Chu Manh Hung
- International Training Institute for Materials Science (ITIMS), Hanoi University of Science and Technology (HUST) No. 1-Dai Co Viet Str. 100000 Hanoi Vietnam +84 24 38692963 +84 24 38680787
| | - Nguyen Van Duy
- International Training Institute for Materials Science (ITIMS), Hanoi University of Science and Technology (HUST) No. 1-Dai Co Viet Str. 100000 Hanoi Vietnam +84 24 38692963 +84 24 38680787
| | - Nguyen Van Hieu
- Faculty of Electrical and Electronic Engineering, Phenikaa Institute for Advanced Study (PIAS), Phenikaa University Yen Nghia, Ha-Dong District 100000 Hanoi Vietnam
- Phenikaa Research and Technology Institute (PRATI), A&A Green Phoenix Group 167 Hoang Ngan 100000 Hanoi Vietnam
| | - Nguyen Duc Hoa
- International Training Institute for Materials Science (ITIMS), Hanoi University of Science and Technology (HUST) No. 1-Dai Co Viet Str. 100000 Hanoi Vietnam +84 24 38692963 +84 24 38680787
| |
Collapse
|