1
|
Hoffmann-Młodzianowska M, Maksym RB, Pucia K, Kuciak M, Mackiewicz A, Kieda C. Endometriosis development in relation to hypoxia: a murine model study. Mol Med 2024; 30:195. [PMID: 39478503 PMCID: PMC11526686 DOI: 10.1186/s10020-024-00973-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Accepted: 10/23/2024] [Indexed: 11/02/2024] Open
Abstract
BACKGROUND Endometriosis, due to its ambiguous symptoms, still remains one of the most difficult female diseases to treat, with an average diagnosis time of 7-9 years. The changing level of hypoxia plays an important role in a healthy endometrium during menstruation and an elevated expression of the hypoxia-inducible factor 1-alpha (HIF-1α) has been demonstrated in ectopic endometria. HIF-1α mediates the induction of proangiogenic factors and the development of angiogenesis is a critical step in the establishment and pathogenesis of endometriosis. Although the inhibition of angiogenesis has been proposed as one of the actionable therapeutic modalities, vascular normalization and re-oxygenation may become a possible new approach for therapeutic intervention. METHODS Our goal was to investigate whether a selected murine model of endometriosis would be suitable for future studies on new methods for treating endometriosis. Non-invasive, high-resolution ultrasound-monitored observation was selected as the preclinical approach to obtain imaging of the presence and volume of the endometriotic-like lesions. The EF5 (2-(2-Nitro-1H-imidazol-1-yl)-N-(2,2,3,3,3-pentafluoropropyl)acetamide) compound that selectively binds to reduced proteins in hypoxic cells was used for hypoxia detection. The expression of Pten and other crucial genes linking endometriosis and hypoxia were also assessed. RESULTS Using EF5, a pentafluorinated derivative of the 2-nitroimidazole that is metabolically reduced by oxygen-inhibitable nitroreductase, we confirmed that hypoxia did develop in the selected model and was detected in uterine and ectopic endometriotic lesions. Moreover, the changes in oxygen tension also influenced the expression level of significant genes related to endometriosis, like Pten, Trp53, Hif1a, Epas1, and Vegfa. Their strong modulation evidenced here is indicative of model reliability. Using high-resolution ultrasound-based imaging, we present a non-invasive method of visualization that enables the detection and observation of lesion evolution throughout the duration of the experiment, which is fundamental for further preclinical studies and treatment evaluation. CONCLUSIONS The selected model and method of visualization appear to be suitable for the study of new treatment strategies based on hypoxia alleviation and blood flow restoration.
Collapse
Affiliation(s)
- Marta Hoffmann-Młodzianowska
- Laboratory of Molecular Oncology and Innovative Therapies, Military Institute of Medicine - National Research Institute, 04-141, Warsaw, Poland.
| | - Radosław B Maksym
- 1st Department of Obstetrics and Gynaecology, Centre of Postgraduate Medical Education, 01-004, Warsaw, Poland
| | - Katarzyna Pucia
- Animal Experimentation Laboratory of the Center for Biostructure Research, Medical University of Warsaw, 02-106, Warsaw, Poland
| | - Monika Kuciak
- Chair of Medical Biotechnology, Poznan University of Medical Sciences, 61-806, Poznan, Poland
| | - Andrzej Mackiewicz
- Chair of Medical Biotechnology, Poznan University of Medical Sciences, 61-806, Poznan, Poland
- Department of Diagnostics and Cancer Immunology, Greater Poland Cancer Centre, 61-866, Poznan, Poland
| | - Claudine Kieda
- Laboratory of Molecular Oncology and Innovative Therapies, Military Institute of Medicine - National Research Institute, 04-141, Warsaw, Poland
- Centre for Molecular Biophysics, UPR4301 CNRS, 45071, Orléans, France
| |
Collapse
|
2
|
Tu Z, Zhang Y, Shi K, Gong S, Zhao Z. Landsat data reveal lake deoxygenation worldwide. WATER RESEARCH 2024; 267:122525. [PMID: 39342706 DOI: 10.1016/j.watres.2024.122525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 09/13/2024] [Accepted: 09/24/2024] [Indexed: 10/01/2024]
Abstract
Dissolved oxygen (DO) is a fundamental requirement for the survival of aquatic organisms, which plays a crucial role in shaping the structure and functioning of aquatic ecosystems. However, the long-term DO change in global lakes remains unknown due to limited available data. To address this gap, we integrate Landsat data and geographic features to develop DO estimation models for global lakes using machine learning approaches. The results demonstrated that the trained random forest (RF) model has better performance (R2 = 0.72, and RMSE = 1.24 mg/L) than artificial neural network (ANN) (R2 = 0.66, and RMSE = 1.39 mg/L), support vector machine regression (SVR) (R2 = 0.62, and RMSE = 1.45 mg/L) and extreme gradient boosting (XGBoost) (R2 = 0.72, and RMSE = 1.29 mg/L). Then, we used the trained RF model to reveal the DO long-term (1984-2021) change in surface water (epilimnetic) of 351,236 global lakes with water area ≥ 0.1 km2. The results show that the average epilimnetic DO concentration of global lake was 9.72 ± 1.07 mg/L, with higher DO in the polar regions (latitude > 66.56 °) (10.87 ± 0.54 mg/L) and lower in the equatorial regions (-5 ° < latitude < 5 °) (6.29 ± 0.63 mg/L). We also find widespread deoxygenation in surface water of global lakes, with a rate of - 0.036 mg/L per decade. Meanwhile, the number of lakes and surface area that experiencing DO stress are continuously increasing, with rate of 39 and 212.85 km2, respectively. Our results offer a comprehensive dataset of DO variation spanning nearly 40 years, furnishing valuable insights for formulating effective management strategies, and enhancing the maintenance of the health of aquatic ecosystems.
Collapse
Affiliation(s)
- Ziwen Tu
- Nanjing University of Information Science and Technology, Nanjing 210044, China; State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China; University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Yibo Zhang
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China
| | - Kun Shi
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China.
| | - Shaoqi Gong
- Nanjing University of Information Science and Technology, Nanjing 210044, China
| | - Zhilong Zhao
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China; University of the Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
3
|
Qiu S, Chen Z, Yu L, Liu C, Ji C, Shen P, Cheng S, Qiu H, Fang Z, Zhang X. Effective oxidation and adsorption of As(III) in water by nanoconfined Ce-Mn binary oxides with excellent reusability. JOURNAL OF HAZARDOUS MATERIALS 2024; 473:134652. [PMID: 38781854 DOI: 10.1016/j.jhazmat.2024.134652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 05/01/2024] [Accepted: 05/17/2024] [Indexed: 05/25/2024]
Abstract
Herein, a highly efficient As(III) purifier Ce-Mn@N201 with excellent reusability was developed by stepwise precipitating hydrated cerium(IV) oxides (HCO) and hydrated manganese(IV) oxides (HMO) inside N201, a widely-used gel-type anion exchange resin. Owing to confinement of unique nanopores in N201, the in-situ generated nanoparticles (NPs) inside Ce-Mn@N201 were highly dispersed with ultra-small sizes of around 2.6 nm. Results demonstrated that HMO NPs effectively oxidized As(III) to As(V) with the conversion of Mn(IV) to Mn(II), while the generated Mn2+ was mostly re-adsorbed onto the negatively-charged surface of HMO NPs. During the regeneration process by simple alkaline treatment, the re-adsorbed Mn2+ was firstly precipitated as (hydr)oxides of Mn(II) and then oxidized to HMO NPs by dissolved oxygen to fully refresh its oxidation capacity. Though HCO NPs mainly served as adsorbent for arsenic, they could partially oxidize As(III) to As(V) at the beginning, while the oxidation capacities continuously diminished with the irreversible conversion of Ce(IV) to Ce(III). In 10 consecutive adsorption-regeneration cycle, Ce-Mn@N201 efficiently decontaminated As(III) from 500 μg/L to below 5 μg/L with Mn2+ leaching less than 0.3% per batch. During 3 cyclic fixed-bed adsorptions, Ce-Mn@N201 steadily produced 8500-9150 bed volume (BV) and 3150-3350 BV drinkable water from the synthesized and real groundwater, respectively, with Mn leaching in effluent constantly < 100 μg/L.
Collapse
Affiliation(s)
- Shun Qiu
- Jiangsu Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, School of Environmental Science and Engineering, Nanjing University of Information Science & Technology, Nanjing 210044, China
| | - Zhanxun Chen
- Jiangsu Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, School of Environmental Science and Engineering, Nanjing University of Information Science & Technology, Nanjing 210044, China
| | - Ling Yu
- Jiangsu Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, School of Environmental Science and Engineering, Nanjing University of Information Science & Technology, Nanjing 210044, China
| | - Chuying Liu
- Jiangsu Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, School of Environmental Science and Engineering, Nanjing University of Information Science & Technology, Nanjing 210044, China
| | - Chenghan Ji
- College of Civil Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Pengfei Shen
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Sikai Cheng
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Hui Qiu
- Jiangsu Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, School of Environmental Science and Engineering, Nanjing University of Information Science & Technology, Nanjing 210044, China
| | - Zhuoyao Fang
- Jiangsu Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, School of Environmental Science and Engineering, Nanjing University of Information Science & Technology, Nanjing 210044, China.
| | - Xiaolin Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| |
Collapse
|
4
|
Liu H, Zhang L, Wu Y, Ding W, Liu Y, Zhao S, Gu J. Research on the Influence of Core Sensing Components on the Performance of Galvanic Dissolved Oxygen Sensors. SENSORS (BASEL, SWITZERLAND) 2024; 24:4155. [PMID: 39000933 PMCID: PMC11243800 DOI: 10.3390/s24134155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Revised: 06/18/2024] [Accepted: 06/24/2024] [Indexed: 07/16/2024]
Abstract
The galvanic dissolved oxygen sensor finds widespread applications in multiple critical fields due to its high precision and excellent stability. As its core sensing components, the oxygen-permeable membrane, electrode, and electrolyte significantly impact the sensor's performance. To systematically investigate the comprehensive effects of these core sensing components on the performance of galvanic dissolved oxygen sensors, this study selected six types of oxygen-permeable membranes made from two materials (Perfluoroalkoxy Polymer (PFA) and Fluorinated Ethylene Propylene Copolymer (FEP)) with three thicknesses (0.015 mm, 0.03 mm, and 0.05 mm). Additionally, five concentrations of KCl electrolyte were configured, and four different proportions of lead-tin alloy electrodes were chosen. Single-factor and crossover experiments were conducted using the OxyGuard dissolved oxygen sensor as the experimental platform. The experimental results indicate that under the same membrane thickness conditions, PFA membranes provide a higher output voltage compared to FEP membranes. Moreover, the oxygen permeability of FEP membranes is more significantly affected by temperature. Furthermore, the oxygen permeability of the membrane is inversely proportional to its thickness; the thinner the membrane, the better the oxygen permeability, resulting in a corresponding increase in sensor output voltage. When the membrane thickness is reduced from 0.05 mm to 0.015 mm, the sensor output voltage for PFA and FEP membranes increases by 86% and 74.91%, respectively. However, this study also observed that excessively thin membranes might compromise measurement accuracy. In a saturated, dissolved oxygen environment, the sensor output voltage corresponding to the six oxygen-permeable membranes used in the experiment exhibits a highly linear inverse relationship with temperature (correlation coefficient ≥ 98%). Meanwhile, the lead-tin ratio of the electrode and electrolyte concentration have a relatively minor impact on the sensor output voltage, demonstrating good stability at different temperatures (coefficient of variation ≤ 0.78%). In terms of response time, it is directly proportional to the thickness of the oxygen-permeable membrane, especially for PFA membranes. When the thickness increases from 0.015 mm to 0.05 mm, the response time extends by up to 2033.33%. In contrast, the electrode material and electrolyte concentration have a less significant effect on response time. To further validate the practical value of the experimental results, the best-performing combination of core sensing components from the experiments was selected to construct a new dissolved oxygen sensor. A performance comparison test was conducted between this new sensor and the OxyGuard dissolved oxygen sensor. The results showed that both sensors had the same response time (49 s). However, in an anaerobic environment, the OxyGuard sensor demonstrated slightly higher accuracy by 2.44%. This study not only provides a deep analysis of the combined effects of oxygen-permeable membranes, electrodes, and electrolytes on the performance of galvanic dissolved oxygen sensors but also offers scientific evidence and practical guidance for optimizing sensor design.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Jiabing Gu
- College of Engineering, Nanjing Agricultural University, Nanjing 210031, China; (H.L.); (L.Z.); (Y.W.); (W.D.); (Y.L.); (S.Z.)
| |
Collapse
|
5
|
Wei X, Reddy VS, Gao S, Zhai X, Li Z, Shi J, Niu L, Zhang D, Ramakrishna S, Zou X. Recent advances in electrochemical cell-based biosensors for food analysis: Strategies for sensor construction. Biosens Bioelectron 2024; 248:115947. [PMID: 38181518 DOI: 10.1016/j.bios.2023.115947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 12/18/2023] [Accepted: 12/19/2023] [Indexed: 01/07/2024]
Abstract
Owing to their advantages such as great specificity, sensitivity, rapidity, and possibility of noninvasive and real-time monitoring, electrochemical cell-based biosensors (ECBBs) have been a powerful tool for food analysis encompassing the areas of nutrition, flavor, and safety. Notably, the distinctive biological relevance of ECBBs enables them to mimic physiological environments and reflect cellular behaviors, leading to valuable insights into the biological function of target components in food. Compared with previous reviews, this review fills the current gap in the narrative of ECBB construction strategies. The review commences by providing an overview of the materials and configuration of ECBBs, including cell types, cell immobilization strategies, electrode modification materials, and electrochemical sensing types. Subsequently, a detailed discussion is presented on the fabrication strategies of ECBBs in food analysis applications, which are categorized based on distinct signal sources. Lastly, we summarize the merits, drawbacks, and application scope of these diverse strategies, and discuss the current challenges and future perspectives of ECBBs. Consequently, this review provides guidance for the design of ECBBs with specific functions and promotes the application of ECBBs in food analysis.
Collapse
Affiliation(s)
- Xiaoou Wei
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, PR China; Department of Mechanical Engineering, National University of Singapore, Singapore 117575, Singapore
| | - Vundrala Sumedha Reddy
- Department of Mechanical Engineering, National University of Singapore, Singapore 117575, Singapore
| | - Shipeng Gao
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Xiaodong Zhai
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Zhihua Li
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Jiyong Shi
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Lidan Niu
- Key Laboratory of Condiment Supervision Technology for State Market Regulation, Chongqing Institute for Food and Drug Control, Chongqing 401121, PR China
| | - Di Zhang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, PR China; Key Laboratory of Condiment Supervision Technology for State Market Regulation, Chongqing Institute for Food and Drug Control, Chongqing 401121, PR China.
| | - Seeram Ramakrishna
- Department of Mechanical Engineering, National University of Singapore, Singapore 117575, Singapore.
| | - Xiaobo Zou
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, PR China.
| |
Collapse
|
6
|
Chen X, Du J, Kanwal S, Yang ZJ, Zheng LL, Wang J, Wen J, Zhang DW. A low-cost and portable fluorometer based on an optical pick-up unit for chlorophyll-a detection. Talanta 2024; 269:125447. [PMID: 38008018 DOI: 10.1016/j.talanta.2023.125447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 11/17/2023] [Accepted: 11/19/2023] [Indexed: 11/28/2023]
Abstract
Chlorophyll-a (Chl-a) fluorescence detection is an important technique for monitoring water quality. In this work, we proposed an approach that employs the mass-produced low-cost optical pick-up unit (OPU) extracted from the high-definition digital versatile disc (HD-DVD) drive as the key optical component for our chlorophyll-a fluorometer. The built-in blue-violet 405 nm laser diode of the OPU acts as the excitation light to perform laser-induced fluorescence (LIF). The laser driver and a series of intrinsic lenses within the OPU, such as an objective lens with a numerical aperture (NA) of 0.65 and a collimating lens, help reduce the size, cost, and system complexity of the fluorometer. By integrating off-the-shelf electronic components, miniaturized optical setups, and 3D-printed assemblies, we have developed a low-cost, easy-to-make, standalone, and portable fluorometer. Finally, we validated the performance of the device for chlorophyll-a fluorescence detection under laboratory and on-site conditions, which demonstrated its great potential in water monitoring applications. The limit of detection (LOD) for chlorophyll-a is 0.35 μg/L, the size of the device is 151 × 100 × 80 mm3, and the total cost of the proposed fluorometer is as low as 137.5 USD. © 2023 Elsevier Science. All rights reserved.
Collapse
Affiliation(s)
- Xu Chen
- School of Optical-Electrical and Computer Engineering, University of Shanghai for Science and Technology, Shanghai, 200093, China
| | - Jing Du
- Huitong School, Shenzhen, 518052, China
| | - Saima Kanwal
- School of Optical-Electrical and Computer Engineering, University of Shanghai for Science and Technology, Shanghai, 200093, China
| | - Zhi-Jin Yang
- School of Optical-Electrical and Computer Engineering, University of Shanghai for Science and Technology, Shanghai, 200093, China
| | - Lu-Lu Zheng
- School of Optical-Electrical and Computer Engineering, University of Shanghai for Science and Technology, Shanghai, 200093, China
| | - Jian Wang
- School of Optical-Electrical and Computer Engineering, University of Shanghai for Science and Technology, Shanghai, 200093, China
| | - Jing Wen
- School of Optical-Electrical and Computer Engineering, University of Shanghai for Science and Technology, Shanghai, 200093, China.
| | - Da-Wei Zhang
- School of Optical-Electrical and Computer Engineering, University of Shanghai for Science and Technology, Shanghai, 200093, China
| |
Collapse
|
7
|
Puri D, Kumar R, Kumar S, Thakur MS, Fekete G, Lee D, Singh T. Performance analysis and modelling of circular jets aeration in an open channel using soft computing techniques. Sci Rep 2024; 14:3140. [PMID: 38326386 PMCID: PMC10850504 DOI: 10.1038/s41598-024-53407-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 01/31/2024] [Indexed: 02/09/2024] Open
Abstract
Dissolved oxygen (DO) is an important parameter in assessing water quality. The reduction in DO concentration is the result of eutrophication, which degrades the quality of water. Aeration is the best way to enhance the DO concentration. In the current study, the aeration efficiency (E20) of various numbers of circular jets in an open channel was experimentally investigated for different channel angle of inclination (θ), discharge (Q), number of jets (Jn), Froude number (Fr), and hydraulic radius of each jet (HRJn). The statistical results show that jets from 8 to 64 significantly provide aeration in the open channel. The aeration efficiency and input parameters are modelled into a linear relationship. Additionally, utilizing WEKA software, three soft computing models for predicting aeration efficiency were created with Artificial Neural Network (ANN), M5P, and Random Forest (RF). Performance evaluation results and box plot have shown that ANN is the outperforming model with correlation coefficient (CC) = 0.9823, mean absolute error (MAE) = 0.0098, and root mean square error (RMSE) = 0.0123 during the testing stage. In order to assess the influence of different input factors on the E20 of jets, a sensitivity analysis was conducted using the most effective model, i.e., ANN. The sensitivity analysis results indicate that the angle of inclination is the most influential input variable in predicting E20, followed by discharge and the number of jets.
Collapse
Affiliation(s)
- Diksha Puri
- School of Environmental Science, Shoolini University, Solan, Himachal Pradesh, 173229, India
| | - Raj Kumar
- Department of Mechanical Engineering, Gachon University, Seongnam, 13120, South Korea
| | - Sushil Kumar
- Department of Physics, Hansraj College, University of Delhi, Delhi, 110007, India
| | - M S Thakur
- Department of Civil Engineering, Shoolini University, Solan, Himachal Pradesh, 173229, India
| | - Gusztáv Fekete
- Department of Material Science and Technology, Széchenyi István University, 9026, Győr, Hungary
| | - Daeho Lee
- Department of Mechanical Engineering, Gachon University, Seongnam, 13120, South Korea.
| | - Tej Singh
- Savaria Institute of Technology, Faculty of Informatics, ELTE Eötvös Loránd University, Budapest, 1117, Hungary.
| |
Collapse
|
8
|
Piccirillo S, Honigberg SM. Measuring effect of mutations & conditions on microbial respiratory rates. J Microbiol Methods 2024; 216:106864. [PMID: 38030085 PMCID: PMC10843655 DOI: 10.1016/j.mimet.2023.106864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 11/22/2023] [Accepted: 11/23/2023] [Indexed: 12/01/2023]
Abstract
Cellular respiration is central to a wide range of cellular processes. In microorganisms, the effect of a mutation or an environmental condition on the rate of respiration is usually determined by measuring oxygen consumption in the media. We describe this method and discuss caveats and controls for the method.
Collapse
Affiliation(s)
- Sarah Piccirillo
- Division of Biological and Biomedical Systems, 5007 Rockhill Rd, University of Missouri-Kansas City, Kansas City, MO 64110-1299, United States of America
| | - Saul M Honigberg
- Division of Biological and Biomedical Systems, 5007 Rockhill Rd, University of Missouri-Kansas City, Kansas City, MO 64110-1299, United States of America.
| |
Collapse
|
9
|
Grasso G, Colella F, Forciniti S, Onesto V, Iuele H, Siciliano AC, Carnevali F, Chandra A, Gigli G, Del Mercato LL. Fluorescent nano- and microparticles for sensing cellular microenvironment: past, present and future applications. NANOSCALE ADVANCES 2023; 5:4311-4336. [PMID: 37638162 PMCID: PMC10448310 DOI: 10.1039/d3na00218g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 06/13/2023] [Indexed: 08/29/2023]
Abstract
The tumor microenvironment (TME) demonstrates distinct hallmarks, including acidosis, hypoxia, reactive oxygen species (ROS) generation, and altered ion fluxes, which are crucial targets for early cancer biomarker detection, tumor diagnosis, and therapeutic strategies. Various imaging and sensing techniques have been developed and employed in both research and clinical settings to visualize and monitor cellular and TME dynamics. Among these, ratiometric fluorescence-based sensors have emerged as powerful analytical tools, providing precise and sensitive insights into TME and enabling real-time detection and tracking of dynamic changes. In this comprehensive review, we discuss the latest advancements in ratiometric fluorescent probes designed for the optical mapping of pH, oxygen, ROS, ions, and biomarkers within the TME. We elucidate their structural designs and sensing mechanisms as well as their applications in in vitro and in vivo detection. Furthermore, we explore integrated sensing platforms that reveal the spatiotemporal behavior of complex tumor cultures, highlighting the potential of high-resolution imaging techniques combined with computational methods. This review aims to provide a solid foundation for understanding the current state of the art and the future potential of fluorescent nano- and microparticles in the field of cellular microenvironment sensing.
Collapse
Affiliation(s)
- Giuliana Grasso
- Institute of Nanotechnology, National Research Council (CNR-NANOTEC) c/o Campus Ecotekne, via Monteroni 73100 Lecce Italy
| | - Francesco Colella
- Institute of Nanotechnology, National Research Council (CNR-NANOTEC) c/o Campus Ecotekne, via Monteroni 73100 Lecce Italy
- Department of Mathematics and Physics ''Ennio De Giorgi", University of Salento c/o Campus Ecotekne, via Monteroni 73100 Lecce Italy
| | - Stefania Forciniti
- Institute of Nanotechnology, National Research Council (CNR-NANOTEC) c/o Campus Ecotekne, via Monteroni 73100 Lecce Italy
| | - Valentina Onesto
- Institute of Nanotechnology, National Research Council (CNR-NANOTEC) c/o Campus Ecotekne, via Monteroni 73100 Lecce Italy
| | - Helena Iuele
- Institute of Nanotechnology, National Research Council (CNR-NANOTEC) c/o Campus Ecotekne, via Monteroni 73100 Lecce Italy
| | - Anna Chiara Siciliano
- Institute of Nanotechnology, National Research Council (CNR-NANOTEC) c/o Campus Ecotekne, via Monteroni 73100 Lecce Italy
- Department of Mathematics and Physics ''Ennio De Giorgi", University of Salento c/o Campus Ecotekne, via Monteroni 73100 Lecce Italy
| | - Federica Carnevali
- Institute of Nanotechnology, National Research Council (CNR-NANOTEC) c/o Campus Ecotekne, via Monteroni 73100 Lecce Italy
- Department of Mathematics and Physics ''Ennio De Giorgi", University of Salento c/o Campus Ecotekne, via Monteroni 73100 Lecce Italy
| | - Anil Chandra
- Centre for Research in Pure and Applied Sciences, Jain (Deemed-to-be-university) Bangalore Karnataka 560078 India
| | - Giuseppe Gigli
- Institute of Nanotechnology, National Research Council (CNR-NANOTEC) c/o Campus Ecotekne, via Monteroni 73100 Lecce Italy
- Department of Mathematics and Physics ''Ennio De Giorgi", University of Salento c/o Campus Ecotekne, via Monteroni 73100 Lecce Italy
| | - Loretta L Del Mercato
- Institute of Nanotechnology, National Research Council (CNR-NANOTEC) c/o Campus Ecotekne, via Monteroni 73100 Lecce Italy
| |
Collapse
|
10
|
Chen X, Li D, Mo D, Cui Z, Li X, Lian H, Gong M. Three-Dimensional Printed Biomimetic Robotic Fish for Dynamic Monitoring of Water Quality in Aquaculture. MICROMACHINES 2023; 14:1578. [PMID: 37630114 PMCID: PMC10456635 DOI: 10.3390/mi14081578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 08/06/2023] [Accepted: 08/08/2023] [Indexed: 08/27/2023]
Abstract
The extensive water pollution caused by production activities is a key issue that needs to be addressed in the aquaculture industry. The dynamic monitoring of water quality is essential for understanding water quality and the growth of fish fry. Here, a low-cost, low-noise, real-time monitoring and automatic feedback biomimetic robotic fish was proposed for the dynamic monitoring of multiple water quality parameters in aquaculture. The biomimetic robotic fish achieved a faster swimming speed and more stable posture control at a swing angular velocity of 16 rad/s by using simulation analysis. A fast swimming speed (0.4 m/s) was achieved through the control of double-jointed pectoral and caudal fins, exhibiting various types of movements, such as straight swimming, obstacle avoidance, turning, diving, and surfacing. As a demonstration of application, bionic robotic fish were placed in a lake for on-site water sampling and parameter detection. The relative average deviations in water quality parameters, such as water temperature, acidity and alkalinity, and turbidity, were 1.25%, 0.07%, and 0.94%, respectively, meeting the accuracy requirements for water quality parameter detection. In the future, bionic robotic fish are beneficial for monitoring water quality, fish populations, and behaviors, improving the efficiency and productivity of aquaculture, and also providing interesting tools and technologies for science education and ocean exploration.
Collapse
Affiliation(s)
- Xiaojun Chen
- School of Mechanical and Electronic Engineering, Lingnan Normal University, Zhanjiang 524048, China
| | | | | | | | | | | | | |
Collapse
|
11
|
Briciu-Burghina C, Power S, Delgado A, Regan F. Sensors for Coastal and Ocean Monitoring. ANNUAL REVIEW OF ANALYTICAL CHEMISTRY (PALO ALTO, CALIF.) 2023; 16:451-469. [PMID: 37314875 DOI: 10.1146/annurev-anchem-091922-085746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
In situ water monitoring sensors are critical to gain an understanding of ocean biochemistry and ecosystem health. They enable the collection of high-frequency data and capture ecosystem spatial and temporal changes, which in turn facilitate long-term global predictions. They are used as decision support tools in emergency situations and for risk mitigation, pollution source tracking, and regulatory monitoring. Advanced sensing platforms exist to support various monitoring needs together with state-of-the-art power and communication capabilities. To be fit-for-purpose, sensors must withstand the challenging marine environment and provide data at an acceptable cost. Significant technological advancements have catalyzed the development of new and improved sensors for coastal and oceanographic applications. Sensors are becoming smaller, smarter, more cost-effective, and increasingly specialized and diversified. This article, therefore, provides a review of the state-of-the art oceanographic and coastal sensors. Progress in sensor development is discussed in terms of performance and the key strategies used for achieving robustness, marine rating, cost reduction, and antifouling protection.
Collapse
Affiliation(s)
| | - Sean Power
- DCU Water Institute, School of Chemical Sciences, Dublin City University, Dublin, Ireland;
| | - Adrian Delgado
- DCU Water Institute, School of Chemical Sciences, Dublin City University, Dublin, Ireland;
| | - Fiona Regan
- DCU Water Institute, School of Chemical Sciences, Dublin City University, Dublin, Ireland;
| |
Collapse
|
12
|
Lou C, Dai J, Wang Y, Zhang Y, Li Y, Liu X, Ma Y. Highly sensitive light-induced thermoelastic spectroscopy oxygen sensor with co-coupling photoelectric and thermoelastic effect of quartz tuning fork. PHOTOACOUSTICS 2023; 31:100515. [PMID: 37252649 PMCID: PMC10220281 DOI: 10.1016/j.pacs.2023.100515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 05/11/2023] [Accepted: 05/22/2023] [Indexed: 05/31/2023]
Abstract
A light-induced thermoelastic spectroscopy (LITES) gas detection method based on CH3NH3PbI3 perovskite-coated quartz tuning fork (QTF) was proposed. By coating CH3NH3PbI3 thin film on the surface of ordinary QTF, a Schottky junction with silver electrodes was formed. The co-coupling of photoelectric effect and thermoelastic effect of CH3NH3PbI3-QTF results in a significant improvement in detection performance. The oxygen (O2) was select as the target analyte for measurement, and experimental results show that compared with the commercial standard QTF, the introduction of CH3NH3PbI3 perovskite Schottky junction increases the 2f signal amplitude and signal-to-noise ratio (SNR) by ∼106 times and ∼114 times, respectively. The minimum detection limit (MDL) of this LITES system is 260 ppm, and the corresponding normalized noise equivalent absorption coefficient (NNEA) is 9.21 × 10-13 cm-1·W·Hz-1/2. The Allan analysis of variance results indicate that when the average time is 564 s, the detection sensitivity can reach 83 ppm. This is the first time that QTF resonance detection has been combined with perovskite Schottky junctions for highly sensitive optical gas detection.
Collapse
Affiliation(s)
- Cunguang Lou
- College of Electronic Information and Engineering & Hebei Key Laboratory of Digital Medical Engineering, Hebei University, Baoding 071000, China
| | - Jialiang Dai
- College of Electronic Information and Engineering & Hebei Key Laboratory of Digital Medical Engineering, Hebei University, Baoding 071000, China
| | - Yaxin Wang
- College of Electronic Information and Engineering & Hebei Key Laboratory of Digital Medical Engineering, Hebei University, Baoding 071000, China
| | - Yu Zhang
- College of Electronic Information and Engineering & Hebei Key Laboratory of Digital Medical Engineering, Hebei University, Baoding 071000, China
| | - Yifan Li
- College of Electronic Information and Engineering & Hebei Key Laboratory of Digital Medical Engineering, Hebei University, Baoding 071000, China
| | - Xiuling Liu
- College of Electronic Information and Engineering & Hebei Key Laboratory of Digital Medical Engineering, Hebei University, Baoding 071000, China
| | - Yufei Ma
- National Key Laboratory of Science and Technology on Tunable Laser, Harbin Institute of Technology, Harbin 150001, China
| |
Collapse
|
13
|
Yang C, Huang Y, Lu Z, Ma Y, Ran X, Yan X, Zhang M, Qiu X, Luo L, Yue G, Chen H. Sublethal effects of niclosamide on the aquatic snail Pomacea canaliculata. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 259:115064. [PMID: 37229873 DOI: 10.1016/j.ecoenv.2023.115064] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 05/15/2023] [Accepted: 05/21/2023] [Indexed: 05/27/2023]
Abstract
Pomacea canaliculata is a malignant invasive aquatic snail found worldwide, and niclosamide (NS) is one of the primary agents used for its control. NS applied to water will exist in non-lethal concentrations for some time due to degradation or water exchange, thus resulting in sublethal effects on environmental organisms. To identify sublethal effects of NS on Pomacea canaliculata, we studied the aspects of histopathology, oxygen-nitrogen ratio (RO∶N), enzyme activity determination, and gene expression. After LC30 NS treatment (0.310 g/L), many muscle fibers of the feet degenerated and some acinar vesicles of the hepatopancreas collapsed and dissolved. The oxygen-nitrogen ratio (RO∶N) decreased significantly from 15.0494 to 11.5183, indicating that NS had changed the metabolic mode of Pomacea canaliculata and shifted it primarily to protein catabolism. Transcriptome analysis identified the sublethal effects of LC30 NS on the snails at the transcriptional level. 386, 322, and 583 differentially expressed genes (DEGs) were identified in the hepatopancreas, gills, and feet, respectively. GO (Gene Ontology) functional analysis and KEGG (Kyoto Encyclopedia of Genes and Genomes) pathway annotations showed that DEGs in the hepatopancreas were mainly enriched for sugar metabolism, protein biosynthesis, immune response, and amino acid metabolism functional categories; DEGs in the gills were mainly enriched for ion transport and amino acid metabolism; DEGs in the feet were mainly enriched for transmembrane transport and inositol biosynthesis. In the future, we will perform functional validation of key genes to further explain the molecular mechanism of sublethal effects.
Collapse
Affiliation(s)
- Chunping Yang
- Sichuan Agricultural University, Huimin RD 211, Chengdu, Sichuan 611130, China
| | - Yuting Huang
- Nankai University, Weijin RD 94, Tianjin 300071, China
| | - Zhaohuan Lu
- Sichuan Agricultural University, Huimin RD 211, Chengdu, Sichuan 611130, China
| | - Yuqing Ma
- Sichuan Agricultural University, Huimin RD 211, Chengdu, Sichuan 611130, China
| | - Xiao Ran
- Sichuan Agricultural University, Huimin RD 211, Chengdu, Sichuan 611130, China
| | - Xiao Yan
- Sichuan Agricultural University, Huimin RD 211, Chengdu, Sichuan 611130, China
| | - Min Zhang
- Sichuan Agricultural University, Huimin RD 211, Chengdu, Sichuan 611130, China
| | - Xiaoyan Qiu
- Sichuan Agricultural University, Huimin RD 211, Chengdu, Sichuan 611130, China
| | - Liya Luo
- Sichuan Agricultural University, Huimin RD 211, Chengdu, Sichuan 611130, China
| | - Guizhou Yue
- Sichuan Agricultural University, Xinkang RD 46, Ya'an 625014, China
| | - Huabao Chen
- Sichuan Agricultural University, Huimin RD 211, Chengdu, Sichuan 611130, China.
| |
Collapse
|
14
|
Gril D, Donlagic D. A Microfluidic, Flow-Through, Liquid Reagent Fluorescence Sensor Applied to Oxygen Concentration Measurement. SENSORS (BASEL, SWITZERLAND) 2023; 23:4984. [PMID: 37430898 DOI: 10.3390/s23104984] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 05/18/2023] [Accepted: 05/19/2023] [Indexed: 07/12/2023]
Abstract
A concept of a microfluidic fluorescent chemical sensing system is presented and demonstrated as a sensor for measurement of dissolved oxygen in water. The system utilizes on-line mixing of a fluorescent reagent with the analyzed sample, while it measures the fluorescence decay time of the mixture. The system is built entirely out of silica capillaries and optical fibers, and allows for very low consumption of the reagent (of the order of mL/month) and the analyzed sample (of the order of L/month). The proposed system can, thus, be applied to continuous on-line measurements, while utilizing a broad variety of different and proven fluorescent reagents or dyes. The proposed system allows for the use of relatively high-excitation light powers, as the flow-through concept of the system reduces the probability of the appearance of bleaching, heating, or other unwanted effects on the fluorescent dye/reagent caused significantly by the excitation light. The high amplitudes of fluorescent optical signals captured by an optical fiber allow for low-noise and high-bandwidth optical signal detection, and, consequently, the possibility for utilization of reagents with nanosecond fluorescent lifetimes.
Collapse
Affiliation(s)
- Dominik Gril
- Laboratory for Electro Optics and Sensor Systems, Faculty of Electrical Engineering and Computer Science, University of Maribor, Koroska Cesta 46, 2000 Maribor, Slovenia
| | - Denis Donlagic
- Laboratory for Electro Optics and Sensor Systems, Faculty of Electrical Engineering and Computer Science, University of Maribor, Koroska Cesta 46, 2000 Maribor, Slovenia
| |
Collapse
|
15
|
de Camargo ET, Spanhol FA, Slongo JS, da Silva MVR, Pazinato J, de Lima Lobo AV, Coutinho FR, Pfrimer FWD, Lindino CA, Oyamada MS, Martins LD. Low-Cost Water Quality Sensors for IoT: A Systematic Review. SENSORS (BASEL, SWITZERLAND) 2023; 23:s23094424. [PMID: 37177633 PMCID: PMC10181703 DOI: 10.3390/s23094424] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 04/20/2023] [Accepted: 04/25/2023] [Indexed: 05/15/2023]
Abstract
In many countries, water quality monitoring is limited due to the high cost of logistics and professional equipment such as multiparametric probes. However, low-cost sensors integrated with the Internet of Things can enable real-time environmental monitoring networks, providing valuable water quality information to the public. To facilitate the widespread adoption of these sensors, it is crucial to identify which sensors can accurately measure key water quality parameters, their manufacturers, and their reliability in different environments. Although there is an increasing body of work utilizing low-cost water quality sensors, many questions remain unanswered. To address this issue, a systematic literature review was conducted to determine which low-cost sensors are being used for remote water quality monitoring. The results show that there are three primary vendors for the sensors used in the selected papers. Most sensors range in price from US$6.9 to US$169.00 but can cost up to US$500.00. While many papers suggest that low-cost sensors are suitable for water quality monitoring, few compare low-cost sensors to reference devices. Therefore, further research is necessary to determine the reliability and accuracy of low-cost sensors compared to professional devices.
Collapse
Affiliation(s)
- Edson Tavares de Camargo
- Federal University of Technology-Parana (UTFPR), Toledo 85902-490, Brazil
- Graduate Program in Computer Science, Western Paraná State University (UNIOESTE), Cascavel 85819-110, Brazil
| | - Fabio Alexandre Spanhol
- Federal University of Technology-Parana (UTFPR), Toledo 85902-490, Brazil
- Graduate Program in Computer Science, Western Paraná State University (UNIOESTE), Cascavel 85819-110, Brazil
| | | | | | - Jaqueline Pazinato
- Federal University of Technology-Parana (UTFPR), Toledo 85902-490, Brazil
| | - Adriana Vechai de Lima Lobo
- Sanitation Company of Paraná (SANEPAR), Curitiba 80215-900, Brazil
- Federal University of Parana (UFPR), Curitiba 80210-170, Brazil
| | | | | | | | - Marcio Seiji Oyamada
- Graduate Program in Computer Science, Western Paraná State University (UNIOESTE), Cascavel 85819-110, Brazil
| | | |
Collapse
|
16
|
Chang J, He Q, Li M. Development of a Stable Oxygen Sensor Using a 761 nm DFB Laser and Multi-Pass Absorption Spectroscopy for Field Measurements. SENSORS (BASEL, SWITZERLAND) 2023; 23:s23094274. [PMID: 37177478 PMCID: PMC10181456 DOI: 10.3390/s23094274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 04/22/2023] [Accepted: 04/24/2023] [Indexed: 05/15/2023]
Abstract
An optical sensor system based on wavelength modulation spectroscopy (WMS) was developed for atmospheric oxygen (O2) detection. A distributed feedback (DFB) laser with butterfly packaging was used to target the O2 absorption line at 760.89 nm. A compact multi-pass gas cell was employed to increase the effective absorption length to 3.3 m. To ensure the stability and anti-interference capability of the sensor in field measurements, the optical module was fabricated with isolation of ambient light and vibration design. A 1f normalized 2f WMS (WMS-2f/1f) technique was adopted to reduce the effect of laser power drift. In addition, a LabVIEW-based dual-channel lock-in amplifier was developed for harmonic detection, which significantly reduced the sensor volume and cost. The detailed detection principle was described, and a theoretical model was established to verify the effectiveness of the technique. Experiments were carried out to obtain the device's sensing performances. An Allan deviation analysis yielded a minimum detection limit of 0.054% for 1 s integration time that can be further improved to 0.009% at ~60 s. Finally, the reliability and anti-interference capability of the sensor system were verified by the atmospheric O2 monitoring.
Collapse
Affiliation(s)
- Jvqiang Chang
- MoE Key Lab of Luminescence and Optical Information, Beijing Jiaotong University, No. 3 Shangyuancun, Beijing 100044, China
| | - Qixin He
- MoE Key Lab of Luminescence and Optical Information, Beijing Jiaotong University, No. 3 Shangyuancun, Beijing 100044, China
| | - Mengxin Li
- MoE Key Lab of Luminescence and Optical Information, Beijing Jiaotong University, No. 3 Shangyuancun, Beijing 100044, China
| |
Collapse
|
17
|
Orlov SN, Bogachev NA, Mereshchenko AS, Zmitrodan AA, Skripkin MY. Electrochemical Sensors for Controlling Oxygen Content and Corrosion Processes in Lead-Bismuth Eutectic Coolant-State of the Art. SENSORS (BASEL, SWITZERLAND) 2023; 23:812. [PMID: 36679606 PMCID: PMC9862473 DOI: 10.3390/s23020812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 01/07/2023] [Accepted: 01/09/2023] [Indexed: 06/17/2023]
Abstract
Controlling oxygen content in the primary circuit of nuclear reactors is one of the key tasks needed to ensure the safe operation of nuclear power plants where lead-bismuth eutectic alloy (LBE) is used as a coolant. If the oxygen concentration is low, active corrosion of structural materials takes place; upon increase in oxygen content, slag accumulates due to the formation of lead oxide. The generally accepted method of measuring the oxygen content in LBE is currently potentiometry. The sensors for measuring oxygen activity (electrochemical oxygen sensors) are galvanic cells with two electrodes (lead-bismuth coolant serves as working electrode) separated by a solid electrolyte. Control of corrosion and slag accumulation processes in circuits exploring LBE as a coolant is also based on data obtained by electrochemical oxygen sensors. The disadvantages of this approach are the low efficiency and low sensitivity of control. The alternative, Impedance Spectroscopy (EIS) Sensors, are proposed for Real-Time Corrosion Monitoring in LBE system. Currently their applicability in static LBE at temperatures up to 600 °C is shown.
Collapse
Affiliation(s)
- Sergey N. Orlov
- Institute of Chemistry, Saint-Petersburg State University, 7/9 Universitetskaya Emb., 199034 St. Petersburg, Russia
- Federal State Unitary Enterprise “Alexandrov Research Institute of Technology”, 72, Koporskoe Shosse, 188540 Sosnovy Bor, Russia
- Institute of Nuclear Industry, Peter the Great St. Petersburg Polytechnic University (SPbSU), 29, Polytechnicheskaya Street, 195251 St. Petersburg, Russia
| | - Nikita A. Bogachev
- Institute of Chemistry, Saint-Petersburg State University, 7/9 Universitetskaya Emb., 199034 St. Petersburg, Russia
| | - Andrey S. Mereshchenko
- Institute of Chemistry, Saint-Petersburg State University, 7/9 Universitetskaya Emb., 199034 St. Petersburg, Russia
| | - Alexandr A. Zmitrodan
- Federal State Unitary Enterprise “Alexandrov Research Institute of Technology”, 72, Koporskoe Shosse, 188540 Sosnovy Bor, Russia
| | - Mikhail Yu. Skripkin
- Institute of Chemistry, Saint-Petersburg State University, 7/9 Universitetskaya Emb., 199034 St. Petersburg, Russia
| |
Collapse
|
18
|
Grün C, Pfeifer J, Liebsch G, Gottwald E. O 2-sensitive microcavity arrays: A new platform for oxygen measurements in 3D cell cultures. Front Bioeng Biotechnol 2023; 11:1111316. [PMID: 36890915 PMCID: PMC9986295 DOI: 10.3389/fbioe.2023.1111316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 02/10/2023] [Indexed: 02/22/2023] Open
Abstract
Oxygen concentration plays a crucial role in (3D) cell culture. However, the oxygen content in vitro is usually not comparable to the in vivo situation, which is partly due to the fact that most experiments are performed under ambient atmosphere supplemented with 5% CO2, which can lead to hyperoxia. Cultivation under physiological conditions is necessary, but also fails to have suitable measurement methods, especially in 3D cell culture. Current oxygen measurement methods rely on global oxygen measurements (dish or well) and can only be performed in 2D cultures. In this paper, we describe a system that allows the determination of oxygen in 3D cell culture, especially in the microenvironment of single spheroids/organoids. For this purpose, microthermoforming was used to generate microcavity arrays from oxygen-sensitive polymer films. In these oxygen-sensitive microcavity arrays (sensor arrays), spheroids cannot only be generated but also cultivated further. In initial experiments we could show that the system is able to perform mitochondrial stress tests in spheroid cultures to characterize mitochondrial respiration in 3D. Thus, with the help of sensor arrays, it is possible to determine oxygen label-free and in real-time in the immediate microenvironment of spheroid cultures for the first time.
Collapse
Affiliation(s)
- Christoph Grün
- Institute of Functional Interfaces, Karlsruhe Institute of Technology, Karlsruhe, Germany
| | - Jana Pfeifer
- Institute of Functional Interfaces, Karlsruhe Institute of Technology, Karlsruhe, Germany
| | | | - Eric Gottwald
- Institute of Functional Interfaces, Karlsruhe Institute of Technology, Karlsruhe, Germany
| |
Collapse
|
19
|
Smutok O, Katz E. Biosensors: Electrochemical Devices-General Concepts and Performance. BIOSENSORS 2022; 13:44. [PMID: 36671878 PMCID: PMC9855974 DOI: 10.3390/bios13010044] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 12/23/2022] [Accepted: 12/26/2022] [Indexed: 06/17/2023]
Abstract
This review provides a general overview of different biosensors, mostly concentrating on electrochemical analytical devices, while briefly explaining general approaches to various kinds of biosensors, their construction and performance. A discussion on how all required components of biosensors are brought together to perform analytical work is offered. Different signal-transducing mechanisms are discussed, particularly addressing the immobilization of biomolecular components in the vicinity of a transducer interface and their functional integration with electronic devices. The review is mostly addressing general concepts of the biosensing processes rather than specific modern achievements in the area.
Collapse
|
20
|
The Challenges of O 2 Detection in Biological Fluids: Classical Methods and Translation to Clinical Applications. Int J Mol Sci 2022; 23:ijms232415971. [PMID: 36555613 PMCID: PMC9786805 DOI: 10.3390/ijms232415971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 12/10/2022] [Accepted: 12/13/2022] [Indexed: 12/23/2022] Open
Abstract
Dissolved oxygen (DO) is deeply involved in preserving the life of cellular tissues and human beings due to its key role in cellular metabolism: its alterations may reflect important pathophysiological conditions. DO levels are measured to identify pathological conditions, explain pathophysiological mechanisms, and monitor the efficacy of therapeutic approaches. This is particularly relevant when the measurements are performed in vivo but also in contexts where a variety of biological and synthetic media are used, such as ex vivo organ perfusion. A reliable measurement of medium oxygenation ensures a high-quality process. It is crucial to provide a high-accuracy, real-time method for DO quantification, which could be robust towards different medium compositions and temperatures. In fact, biological fluids and synthetic clinical fluids represent a challenging environment where DO interacts with various compounds and can change continuously and dynamically, and further precaution is needed to obtain reliable results. This study aims to present and discuss the main oxygen detection and quantification methods, focusing on the technical needs for their translation to clinical practice. Firstly, we resumed all the main methodologies and advancements concerning dissolved oxygen determination. After identifying the main groups of all the available techniques for DO sensing based on their mechanisms and applicability, we focused on transferring the most promising approaches to a clinical in vivo/ex vivo setting.
Collapse
|
21
|
Banerjee A, Singh S, Ghosh R, Hasan MN, Bera A, Roy L, Bhattacharya N, Halder A, Chattopadhyay A, Mukhopadhyay S, Das A, Altass HM, Moussa Z, Ahmed SA, Pal SK. A portable spectroscopic instrument for multiplexed monitoring of acute water toxicity: Design, testing, and evaluation. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2022; 93:115105. [PMID: 36461487 DOI: 10.1063/5.0112588] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 09/29/2022] [Indexed: 05/22/2023]
Abstract
The deteriorating water environment worldwide, mainly due to population explosion and uncontrolled direct disposal of harmful industrial and farming wastes, earnestly demands new approaches and accurate technologies to monitor water quality before consumption overcoming the shortcomings of the current methodologies. A spectroscopic water quality monitoring and early-warning instrument for evaluating acute water toxicity are the need of the hour. In this study, we have developed a prototype capable of the quantification of dissolved organic matter, dissolved chemicals, and suspended particulate matter in trace amounts dissolved in the water. The prototype estimates the water quality of the samples by measuring the absorbance, fluorescence, and scattering of the impurities simultaneously. The performance of the instrument was evaluated by detecting common water pollutants such as Benzopyrene, Crystal Violet, and Titanium di-oxide. The limit of detection values was found to be 0.50, 23.9, and 23.2 ppb (0.29 µM), respectively.
Collapse
Affiliation(s)
- Amrita Banerjee
- Department of Physics, Jadavpur University, 188, Raja S. C. Mallick Rd., Kolkata 700032, India
| | - Soumendra Singh
- Technical Research Centre, S. N. Bose National Centre for Basic Sciences, Block JD, Sector III, Salt Lake, Kolkata, West Bengal 700106, India
| | - Ria Ghosh
- Department of Chemical, Biological and Macromolecular Sciences, S. N. Bose National Centre for Basic Sciences, Block JD, Sector 3, Salt Lake, Kolkata 700106, India
| | - Md Nur Hasan
- Department of Chemical, Biological and Macromolecular Sciences, S. N. Bose National Centre for Basic Sciences, Block JD, Sector 3, Salt Lake, Kolkata 700106, India
| | - Arpan Bera
- Department of Chemical, Biological and Macromolecular Sciences, S. N. Bose National Centre for Basic Sciences, Block JD, Sector 3, Salt Lake, Kolkata 700106, India
| | - Lopamudra Roy
- Technical Research Centre, S. N. Bose National Centre for Basic Sciences, Block JD, Sector III, Salt Lake, Kolkata, West Bengal 700106, India
| | - Neha Bhattacharya
- Department of Chemical, Biological and Macromolecular Sciences, S. N. Bose National Centre for Basic Sciences, Block JD, Sector 3, Salt Lake, Kolkata 700106, India
| | - Animesh Halder
- Technical Research Centre, S. N. Bose National Centre for Basic Sciences, Block JD, Sector III, Salt Lake, Kolkata, West Bengal 700106, India
| | - Arpita Chattopadhyay
- Department of Basic Science and Humanities, Techno International New Town, Block, DG 1/1, Action Area 1 New Town, Rajarhat, Kolkata 700156, India
| | - Subhadipta Mukhopadhyay
- Department of Physics, Jadavpur University, 188, Raja S. C. Mallick Rd., Kolkata 700032, India
| | - Amitava Das
- Indian Institute of Science Education and Research Kolkata, Mohanpur 741246, WestBengal, India
| | - Hatem M Altass
- Chemistry Department, Faculty of Applied Science, Umm Al-Qura University, 21955 Makkah, Saudi Arabia
| | - Ziad Moussa
- Department of Chemistry, College of Science, United Arab Emirates University, P. O. Box 15551, Al Ain, Abu Dhabi, United Arab Emirates
| | - Saleh A Ahmed
- Chemistry Department, Faculty of Applied Science, Umm Al-Qura University, 21955 Makkah, Saudi Arabia
| | - Samir Kumar Pal
- Department of Chemical, Biological and Macromolecular Sciences, S. N. Bose National Centre for Basic Sciences, Block JD, Sector 3, Salt Lake, Kolkata 700106, India
| |
Collapse
|
22
|
McCorry MC, Reardon KF, Black M, Williams C, Babakhanova G, Halpern JM, Sarkar S, Swami NS, Mirica KA, Boermeester S, Underhill A. Sensor technologies for quality control in engineered tissue manufacturing. Biofabrication 2022; 15:10.1088/1758-5090/ac94a1. [PMID: 36150372 PMCID: PMC10283157 DOI: 10.1088/1758-5090/ac94a1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Accepted: 09/23/2022] [Indexed: 11/11/2022]
Abstract
The use of engineered cells, tissues, and organs has the opportunity to change the way injuries and diseases are treated. Commercialization of these groundbreaking technologies has been limited in part by the complex and costly nature of their manufacture. Process-related variability and even small changes in the manufacturing process of a living product will impact its quality. Without real-time integrated detection, the magnitude and mechanism of that impact are largely unknown. Real-time and non-destructive sensor technologies are key for in-process insight and ensuring a consistent product throughout commercial scale-up and/or scale-out. The application of a measurement technology into a manufacturing process requires cell and tissue developers to understand the best way to apply a sensor to their process, and for sensor manufacturers to understand the design requirements and end-user needs. Furthermore, sensors to monitor component cells' health and phenotype need to be compatible with novel integrated and automated manufacturing equipment. This review summarizes commercially relevant sensor technologies that can detect meaningful quality attributes during the manufacturing of regenerative medicine products, the gaps within each technology, and sensor considerations for manufacturing.
Collapse
Affiliation(s)
- Mary Clare McCorry
- Advanced Regenerative Manufacturing Institute, Manchester, NH 03101, United States of America
| | - Kenneth F Reardon
- Chemical and Biological Engineering and Biomedical Engineering, Colorado State University, Fort Collins, CO 80521, United States of America
| | - Marcie Black
- Advanced Silicon Group, Lowell, MA 01854, United States of America
| | - Chrysanthi Williams
- Access Biomedical Solutions, Trinity, Florida 34655, United States of America
| | - Greta Babakhanova
- National Institute of Standards and Technology, Gaithersburg, MD 20899, United States of America
| | - Jeffrey M Halpern
- Department of Chemical Engineering, University of New Hampshire, Durham, NH 03824, United States of America
- Materials Science and Engineering Program, University of New Hampshire, Durham, NH 03824, United States of America
| | - Sumona Sarkar
- National Institute of Standards and Technology, Gaithersburg, MD 20899, United States of America
| | - Nathan S Swami
- Electrical and Computer Engineering, University of Virginia, Charlottesville, VA 22904, United States of America
| | - Katherine A Mirica
- Department of Chemistry, Dartmouth College, Hanover, NH 03755, United States of America
| | - Sarah Boermeester
- Advanced Regenerative Manufacturing Institute, Manchester, NH 03101, United States of America
| | - Abbie Underhill
- Scientific Bioprocessing Inc., Pittsburgh, PA 15238, United States of America
| |
Collapse
|
23
|
Nikitkina E, Shapiev I, Musidray A, Krutikova A, Plemyashov K, Bogdanova S, Leibova V, Shiryaev G, Turlova J. Assessment of Semen Respiratory Activity of Domesticated Species before and after Cryopreservation: Boars, Bulls, Stallions, Reindeers and Roosters. Vet Sci 2022; 9:vetsci9100513. [PMID: 36288126 PMCID: PMC9610926 DOI: 10.3390/vetsci9100513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 08/13/2022] [Accepted: 09/15/2022] [Indexed: 11/20/2022] Open
Abstract
Simple Summary Artificial insemination is actively used in animal husbandry. It is important to know the quality of the sperm for artificial insemination. One of the indicators of sperm quality can be an assessment of energy metabolism, since energy is needed for sperm to move and fertilize the egg. We studied the respiration rate in spermatozoa of different animal species: bulls, stallions, boars, reindeer and roosters. To determine the production of energy (ATP), the substance 2.4-dinetrophenol (2.4-DNP) was used, which stopped the production of ATP. Semen was assessed before and after freezing. The evaluation showed the same response to the addition of 2.4-DNP to the semen of different species, as well as a sufficient relationship between the reaction of semen respiration to the addition of 2.4-DNP and the fertilizing ability of sperm. At the same time, no relationship was found between the respiratory rate and fertility. The 2.4-DNP test can be a suitable additional measure of sperm quality. Abstract To assess sperm quality, it is important to evaluate energy metabolism. The test substance 2.4-dinitrophenol (2.4-DNP) is an agent for destroying oxidative phosphorylation. 2.4-DNP shuts off the production of adenosine triphosphate (ATP) from oxidation and then, the respiration rate increases. If the respiratory chain is damaged, there is little or no response to adding 2.4-DNP. The aim of this study was to analyze the respiratory activity and oxidative phosphorylation in semen before and after freezing and compare the obtained data with the fertilizing ability of sperm. There was a reduction in sperm respiration rates in all species after thawing. The respiration of spermatozoa of boars, bulls, stallions, reindeers and chicken showed responses to 2.4-dinitrophenol. The only difference is in the strength of the response to the test substance. After freezing and thawing, respiratory stimulation by 2.4-DNP decreased. The results of our study show that respiration rate is not correlated with pregnancy rates and egg fertility. However, there was a high correlation between the stimulation of respiration by 2.4-dinitrophenol and pregnancy rates. The test for an increase in respiration rate after adding 2.4-dinitrophenol could be a suitable test of the fertilizing ability of sperm.
Collapse
|
24
|
Wu CC, Wang CJ, Chang CLT, Shiku H, Wang YR, Yan JD, Ding SJ. Dissolved Oxygen-Sensing Chip Integrating an Open Container Connected with a Position-Raised Channel for Estimation of Cellular Mitochondrial Activity. ACS Sens 2022; 7:1808-1818. [PMID: 35748570 DOI: 10.1021/acssensors.1c02287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The measurement of oxygen consumption of adherent cells is a profoundly important issue for estimating the bioenergetic health and metabolism activity of cells. The study describes the construction of a microfluidic chip consisting of an open container connected with a position-raised channel and dissolved oxygen (DO)-sensing gold ultramicroelectrodes for quantifying the oxygen consumption rate (OCR) of adherent cells. The microfluidic chip design can reduce the action of shear force on the adherent cells during medium replacement. The residual concentration of analytes in the open container was only 4.4% after solution replacement via the position-raised channel. The DO reduction current measured by ultramicroelectrodes averaged in the range of 40-60 s presented high reproducibility with a 1.1% relative standard deviation suitable for OCR calculation. After short-term (90 min) cultivation, the microfluidic chip can monitor the time-dependent change in the OCR of 3T3-L1 cells for several hours by repeatedly replacing the culture medium or with the stimulation of different mitochondrial inhibitors. The presented microfluidic cell-based chip has great promise for drug screening and chemosensitivity testing by measuring OCR to evaluate the mitochondrial function of adherent cells.
Collapse
Affiliation(s)
- Ching-Chou Wu
- Department of Bio-Industrial Mechatronics Engineering, National Chung Hsing University, Taichung City 402, Taiwan.,Innovation and Development Center of Sustainable Agriculture, National Chung Hsing University, Taichung City 402, Taiwan
| | - Chieh-Jen Wang
- Department of Bio-Industrial Mechatronics Engineering, National Chung Hsing University, Taichung City 402, Taiwan
| | | | - Hitoshi Shiku
- Graduate School of Engineering, Tohoku University, 6-6-11 Aramaki-aza Aoba, Aoba-ku, Sendai 980-8579, Japan
| | - Yu-Ren Wang
- Department of Bio-Industrial Mechatronics Engineering, National Chung Hsing University, Taichung City 402, Taiwan
| | - Jia-De Yan
- Department of Bio-Industrial Mechatronics Engineering, National Chung Hsing University, Taichung City 402, Taiwan
| | - Shinn-Jyh Ding
- Department of Dentistry, Chung Shan Medical University Hospital, Taichung City 402, Taiwan, ROC.,Institute of Oral Science, Chung Shan Medical University, Taichung City 402, Taiwan
| |
Collapse
|
25
|
Grist SM, Bennewith KL, Cheung KC. Oxygen Measurement in Microdevices. ANNUAL REVIEW OF ANALYTICAL CHEMISTRY (PALO ALTO, CALIF.) 2022; 15:221-246. [PMID: 35696522 DOI: 10.1146/annurev-anchem-061020-111458] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Oxygen plays a fundamental role in respiration and metabolism, and quantifying oxygen levels is essential in many environmental, industrial, and research settings. Microdevices facilitate the study of dynamic, oxygen-dependent effects in real time. This review is organized around the key needs for oxygen measurement in microdevices, including integrability into microfabricated systems; sensor dynamic range and sensitivity; spatially resolved measurements to map oxygen over two- or three-dimensional regions of interest; and compatibility with multimodal and multianalyte measurements. After a brief overview of biological readouts of oxygen, followed by oxygen sensor types that have been implemented in microscale devices and sensing mechanisms, this review presents select recent applications in organs-on-chip in vitro models and new sensor capabilities enabling oxygen microscopy, bioprocess manufacturing, and pharmaceutical industries. With the advancement of multiplexed, interconnected sensors and instruments and integration with industry workflows, intelligent microdevice-sensor systems including oxygen sensors will have further impact in environmental science, manufacturing, and medicine.
Collapse
Affiliation(s)
- Samantha M Grist
- School of Biomedical Engineering, Centre for Blood Research, University of British Columbia, Vancouver, British Columbia, Canada;
| | - Kevin L Bennewith
- Integrative Oncology Department, BC Cancer Research Institute, Vancouver, British Columbia, Canada
| | - Karen C Cheung
- School of Biomedical Engineering, Centre for Blood Research, University of British Columbia, Vancouver, British Columbia, Canada;
- Department of Electrical and Computer Engineering, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
26
|
A Review on Machine Learning, Artificial Intelligence, and Smart Technology in Water Treatment and Monitoring. WATER 2022. [DOI: 10.3390/w14091384] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Artificial-intelligence methods and machine-learning models have demonstrated their ability to optimize, model, and automate critical water- and wastewater-treatment applications, natural-systems monitoring and management, and water-based agriculture such as hydroponics and aquaponics. In addition to providing computer-assisted aid to complex issues surrounding water chemistry and physical/biological processes, artificial intelligence and machine-learning (AI/ML) applications are anticipated to further optimize water-based applications and decrease capital expenses. This review offers a cross-section of peer reviewed, critical water-based applications that have been coupled with AI or ML, including chlorination, adsorption, membrane filtration, water-quality-index monitoring, water-quality-parameter modeling, river-level monitoring, and aquaponics/hydroponics automation/monitoring. Although success in control, optimization, and modeling has been achieved with the AI methods, ML models, and smart technologies (including the Internet of Things (IoT), sensors, and systems based on these technologies) that are reviewed herein, key challenges and limitations were common and pervasive throughout. Poor data management, low explainability, poor model reproducibility and standardization, as well as a lack of academic transparency are all important hurdles to overcome in order to successfully implement these intelligent applications. Recommendations to aid explainability, data management, reproducibility, and model causality are offered in order to overcome these hurdles and continue the successful implementation of these powerful tools.
Collapse
|
27
|
Advances in Technological Research for Online and In Situ Water Quality Monitoring—A Review. SUSTAINABILITY 2022. [DOI: 10.3390/su14095059] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Monitoring water quality is an essential tool for the control of pollutants and pathogens that can cause damage to the environment and human health. However, water quality analysis is usually performed in laboratory environments, often with the use of high-cost equipment and qualified professionals. With the progress of nanotechnology and the advance in engineering materials, several studies have shown, in recent years, the development of technologies aimed at monitoring water quality, with the ability to reduce the costs of analysis and accelerate the achievement of results for management and decision-making. In this work, a review was carried out on several low-cost developed technologies and applied in situ for water quality monitoring. Thus, new alternative technologies for the main physical (color, temperature, and turbidity), chemical (chlorine, fluorine, phosphorus, metals, nitrogen, dissolved oxygen, pH, and oxidation–reduction potential), and biological (total coliforms, Escherichia coli, algae, and cyanobacteria) water quality parameters were described. It was observed that there has been an increase in the number of publications related to the topic in recent years, mainly since 2012, with 641 studies being published in 2021. The main new technologies developed are based on optical or electrochemical sensors, however, due to the recent development of these technologies, more robust analyses and evaluations in real conditions are essential to guarantee the precision and repeatability of the methods, especially when it is desirable to compare the values with government regulatory standards.
Collapse
|
28
|
The Measurement, Application and Effect of Oxygen in Microbial Fermentations: Focusing on Methane and Carboxylate Production. FERMENTATION-BASEL 2022. [DOI: 10.3390/fermentation8040138] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Oxygen is considered detrimental to anaerobic fermentation processes by many practitioners. However, deliberate oxygen sparging has been used successfully for decades to remove H2S in anaerobic digestion (AD) systems. Moreover, microaeration techniques during AD have shown that small doses of oxygen may enhance process performance and promote the in situ degradation of recalcitrant compounds. However, existing oxygen dosing techniques are imprecise, which has led to inconsistent results between studies. At the same time, real-time oxygen fluxes cannot be reliably quantified due to the complexity of most bioreactor systems. Thus, there is a pressing need for robust monitoring and process control in applications where oxygen serves as an operating parameter or an experimental variable. This review summarizes and evaluates the available methodologies for oxygen measurement and dosing as they pertain to anaerobic microbiomes. The historical use of (micro-)aeration in anaerobic digestion and its potential role in other anaerobic fermentation processes are critiqued in detail. This critique also provides insights into the effects of oxygen on these microbiomes. Our assessment suggests that oxygen dosing, when implemented in a controlled and quantifiable manner, could serve as an effective tool for bioprocess engineers to further manipulate anaerobic microbiomes for either bioenergy or biochemical production.
Collapse
|
29
|
Pajčin I, Knežić T, Savic Azoulay I, Vlajkov V, Djisalov M, Janjušević L, Grahovac J, Gadjanski I. Bioengineering Outlook on Cultivated Meat Production. MICROMACHINES 2022; 13:402. [PMID: 35334693 PMCID: PMC8950996 DOI: 10.3390/mi13030402] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 02/21/2022] [Accepted: 02/23/2022] [Indexed: 02/04/2023]
Abstract
Cultured meat (also referred to as cultivated meat or cell-based meat)-CM-is fabricated through the process of cellular agriculture (CA), which entails application of bioengineering, i.e., tissue engineering (TE) principles to the production of food. The main TE principles include usage of cells, grown in a controlled environment provided by bioreactors and cultivation media supplemented with growth factors and other needed nutrients and signaling molecules, and seeded onto the immobilization elements-microcarriers and scaffolds that provide the adhesion surfaces necessary for anchor-dependent cells and offer 3D organization for multiple cell types. Theoretically, many solutions from regenerative medicine and biomedical engineering can be applied in CM-TE, i.e., CA. However, in practice, there are a number of specificities regarding fabrication of a CM product that needs to fulfill not only the majority of functional criteria of muscle and fat TE, but also has to possess the sensory and nutritional qualities of a traditional food component, i.e., the meat it aims to replace. This is the reason that bioengineering aimed at CM production needs to be regarded as a specific scientific discipline of a multidisciplinary nature, integrating principles from biomedical engineering as well as from food manufacturing, design and development, i.e., food engineering. An important requirement is also the need to use as little as possible of animal-derived components in the whole CM bioprocess. In this review, we aim to present the current knowledge on different bioengineering aspects, pertinent to different current scientific disciplines but all relevant for CM engineering, relevant for muscle TE, including different cell sources, bioreactor types, media requirements, bioprocess monitoring and kinetics and their modifications for use in CA, all in view of their potential for efficient CM bioprocess scale-up. We believe such a review will offer a good overview of different bioengineering strategies for CM production and will be useful to a range of interested stakeholders, from students just entering the CA field to experienced researchers looking for the latest innovations in the field.
Collapse
Affiliation(s)
- Ivana Pajčin
- Department of Biotechnology and Pharmaceutical Engineering, Faculty of Technology Novi Sad, University of Novi Sad, Bulevar cara Lazara 1, 21000 Novi Sad, Serbia; (I.P.); (V.V.); (J.G.)
| | - Teodora Knežić
- Center for Biosystems, BioSense Institute, University of Novi Sad, Dr Zorana Djindjica 1, 21000 Novi Sad, Serbia; (T.K.); (M.D.); (L.J.)
| | - Ivana Savic Azoulay
- Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 69978, Israel;
| | - Vanja Vlajkov
- Department of Biotechnology and Pharmaceutical Engineering, Faculty of Technology Novi Sad, University of Novi Sad, Bulevar cara Lazara 1, 21000 Novi Sad, Serbia; (I.P.); (V.V.); (J.G.)
| | - Mila Djisalov
- Center for Biosystems, BioSense Institute, University of Novi Sad, Dr Zorana Djindjica 1, 21000 Novi Sad, Serbia; (T.K.); (M.D.); (L.J.)
| | - Ljiljana Janjušević
- Center for Biosystems, BioSense Institute, University of Novi Sad, Dr Zorana Djindjica 1, 21000 Novi Sad, Serbia; (T.K.); (M.D.); (L.J.)
| | - Jovana Grahovac
- Department of Biotechnology and Pharmaceutical Engineering, Faculty of Technology Novi Sad, University of Novi Sad, Bulevar cara Lazara 1, 21000 Novi Sad, Serbia; (I.P.); (V.V.); (J.G.)
| | - Ivana Gadjanski
- Center for Biosystems, BioSense Institute, University of Novi Sad, Dr Zorana Djindjica 1, 21000 Novi Sad, Serbia; (T.K.); (M.D.); (L.J.)
| |
Collapse
|
30
|
Abstract
Microbial biofilms have caused serious concerns in healthcare, medical, and food industries because of their intrinsic resistance against conventional antibiotics and cleaning procedures and their capability to firmly adhere on surfaces for persistent contamination. These global issues strongly motivate researchers to develop novel methodologies to investigate the kinetics underlying biofilm formation, to understand the response of the biofilm with different chemical and physical treatments, and to identify biofilm-specific drugs with high-throughput screenings. Meanwhile microbial biofilms can also be utilized positively as sensing elements in cell-based sensors due to their strong adhesion on surfaces. In this perspective, we provide an overview on the connections between sensing and microbial biofilms, focusing on tools used to investigate biofilm properties, kinetics, and their response to chemicals or physical agents, and biofilm-based sensors, a type of biosensor using the bacterial biofilm as a biorecognition element to capture the presence of the target of interest by measuring the metabolic activity of the immobilized microbial cells. Finally we discuss possible new research directions for the development of robust and rapid biofilm related sensors with high temporal and spatial resolutions, pertinent to a wide range of applications.
Collapse
Affiliation(s)
- Riccardo Funari
- Dipartimento di Fisica “M. Merlin”, Università degli Studi di Bari Aldo Moro, Via Amendola, 173, Bari 70125, Italy
- CNR, Istituto di Fotonica e Nanotecnologie, Via Amendola, 173, 70125 Bari, Italy
| | - Amy Q. Shen
- Micro/Bio/Nanofluidics Unit, Okinawa Institute of Science and Technology Graduate University, 1919-1 Tancha, Onna-son, Okinawa 904-0495, Japan
| |
Collapse
|
31
|
Zhang H, Liu T, Li Q, Zhang X, Zhao H, Zheng Y, Qin F, Zhang Z, Sheng T, Tian Y. Large-scale sensitivity adjustment for Gd-HMME room temperature phosphorescence oxygen sensing. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 267:120490. [PMID: 34688061 DOI: 10.1016/j.saa.2021.120490] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 10/07/2021] [Indexed: 06/13/2023]
Abstract
The oxygen sensing enhancement based on room temperature phosphorescence (RTP) of Gd-HMME adjusted by imidazole was studied. The phosphorescence intensity IP0 and the Stern-Volmer equations under different imidazole concentration were obtained, and the physical mechanism of imidazole regulating the oxygen quenching constant KSV was analyzed. It was found that the KSV value increased by ∼46 folds in the range of 12.4(1)-576.1(5) kPa-1, and the large-scale variation of KSV is conducive to the realization of high precision oxygen concentration measurement in a wide range. In addition, the standard deviation σ of continuous measurement results was given, and the limit of detection (LOD) was determined to be 6.6 ppm.
Collapse
Affiliation(s)
- Honglin Zhang
- School of Physics, Harbin Institute of Technology, Harbin 150001, China
| | - Ting Liu
- School of Physics, Harbin Institute of Technology, Harbin 150001, China
| | - Qiuhe Li
- School of Physics, Harbin Institute of Technology, Harbin 150001, China
| | - Xiyu Zhang
- School of Physics, Harbin Institute of Technology, Harbin 150001, China
| | - Hua Zhao
- School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001, China
| | - Yangdong Zheng
- School of Physics, Harbin Institute of Technology, Harbin 150001, China
| | - Feng Qin
- School of Instrumentation Science and Engineering, Harbin Institute of Technology, Harbin 150001, China
| | - Zhiguo Zhang
- School of Physics, Harbin Institute of Technology, Harbin 150001, China; School of Instrumentation Science and Engineering, Harbin Institute of Technology, Harbin 150001, China.
| | - Tianqi Sheng
- Zhong Sheng(Shen Zhen)Medical Equipment Science and Technology Co., Ltd, Guangdong 518000, China
| | - Ye Tian
- Division of Cardiology, The First Affiliated Hospital, Harbin Medical University, Harbin 150001, China
| |
Collapse
|
32
|
Kim DY, Kim DG, Jeong B, Kim YI, Heo J, Lee HK. Reusable and pH-Stable Luminescent Sensors for Highly Selective Detection of Phosphate. Polymers (Basel) 2022; 14:190. [PMID: 35012212 PMCID: PMC8747124 DOI: 10.3390/polym14010190] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 12/30/2021] [Accepted: 12/31/2021] [Indexed: 12/10/2022] Open
Abstract
Phosphate sensors have been actively studied owing to their importance in water environment monitoring because phosphate is one of the nutrients that result in algal blooms. As with other nutrients, seamless monitoring of phosphate is important for understanding and evaluating eutrophication. However, field-deployable phosphate sensors have not been well developed yet due to the chemical characteristics of phosphate. In this paper, we report on a luminescent coordination polymer particle (CPP) that can respond selectively and sensitively to a phosphate ion against other ions in an aquatic ecosystem. The CPPs with an average size of 88.1 ± 12.2 nm are embedded into membranes for reusable purpose. Due to the specific binding of phosphates to europium ions, the luminescence quenching behavior of CPPs embedded into membranes shows a linear relationship with phosphate concentrations (3-500 μM) and detection limit of 1.52 μM. Consistent luminescence signals were also observed during repeated measurements in the pH range of 3-10. Moreover, the practical application was confirmed by sensing phosphate in actual environmental samples such as tap water and lake water.
Collapse
Affiliation(s)
- Do Yeob Kim
- ICT Creative Research Laboratory, Electronics & Telecommunications Research Institute, Daejeon 34129, Korea; (D.Y.K.); (B.J.)
| | - Dong Gyu Kim
- Department of Chemistry, Chungnam National University, Daejeon 34134, Korea; (D.G.K.); (Y.I.K.)
| | - Bongjin Jeong
- ICT Creative Research Laboratory, Electronics & Telecommunications Research Institute, Daejeon 34129, Korea; (D.Y.K.); (B.J.)
| | - Young Il Kim
- Department of Chemistry, Chungnam National University, Daejeon 34134, Korea; (D.G.K.); (Y.I.K.)
| | - Jungseok Heo
- Department of Chemistry, Chungnam National University, Daejeon 34134, Korea; (D.G.K.); (Y.I.K.)
| | - Hyung-Kun Lee
- ICT Creative Research Laboratory, Electronics & Telecommunications Research Institute, Daejeon 34129, Korea; (D.Y.K.); (B.J.)
| |
Collapse
|
33
|
Zhang Y, Zhang Y, Yuan D, Zhang Y, Wu B, Feng X. New method for calibrating optical dissolved oxygen sensors in seawater based on an intelligent learning algorithm. ENVIRONMENTAL MONITORING AND ASSESSMENT 2021; 194:39. [PMID: 34935070 DOI: 10.1007/s10661-021-09592-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Accepted: 11/05/2021] [Indexed: 06/14/2023]
Abstract
Oxygen sensors based on luminescence quenching are the most commonly used instruments for in situ measurement in seawater due to their accuracy and long-term stability. The calibration method of the sensor is crucial for their accuracy. Conventional methods exhibit some defects, such as strict control of calibration conditions and cumbersome and time-consuming operation. To improve calibration operation and obtain good calibration results, a new calibration method was proposed for the optical dissolved oxygen sensor in seawater based on an intelligent learning algorithm. The sensor to be calibrated and the reference sensor were deployed in the water for synchronous measurements. The calibration system consisted of a temperature-regulated device and a sampling method to improve calibration operation. An intelligent learning algorithm was used to train the calibration data and model the oxygen response of the sensor. Calibration and test results in both laboratory and field showed that the new calibration method is feasible and efficient. It is highly significant for sensor development and in situ measurement in seawater.
Collapse
Affiliation(s)
- Ying Zhang
- Institute of Oceanographic Instrumentation, Qilu University of Technology (Shandong Academy of Sciences), Shandong Provincial Key Laboratory of Ocean Environmental Monitoring Technology, National Engineering and Technological Research Center of Marine Monitoring Equipment, No 37 Miaoling Road, 266061, Qingdao, China
| | - Yingying Zhang
- Institute of Oceanographic Instrumentation, Qilu University of Technology (Shandong Academy of Sciences), Shandong Provincial Key Laboratory of Ocean Environmental Monitoring Technology, National Engineering and Technological Research Center of Marine Monitoring Equipment, No 37 Miaoling Road, 266061, Qingdao, China.
| | - Da Yuan
- Institute of Oceanographic Instrumentation, Qilu University of Technology (Shandong Academy of Sciences), Shandong Provincial Key Laboratory of Ocean Environmental Monitoring Technology, National Engineering and Technological Research Center of Marine Monitoring Equipment, No 37 Miaoling Road, 266061, Qingdao, China
| | - Yunyan Zhang
- Institute of Oceanographic Instrumentation, Qilu University of Technology (Shandong Academy of Sciences), Shandong Provincial Key Laboratory of Ocean Environmental Monitoring Technology, National Engineering and Technological Research Center of Marine Monitoring Equipment, No 37 Miaoling Road, 266061, Qingdao, China
| | - Bingwei Wu
- Institute of Oceanographic Instrumentation, Qilu University of Technology (Shandong Academy of Sciences), Shandong Provincial Key Laboratory of Ocean Environmental Monitoring Technology, National Engineering and Technological Research Center of Marine Monitoring Equipment, No 37 Miaoling Road, 266061, Qingdao, China
| | - Xiandong Feng
- Institute of Oceanographic Instrumentation, Qilu University of Technology (Shandong Academy of Sciences), Shandong Provincial Key Laboratory of Ocean Environmental Monitoring Technology, National Engineering and Technological Research Center of Marine Monitoring Equipment, No 37 Miaoling Road, 266061, Qingdao, China
| |
Collapse
|
34
|
Lee H, Shin W, Kim HJ, Kim J. Turn-On Fluorescence Sensing of Oxygen with Dendrimer-Encapsulated Platinum Nanoparticles as Tunable Oxidase Mimics for Spatially Resolved Measurement of Oxygen Gradient in a Human Gut-on-a-Chip. Anal Chem 2021; 93:16123-16132. [PMID: 34807579 DOI: 10.1021/acs.analchem.1c03891] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Turn-on type fluorescence sensing of O2 is considered a promising approach to developing ways to measure O2 in microenvironments with spatially distributed O2 levels. As a class of nanomaterials with a high degree of control over composition and structure, dendrimer-encapsulated nanoparticles (DENs) are promising candidates to mimic biological enzymes. Here, we report a strategy to monitor spatially distributed O2 across a three-dimensional (3D) human intestinal epithelial layer in a gut-on-a-chip in a turn-on fluorescence sensing manner. The strategy is based on the oxidase-mimetic activity of Pt DENs for catalytic oxidation of nonfluorescent Amplex Red to highly fluorescent resorufin in the presence of O2. We synthesized Pt DENs using two different types of dendrimers (i.e., amine-terminated or hydroxyl-terminated generation 6 polyamidoamine (PAMAM) dendrimers) with six different Pt2+/dendrimer ratios (i.e., 55, 200, 220, 550, 880, and 1320). After clarifying the intrinsic oxidase-mimetic activity of Pt DENs, we determined tunable oxidase-mimetic activity of Pt DENs, especially with fine-tuning the ratios of the Pt precursor ions and dendrimers. Particularly, the optimal Pt DENs having a Pt2+/dendrimer ratio of 1320 exhibited an ∼117-fold increase in the oxidase-mimetic activity for catalyzing the aerobic oxidation of Amplex Red to resorufin compared to one having a Pt2+/dendrimer ratio of 200. This study exemplified a simple yet effective approach for spatially resolved imaging of O2 using metal nanoparticle-based oxidase mimics in microphysiological environments like a human gut-on-a-chip.
Collapse
Affiliation(s)
- Hyein Lee
- Department of Chemistry, Research Institute for Basic Sciences, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Woojung Shin
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Hyun Jung Kim
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Joohoon Kim
- Department of Chemistry, Research Institute for Basic Sciences, Kyung Hee University, Seoul 02447, Republic of Korea.,KHU-KIST Department of Converging Science and Technology, Kyung Hee University, Seoul 02447, Republic of Korea
| |
Collapse
|
35
|
Review of Underwater Sensing Technologies and Applications. SENSORS 2021; 21:s21237849. [PMID: 34883851 PMCID: PMC8659509 DOI: 10.3390/s21237849] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 11/08/2021] [Accepted: 11/15/2021] [Indexed: 12/17/2022]
Abstract
As the ocean development process speeds up, the technical means of ocean exploration are being upgraded. Due to the characteristics of seawater and the complex underwater environment, conventional measurement and sensing methods used for land are difficult to apply in the underwater environment directly. Especially for the seabed topography, it is impossible to carry out long-distance and accurate detection via electromagnetic waves. Therefore, various types of acoustic and even optical sensing devices for underwater applications have come into use. Equipped by submersibles, those underwater sensors can sense underwater wide-range and accurately. Moreover, the development of sensor technology will be modified and optimized according to the needs of ocean exploitation. This paper has made a summary of the ocean sensing technologies applied in some critical underwater scenarios, including geological surveys, navigation and communication, marine environmental parameters, and underwater inspections. In order to contain as many submersible-based sensors as possible, we have to make a trade-off on breadth and depth. In the end, the authors predict the development trend of underwater sensor technology based on the future ocean exploration requirements.
Collapse
|
36
|
Dang T, Maeda Y, Fujii Y, Takenaka N. Optimization of Procedure for Determining Dissolved Oxygen in Surface Water and Seawater Exploiting the UV-vis Absorption of Mn(III) Species. ANAL SCI 2021; 37:1517-1523. [PMID: 33867404 DOI: 10.2116/analsci.21p079] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
We present an analytical method for dissolved oxygen based on the quantification of Mn(III) absorbance in a water sample. After Mn(II) reacts with the oxygen molecules in water, Mn(III) is formed and stabilized by hexa-metaphosphate under acidic conditions. The UV visible absorbance of Mn(III) is proportional to the oxygen concentration in the water sample. Compared to the Winkler method, the proposed method has the same accuracy (R = 0.9992 at 0 - 52 mg dm-3) but requires fewer reagents; furthermore, it does not involve titration. Interferences from nitrite and iodate were not observed. This procedure can be used to accurately and quickly determine the oxygen concentrations in different natural water sources, including seawater.
Collapse
Affiliation(s)
- Tu Dang
- Graduated School of Humanities and Sustainable System Sciences, Osaka Prefecture University
| | - Yasuaki Maeda
- Research Organization for University-Community Collaborations, Osaka Prefecture University
| | - Yusuke Fujii
- Graduated School of Humanities and Sustainable System Sciences, Osaka Prefecture University
| | - Norimichi Takenaka
- Graduated School of Humanities and Sustainable System Sciences, Osaka Prefecture University
| |
Collapse
|
37
|
Galimov DI, Yakupova SM, Vasilyuk KS, Bulgakov RG. A novel gas assay for ultra-small amounts of molecular oxygen based on the chemiluminescence of divalent europium. J Photochem Photobiol A Chem 2021. [DOI: 10.1016/j.jphotochem.2021.113430] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
38
|
Tu R, Wang Y, Peng J, Hou C, Wang Z. Integration of Multiple Redox Centers into Porous Coordination Networks for Ratiometric Sensing of Dissolved Oxygen. ACS APPLIED MATERIALS & INTERFACES 2021; 13:40847-40852. [PMID: 34403589 DOI: 10.1021/acsami.1c13601] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The application of porphyrin metal-organic frameworks (MOFs) as a ratiometric electrochemical sensing platform is still unexplored. In this paper, we report a ratiometric electrochemical sensor by the integration of multiple redox centers into porphyrin MOFs for the detection of dissolved oxygen (DO). Specifically, the ferrocene (Fc) group was integrated into the nanosized PCN-222(Fe) (PCN = porous coordination networks) via acid-base reaction to synthesize the Fc@PCN-222(Fe) composite with two redox centers of the Fc group and Fe-porphyrin. The Fc group that is insensitive to DO serves as an internal reference, and the Fe-porphyrin in PCN-222(Fe) is a DO indicator. The ratios of the cathodic currents for the two redox centers exhibit a linear relationship with DO concentrations from 2.8 to 28.9 mg mL-1 and a limit of detection of 0.3 mg mL-1. In addition, the ratiometric electrochemical sensor has high selectivity and stability for DO sensing results from the Fc@PCN-222(Fe) composite. Because there are numerous redox centers, such as methylene blue and thionine, which can be integrated into MOFs, many MOF-based ratiometric electrochemical sensors can be simply developed for high-performance biosensing.
Collapse
Affiliation(s)
- Rongxiu Tu
- College of Chemistry and Chemical Engineering, Shandong Sino-Japanese Center for Collaborative Research of Carbon Nanomaterials, Instrumental Analysis Center of Qingdao University, Qingdao University, Qingdao 266071, P. R. China
| | - Yujun Wang
- College of Chemistry and Chemical Engineering, Shandong Sino-Japanese Center for Collaborative Research of Carbon Nanomaterials, Instrumental Analysis Center of Qingdao University, Qingdao University, Qingdao 266071, P. R. China
| | - Jinyun Peng
- College of Chemistry and Chemical Engineering, Guangxi Normal University for Nationalities, Chongzuo 532200, P. R. China
| | - Chuantao Hou
- College of Chemistry and Chemical Engineering, Shandong Sino-Japanese Center for Collaborative Research of Carbon Nanomaterials, Instrumental Analysis Center of Qingdao University, Qingdao University, Qingdao 266071, P. R. China
| | - Zonghua Wang
- College of Chemistry and Chemical Engineering, Shandong Sino-Japanese Center for Collaborative Research of Carbon Nanomaterials, Instrumental Analysis Center of Qingdao University, Qingdao University, Qingdao 266071, P. R. China
| |
Collapse
|
39
|
Izydorczyk W, Izydorczyk J. Structure, Surface Morphology, Chemical Composition, and Sensing Properties of SnO 2 Thin Films in an Oxidizing Atmosphere. SENSORS 2021; 21:s21175741. [PMID: 34502631 PMCID: PMC8434056 DOI: 10.3390/s21175741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 08/18/2021] [Accepted: 08/22/2021] [Indexed: 11/16/2022]
Abstract
We conducted experiments on SnO2 thin layers to determine the dependencies between the stoichiometry, electrochemical properties, and structure. This study focused on features such as the film structure, working temperature, layer chemistry, and atmosphere composition, which play a crucial role in the oxygen sensor operation. We tested two kinds of resistive SnO2 layers, which had different grain dimensions, thicknesses, and morphologies. Gas-sensing layers fabricated by two methods, a rheotaxial growth and thermal oxidation (RGTO) process and DC reactive magnetron sputtering, were examined in this work. The crystalline structure of SnO2 films synthesized by both methods was characterized using XRD, and the crystallite size was determined from XRD and AFM measurements. Chemical characterization was carried out using X-ray photoelectron (XPS) and Auger electron (AES) spectroscopy for the surface and the near-surface film region (in-depth profiles). We investigated the layer resistance for different oxygen concentrations within a range of 1-4%, in a nitrogen atmosphere. Additionally, resistance measurements within a temperature range of 423-623 K were analyzed. We assumed a flat grain geometry in theoretical modeling for comparing the results of measurements with the calculated results.
Collapse
|
40
|
Huang J, Liu S, Hassan SG, Xu L. Pollution index of waterfowl farm assessment and prediction based on temporal convoluted network. PLoS One 2021; 16:e0254179. [PMID: 34297737 PMCID: PMC8301615 DOI: 10.1371/journal.pone.0254179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 06/22/2021] [Indexed: 11/18/2022] Open
Abstract
Environmental quality is a major factor that directly impacts waterfowl productivity. Accurate prediction of pollution index (PI) is the key to improving environmental management and pollution control. This study applied a new neural network model called temporal convolutional network and a denoising algorithm called wavelet transform (WT) for predicting future 12-, 24-, and 48-hour PI values at a waterfowl farm in Shanwei, China. The temporal convoluted network (TCN) model performance was compared with that of recurrent architectures with the same capacity, long-short time memory neural network (LSTM), and gated recurrent unit (GRU). Denoised environmental data, including ammonia, temperature, relative humidity, carbon dioxide (CO2), and total suspended particles (TSP), were used to construct the forecasting model. The simulation results showed that the TCN model in general produced a more precise PI prediction and provided the highest prediction accuracy for all phases (MAE = 0.0842, 0.0859, and 0.1115; RMSE = 0.0154, 0.0167, and 0.0273; R2 = 0.9789, 0.9791, and 0.9635). The PI assessment prediction model based on TCN exhibited the best prediction accuracy and general performance compared with other parallel forecasting models and is a suitable and useful tool for predicting PI in waterfowl farms.
Collapse
Affiliation(s)
- Jiande Huang
- College of Information Science and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, China
- Smart Agriculture Engineering Technology Research Center of Guangdong Higher Education Institues, Zhongkai University of Agriculture and Engineering, Guangzhou, China
- Guangzhou Key Laboratory of Agricultural Products Quality, Safety Traceability Information Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, China
- Guangdong Provincial Agricultural Products Safety Big Data Engineering Technology Research Center, Zhongkai University of Agriculture and Engineering, Guangzhou, China
- Guangdong Province Key Laboratory of Waterfowl Healthy Breeding, Guangzhou, China
- Academy of Smart Agricultural Engineering Innovations, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| | - Shuangyin Liu
- College of Information Science and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, China
- Smart Agriculture Engineering Technology Research Center of Guangdong Higher Education Institues, Zhongkai University of Agriculture and Engineering, Guangzhou, China
- Guangzhou Key Laboratory of Agricultural Products Quality, Safety Traceability Information Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, China
- Guangdong Provincial Agricultural Products Safety Big Data Engineering Technology Research Center, Zhongkai University of Agriculture and Engineering, Guangzhou, China
- Guangdong Province Key Laboratory of Waterfowl Healthy Breeding, Guangzhou, China
- Academy of Smart Agricultural Engineering Innovations, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| | - Shahbaz Gul Hassan
- College of Information Science and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, China
- Smart Agriculture Engineering Technology Research Center of Guangdong Higher Education Institues, Zhongkai University of Agriculture and Engineering, Guangzhou, China
- Guangzhou Key Laboratory of Agricultural Products Quality, Safety Traceability Information Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, China
- Guangdong Provincial Agricultural Products Safety Big Data Engineering Technology Research Center, Zhongkai University of Agriculture and Engineering, Guangzhou, China
- Guangdong Province Key Laboratory of Waterfowl Healthy Breeding, Guangzhou, China
- Academy of Smart Agricultural Engineering Innovations, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| | - Longqin Xu
- College of Information Science and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, China
- Smart Agriculture Engineering Technology Research Center of Guangdong Higher Education Institues, Zhongkai University of Agriculture and Engineering, Guangzhou, China
- Guangzhou Key Laboratory of Agricultural Products Quality, Safety Traceability Information Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, China
- Guangdong Provincial Agricultural Products Safety Big Data Engineering Technology Research Center, Zhongkai University of Agriculture and Engineering, Guangzhou, China
- Guangdong Province Key Laboratory of Waterfowl Healthy Breeding, Guangzhou, China
- Academy of Smart Agricultural Engineering Innovations, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| |
Collapse
|
41
|
Otero J, Ulldemolins A, Farré R, Almendros I. Oxygen Biosensors and Control in 3D Physiomimetic Experimental Models. Antioxidants (Basel) 2021; 10:1165. [PMID: 34439413 PMCID: PMC8388981 DOI: 10.3390/antiox10081165] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 07/05/2021] [Accepted: 07/17/2021] [Indexed: 12/20/2022] Open
Abstract
Traditional cell culture is experiencing a revolution moving toward physiomimetic approaches aiming to reproduce healthy and pathological cell environments as realistically as possible. There is increasing evidence demonstrating that biophysical and biochemical factors determine cell behavior, in some cases considerably. Alongside the explosion of these novel experimental approaches, different bioengineering techniques have been developed and improved. Increased affordability and popularization of 3D bioprinting, fabrication of custom-made lab-on-a chip, development of organoids and the availability of versatile hydrogels are factors facilitating the design of tissue-specific physiomimetic in vitro models. However, lower oxygen diffusion in 3D culture is still a critical limitation in most of these studies, requiring further efforts in the field of physiology and tissue engineering and regenerative medicine. During recent years, novel advanced 3D devices are introducing integrated biosensors capable of monitoring oxygen consumption, pH and cell metabolism. These biosensors seem to be a promising solution to better control the oxygen delivery to cells and to reproduce some disease conditions involving hypoxia. This review discusses the current advances on oxygen biosensors and control in 3D physiomimetic experimental models.
Collapse
Affiliation(s)
- Jorge Otero
- Unitat de Biofísica i Bioenginyeria, Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona, 08036 Barcelona, Spain; (J.O.); (A.U.); (R.F.)
- Centro de Investigación Biomédica en Red, Enfermedades Repiratorias, 28029 Madrid, Spain
- Institut de Nanociència i Nanotecnologia UB, 08028 Barcelona, Spain
| | - Anna Ulldemolins
- Unitat de Biofísica i Bioenginyeria, Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona, 08036 Barcelona, Spain; (J.O.); (A.U.); (R.F.)
| | - Ramon Farré
- Unitat de Biofísica i Bioenginyeria, Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona, 08036 Barcelona, Spain; (J.O.); (A.U.); (R.F.)
- Centro de Investigación Biomédica en Red, Enfermedades Repiratorias, 28029 Madrid, Spain
- Institut de Nanociència i Nanotecnologia UB, 08028 Barcelona, Spain
- Institut d’Investigacions Biomèdiques Agustí Pi i Sunyer, 08036 Barcelona, Spain
| | - Isaac Almendros
- Unitat de Biofísica i Bioenginyeria, Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona, 08036 Barcelona, Spain; (J.O.); (A.U.); (R.F.)
- Centro de Investigación Biomédica en Red, Enfermedades Repiratorias, 28029 Madrid, Spain
- Institut de Nanociència i Nanotecnologia UB, 08028 Barcelona, Spain
- Institut d’Investigacions Biomèdiques Agustí Pi i Sunyer, 08036 Barcelona, Spain
| |
Collapse
|
42
|
Marrero D, Pujol-Vila F, Vera D, Gabriel G, Illa X, Elizalde-Torrent A, Alvarez M, Villa R. Gut-on-a-chip: Mimicking and monitoring the human intestine. Biosens Bioelectron 2021; 181:113156. [DOI: 10.1016/j.bios.2021.113156] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 02/18/2021] [Accepted: 03/05/2021] [Indexed: 02/07/2023]
|
43
|
Chen X, Yu L, Kang Q, Sun Y, Huang Y, Shen D. A smartphone-based absorbance device extended to ultraviolet (365 nm) and near infrared (780 nm) regions using ratiometric fluorescence measurement. Microchem J 2021. [DOI: 10.1016/j.microc.2021.105978] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
44
|
Olias LG, Di Lorenzo M. Microbial fuel cells for in-field water quality monitoring. RSC Adv 2021; 11:16307-16317. [PMID: 35479166 PMCID: PMC9031575 DOI: 10.1039/d1ra01138c] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Accepted: 04/23/2021] [Indexed: 12/13/2022] Open
Abstract
The need for water security pushes for the development of sensing technologies that allow online and real-time assessments and are capable of autonomous and stable long-term operation in the field. In this context, Microbial Fuel Cell (MFC) based biosensors have shown great potential due to cost-effectiveness, simplicity of operation, robustness and the possibility of self-powered applications. This review focuses on the progress of the technology in real scenarios and in-field applications and discusses the technological bottlenecks that must be overcome for its success. An overview of the most relevant findings and challenges of MFC sensors for practical implementation is provided. First, performance indicators for in-field applications, which may diverge from lab-based only studies, are defined. Progress on MFC designs for off-grid monitoring of water quality is then presented with a focus on solutions that enhance robustness and long-term stability. Finally, calibration methods and detection algorithms for applications in real scenarios are discussed.
Collapse
Affiliation(s)
- Lola Gonzalez Olias
- Centre for Biosensors, Bioelectronics and Biodevices (C3Bio) and Department of Chemical Engineering, University of Bath Bath BA2 7AY UK
- Water Innovation Research Centre (WIRC), University of Bath Bath BA2 7AY UK
| | - Mirella Di Lorenzo
- Centre for Biosensors, Bioelectronics and Biodevices (C3Bio) and Department of Chemical Engineering, University of Bath Bath BA2 7AY UK
| |
Collapse
|
45
|
Djisalov M, Knežić T, Podunavac I, Živojević K, Radonic V, Knežević NŽ, Bobrinetskiy I, Gadjanski I. Cultivating Multidisciplinarity: Manufacturing and Sensing Challenges in Cultured Meat Production. BIOLOGY 2021; 10:204. [PMID: 33803111 PMCID: PMC7998526 DOI: 10.3390/biology10030204] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 02/28/2021] [Accepted: 03/02/2021] [Indexed: 12/11/2022]
Abstract
Meat cultivation via cellular agriculture holds great promise as a method for future food production. In theory, it is an ideal way of meat production, humane to the animals and sustainable for the environment, while keeping the same taste and nutritional values as traditional meat and having additional benefits such as controlled fat content and absence of antibiotics and hormones used in the traditional meat industry. However, in practice, there is still a number of challenges, such as those associated with the upscale of cultured meat (CM). CM food safety monitoring is a necessary factor when envisioning both the regulatory compliance and consumer acceptance. To achieve this, a multidisciplinary approach is necessary. This includes extensive development of the sensitive and specific analytical devices i.e., sensors to enable reliable food safety monitoring throughout the whole future food supply chain. In addition, advanced monitoring options can help in the further optimization of the meat cultivation which may reduce the currently still high costs of production. This review presents an overview of the sensor monitoring options for the most relevant parameters of importance for meat cultivation. Examples of the various types of sensors that can potentially be used in CM production are provided and the options for their integration into bioreactors, as well as suggestions on further improvements and more advanced integration approaches. In favor of the multidisciplinary approach, we also include an overview of the bioreactor types, scaffolding options as well as imaging techniques relevant for CM research. Furthermore, we briefly present the current status of the CM research and related regulation, societal aspects and challenges to its upscaling and commercialization.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Ivana Gadjanski
- BioSense Institute, University of Novi Sad, Dr Zorana Djindjica 1, 21000 Novi Sad, Serbia; (M.Dj.); (T.K.); (I.P.); (K.Ž.); (V.R.); (N.Ž.K.); (I.B.)
| |
Collapse
|
46
|
A Phosphorescence Quenching-Based Intelligent Dissolved Oxygen Sensor on an Optofluidic Platform. MICROMACHINES 2021; 12:mi12030281. [PMID: 33800237 PMCID: PMC7999388 DOI: 10.3390/mi12030281] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 02/26/2021] [Accepted: 03/05/2021] [Indexed: 12/21/2022]
Abstract
Continuous measurement of dissolved oxygen (DO) is essential for water quality monitoring and biomedical applications. Here, a phosphorescence quenching-based intelligent dissolved oxygen sensor on an optofluidic platform for continuous measurement of dissolved oxygen is presented. A high sensitivity dissolved oxygen-sensing membrane was prepared by coating the phosphorescence indicator of platinum(II) meso-tetrakis(pentafluorophenyl)porphyrin (PtTFPP) on the surface of the microfluidic channels composed of polydimethylsiloxane (PDMS) microstructure arrays. Then, oxygen could be determined by its quenching effect on the phosphorescence, according to Stern–Volmer model. The intelligent sensor abandons complicated optical or electrical design and uses a photomultiplier (PMT) counter in cooperation with a mobile phone application program to measure phosphorescence intensity, so as to realize continuous, intelligent and real-time dissolved oxygen analysis. Owing to the combination of the microfluidic-based highly sensitive oxygen sensing membrane with a reliable phosphorescent intensity detection module, the intelligent sensor achieves a low limit of detection (LOD) of 0.01 mg/L, a high sensitivity of 16.9 and a short response time (22 s). Different natural water samples were successfully analyzed using the intelligent sensor, and results demonstrated that the sensor features a high accuracy. The sensor combines the oxygen sensing mechanism with optofluidics and electronics, providing a miniaturized and intelligent detection platform for practical oxygen analysis in different application fields.
Collapse
|
47
|
Yap ACW, Lee HS, Loo JL, Mohd NS. Electron generation in water induced by magnetic effect and its impact on dissolved oxygen concentration. SUSTAINABLE ENVIRONMENT RESEARCH 2021; 31:7. [PMCID: PMC7875160 DOI: 10.1186/s42834-021-00080-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Accepted: 01/28/2021] [Indexed: 06/15/2023]
Abstract
pH, oxidation-reduction potential (ORP) and dissolved oxygen (DO) concentration are important parameters in water quality surveillance and treatment. The changes of these parameters are associated with electron density in water. Several techniques including electrolysis and catalysis which require redox reactions and electron exchange are employed to improve these parameters. In recent years, studies reported that magnetic effects can impart considerable changes on the pH, ORP and DO concentration of water. However, the correlation between electron density and magnetic effects on these parameters has yet to be disclosed despite the fact that increased electron density in water could improve water’s reductive properties, heat capacity and hydrogen bonding characteristics. In this study, the magnetic effects on pH, ORP and DO concentration were investigated using different magnets arrangements and water flow rates based on reversed electric motor principle. Results showed that the improvement of pH, ORP and DO concentration from 5.40–5.42 to 5.58–5.62 (+ 3.5%), 392 to 365 mV (− 6.9%), and 7.30 to 7.71 mg L− 1 (+ 5.6%), respectively were achieved using combined variables of non-reversed polarity magnet arrangement (1000–1500 G magnetic strength) and water flow rate of 0.1–0.5 mL s− 1. Such decrement in ORP value also corresponded to 8.0 × 1013 number of electron generation in water. Furthermore, Raman analysis revealed that magnetic effect could strengthen the intermolecular hydrogen bonding of water molecules and favor formation of smaller water clusters. The findings of this study could contribute to potential applications in aquaculture, water quality control and treatment of cancer attributed to free radical induced-oxidative stress.
Collapse
Affiliation(s)
- Augustine Chung Wei Yap
- Department of Mechanical and Material Engineering, Universiti Tunku Abdul Rahman, 43000 Kajang, Malaysia
| | - Hwang Sheng Lee
- Department of Mechanical and Material Engineering, Universiti Tunku Abdul Rahman, 43000 Kajang, Malaysia
- Centre for Photonics and Advanced Materials Research, Universiti Tunku Abdul Rahman, 43000 Kajang, Malaysia
| | - Joo Ling Loo
- Department of Mechatronics and Biomedical Engineering, Universiti Tunku Abdul Rahman, 43000 Kajang, Malaysia
| | - Nuruol Syuhadaa Mohd
- Department of Civil Engineering, University of Malaya, 50603 Kuala Lumpur, Malaysia
| |
Collapse
|
48
|
Han L, Kamalanathan P, Al-Dahhan MH. Gas–liquid mass transfer using advanced optical probe in a mimicked FT slurry bubble column. INTERNATIONAL JOURNAL OF CHEMICAL REACTOR ENGINEERING 2020. [DOI: 10.1515/ijcre-2020-0143] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
Gas-liquid volumetric liquid-phase mass transfer coefficient (k
L
a) was studied in a slurry bubble column at the conditions mimicking Fischer–Tropsch synthesis. To avoid the hydrodynamic disturbances due to the gas switching, oxygen enriched air dynamic absorption method was used. Influence of reactor models (CSTR, ADM and RCFD) on the volumetric mass transfer coefficient was investigated. Effect of operating pressure, superficial gas velocity and solids loading were investigated. From the reactor models investigated, it is recommended to use ADM model for k
L
a study. If the CSTR model is used, applicability of the model should be checked. With increase in the superficial gas velocity and operating pressure, volumetric liquid-phase mass transfer coefficient increases, while it decreases with the solids loading corroborating with the literature.
Collapse
Affiliation(s)
- Lu Han
- Chemical Reaction Engineering Laboratory, Washington University , St Louis , MO 63130 , USA
| | - Premkumar Kamalanathan
- Department of Chemical and Biochemical Engineering , Missouri University of Science and Technology , Rolla , MO 65409 , USA
| | - Muthanna H. Al-Dahhan
- Chemical Reaction Engineering Laboratory, Washington University , St Louis , MO 63130 , USA
- Department of Chemical and Biochemical Engineering , Missouri University of Science and Technology , Rolla , MO 65409 , USA
| |
Collapse
|
49
|
|
50
|
Shehata N, Kandas I, Samir E. In-Situ Gold-Ceria Nanoparticles: Superior Optical Fluorescence Quenching Sensor for Dissolved Oxygen. NANOMATERIALS 2020; 10:nano10020314. [PMID: 32059378 PMCID: PMC7075203 DOI: 10.3390/nano10020314] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 12/30/2019] [Accepted: 01/03/2020] [Indexed: 11/21/2022]
Abstract
Cerium oxide (ceria) nanoparticles (NPs) have been proved to be an efficient optical fluorescent material through generating visible emission (~530 nm) under violet excitation. This feature allowed ceria NPs to be used as an optical sensor via the fluorescence quenching Technique. In this paper, the impact of in-situ embedded gold nanoparticles (Au NPs) inside ceria nanoparticles was studied. Then, gold–ceria NPs were used for sensing dissolved oxygen (DO) in aqueous media. It was observed that both fluorescence intensity and lifetime were changed due to increased concentration of DO. Added gold was found to enhance the sensitivity of ceria to DO quencher detection. This enhancement was due to optical coupling between the fluorescence emission spectrum of ceria with the surface plasmonic resonance of gold nanoparticles. In addition, gold caused the decrease of ceria nanoparticles’ bandgap, which indicates the formation of more oxygen vacancies inside the non-stoichiometric crystalline structure of ceria. The Stern–Volmer constant, which indicates the sensitivity of optical sensing material, of ceria–gold NPs with added DO was found to be 893.7 M−1, compared to 184.6 M−1 to in case of ceria nanoparticles only, which indicates a superior optical sensitivity to DO compared to other optical sensing materials used in the literature to detect DO. Moreover, the fluorescence lifetime was found to be changed according to the variation of added DO concentration. The optically-sensitivity-enhanced ceria nanoparticles due to embedded gold nanoparticles can be a promising sensing host for dissolved oxygen in a wide variety of applications including biomedicine and water quality monitoring.
Collapse
Affiliation(s)
- Nader Shehata
- Center of Smart Nanotechnology and Photonics (CSNP), SmartCI Research Center, Alexandria University, Alexandria 21544, Egypt;
- Department of Engineering Mathematics and Physics, Faculty of Engineering, Alexandria University, Alexandria 21544, Egypt
- USTAR Bio-innovation center, Utah State University, Logan, UT 84341, USA
- Kuwait College of Science and Technology, Doha Area, 7th Ring Road, Safat 13133, Kuwait
- The Bradley Department of Electrical and Computer Engineering, Virginia Tech, Blacksburg, VA 24061, USA
- Correspondence: ; Tel.: +20-109-116-5300
| | - Ishac Kandas
- Center of Smart Nanotechnology and Photonics (CSNP), SmartCI Research Center, Alexandria University, Alexandria 21544, Egypt;
- Department of Engineering Mathematics and Physics, Faculty of Engineering, Alexandria University, Alexandria 21544, Egypt
- Kuwait College of Science and Technology, Doha Area, 7th Ring Road, Safat 13133, Kuwait
| | - Effat Samir
- Department of Electrical Engineering, Old Dominion University, Norfolk, VA 23508, USA;
| |
Collapse
|