1
|
Pistriţu F, Gheorghe M, Ion M, Brincoveanu O, Romanitan C, Suchea MP, Schiopu P, Ionescu ON. On the Development of a New Flexible Pressure Sensor. MICROMACHINES 2024; 15:847. [PMID: 39064357 PMCID: PMC11278670 DOI: 10.3390/mi15070847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 06/16/2024] [Accepted: 06/25/2024] [Indexed: 07/28/2024]
Abstract
The rapid advancement of the Internet of Things (IoT) serves as a significant driving force behind the development of innovative sensors and actuators. This technological progression has created a substantial demand for new flexible pressure sensors, essential for a variety of applications ranging from wearable devices to smart home systems. In response to this growing need, our laboratory has developed a novel flexible pressure sensor, designed to offer an improved performance and adaptability. This study aims to present our newly developed sensor, detailing the comprehensive investigations we conducted to understand how different parameters affect its behaviour. Specifically, we examined the influence of the resistive layer thickness and the elastomeric substrate on the sensor's performance. The resistive layer, a critical component of the sensor, directly impacts its sensitivity and accuracy. By experimenting with varying thicknesses, we aimed to identify the optimal configuration that maximizes sensor efficiency. Similarly, the elastomeric substrate, which provides the sensor's flexibility, was scrutinized to determine how its properties affect the sensor's overall functionality. Our findings highlight the delicate balance required between the resistive layer and the elastomeric substrate to achieve a sensor that is both highly sensitive and durable. This research contributes valuable insights into the design and optimization of flexible pressure sensors, paving the way for more advanced IoT applications.
Collapse
Affiliation(s)
- Florian Pistriţu
- National Institute for Research and Development in Microtechnologies-IMT Bucharest, 077190 Bucharest, Romania; (F.P.); (M.I.); (O.B.); (C.R.)
- Doctoral School of Electronics, Telecommunications and Information Technology, National University of Science and Technology POLITEHNICA Bucharest, 061071 Bucharest, Romania;
| | - Marin Gheorghe
- NANOM MEMS SRL, Strada George Cosbuc 9, 505400 Brasov, Romania;
| | - Marian Ion
- National Institute for Research and Development in Microtechnologies-IMT Bucharest, 077190 Bucharest, Romania; (F.P.); (M.I.); (O.B.); (C.R.)
| | - Oana Brincoveanu
- National Institute for Research and Development in Microtechnologies-IMT Bucharest, 077190 Bucharest, Romania; (F.P.); (M.I.); (O.B.); (C.R.)
| | - Cosmin Romanitan
- National Institute for Research and Development in Microtechnologies-IMT Bucharest, 077190 Bucharest, Romania; (F.P.); (M.I.); (O.B.); (C.R.)
| | - Mirela Petruta Suchea
- National Institute for Research and Development in Microtechnologies-IMT Bucharest, 077190 Bucharest, Romania; (F.P.); (M.I.); (O.B.); (C.R.)
- Center of Materials Technology and Photonics, School of Engineering, Hellenic Mediterranean University, 71410 Heraklion, Greece
| | - Paul Schiopu
- Doctoral School of Electronics, Telecommunications and Information Technology, National University of Science and Technology POLITEHNICA Bucharest, 061071 Bucharest, Romania;
| | - Octavian Narcis Ionescu
- National Institute for Research and Development in Microtechnologies-IMT Bucharest, 077190 Bucharest, Romania; (F.P.); (M.I.); (O.B.); (C.R.)
- Faculty of Mechanical and Electrical Engineering, Petroleum and Gas University of Ploiesti, 100680 Ploiesti, Romania
| |
Collapse
|
2
|
Lu G, Shen Z, Cai T, Xu Y. Research on FBG Tactile Sensing Shape Recognition Based on Convolutional Neural Network. SENSORS (BASEL, SWITZERLAND) 2024; 24:4087. [PMID: 39000866 PMCID: PMC11244492 DOI: 10.3390/s24134087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 06/16/2024] [Accepted: 06/20/2024] [Indexed: 07/16/2024]
Abstract
Shape recognition plays a significant role in the field of robot perception. In view of the low efficiency and few types of shape recognition of the fiber tactile sensor applied to flexible skin, a convolutional-neural-network-based FBG tactile sensing array shape recognition method was proposed. Firstly, a sensing array was fabricated using flexible resin and 3D printing technology. Secondly, a shape recognition system based on the tactile sensing array was constructed to collect shape data. Finally, shape classification recognition was performed using convolutional neural network, random forest, support vector machine, and k-nearest neighbor. The results indicate that the tactile sensing array exhibits good sensitivity and perception capability. The shape recognition accuracy of convolutional neural network is 96.58%, which is 6.11%, 9.44%, and 12.01% higher than that of random forest, k-nearest neighbor, and support vector machine. Its F1 is 96.95%, which is 6.3%, 8.73%, and 11.94% higher than random forest, k-nearest neighbor, and support vector machine. The research of FBG shape sensing array based on convolutional neural network provides an experimental basis for shape perception of flexible tactile sensing.
Collapse
Affiliation(s)
- Guan Lu
- School of Mechanical Engineering, Nantong University, Nantong 226000, China; (G.L.); (Z.S.); (T.C.)
| | - Zhihui Shen
- School of Mechanical Engineering, Nantong University, Nantong 226000, China; (G.L.); (Z.S.); (T.C.)
| | - Ting Cai
- School of Mechanical Engineering, Nantong University, Nantong 226000, China; (G.L.); (Z.S.); (T.C.)
| | - Yiming Xu
- School of Electrical Engineering and Automation, Nantong University, Nantong 226000, China
| |
Collapse
|
3
|
Ramezani G, Stiharu I, van de Ven TGM, Nerguizian V. Advancement in Biosensor Technologies of 2D MaterialIntegrated with Cellulose-Physical Properties. MICROMACHINES 2023; 15:82. [PMID: 38258201 PMCID: PMC10819598 DOI: 10.3390/mi15010082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Revised: 12/27/2023] [Accepted: 12/28/2023] [Indexed: 01/24/2024]
Abstract
This review paper provides an in-depth analysis of recent advancements in integrating two-dimensional (2D) materials with cellulose to enhance biosensing technology. The incorporation of 2D materials such as graphene and transition metal dichalcogenides, along with nanocellulose, improves the sensitivity, stability, and flexibility of biosensors. Practical applications of these advanced biosensors are explored in fields like medical diagnostics and environmental monitoring. This innovative approach is driving research opportunities and expanding the possibilities for diverse applications in this rapidly evolving field.
Collapse
Affiliation(s)
- Ghazaleh Ramezani
- Department of Mechanical, Industrial, and Aerospace Engineering, Concordia University, Montreal, QC H3G 1M8, Canada;
| | - Ion Stiharu
- Department of Mechanical, Industrial, and Aerospace Engineering, Concordia University, Montreal, QC H3G 1M8, Canada;
| | - Theo G. M. van de Ven
- Department of Chemistry, McGill University, 801 Sherbrooke St. West, Montreal, QC H3A 0B8, Canada;
| | - Vahe Nerguizian
- Department of Electrical Engineering, École de Technologie Supérieure, 1100 Notre Dame West, Montreal, QC H3C 1K3, Canada;
| |
Collapse
|
4
|
Cui X, Miao C, Lu S, Liu X, Yang Y, Sun J. Strain Sensors Made of MXene, CNTs, and TPU/PSF Asymmetric Structure Films with Large Tensile Recovery and Applied in Human Health Monitoring. ACS APPLIED MATERIALS & INTERFACES 2023; 15:59655-59670. [PMID: 38085975 DOI: 10.1021/acsami.3c11328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2023]
Abstract
Designing flexible wearable sensors with a wide sensing range, high sensitivity, and high stability is a vulnerable research direction with a futuristic field to study. In this paper, Ti3C2Tx MXene/carbon nanotube (CNT)/thermoplastic polyurethane (TPU)/polysulfone (PSF) composite films with excellent sensor performance were obtained by self-assembly of conductive fillers in TPU/PSF porous films with an asymmetric structure through vacuum filtration, and the porous films were prepared by the phase inversion method. The composite films consist of the upper part with finger-like "cavities" filled by MXene/CNTs, which reduces the microcracks in the conductive network during the tensile process, and the lower part has smaller apertures of a relatively dense resin cortex assisting the recovery process. The exclusive layer structure of the MXene/CNTs/TPU/PSF film sensor, with a thickness of 46.95 μm, contains 0.0339 mg/cm2 single-walled carbon nanotubes (SWNTs) and 0.348 mg/cm2 MXene only, providing functional range (0-80.7%), high sensitivity (up to 1265.18), and excellent stability and durability (stable sensing under 2300 fatigue tests, viable to the initial resistance), endurably cycled under large strains with serious damage to the conductive network. Finally, the MXene/CNTs/TPU/PSF film sensor is usable for monitoring pulse, swallow, tiptoe, and various joint bends in real time and distributing effective electrical signals. This paper implies that the MXene/CNTs/TPU/PSF film sensor has broad prospects in pragmatic applications.
Collapse
Affiliation(s)
- Xiaoyu Cui
- School of Materials Science and Engineering, Shenyang University of Aeronautics and Astronautics, Shenyang 110136, China
| | - Chengjing Miao
- School of Materials Science and Engineering, Shenyang University of Aeronautics and Astronautics, Shenyang 110136, China
| | - Shaowei Lu
- School of Materials Science and Engineering, Shenyang University of Aeronautics and Astronautics, Shenyang 110136, China
| | - Xingmin Liu
- School of Materials Science and Engineering, Shenyang University of Aeronautics and Astronautics, Shenyang 110136, China
| | - Yuxuan Yang
- School of Materials Science and Engineering, Shenyang University of Aeronautics and Astronautics, Shenyang 110136, China
| | - Jingchao Sun
- School of Science, Shenyang Aerospace University, Shenyang 110136, China
| |
Collapse
|
5
|
Shao W, Cui T, Li D, Jian J, Li Z, Ji S, Cheng A, Li X, Liu K, Liu H, Yang Y, Ren T. Carbon-Based Textile Sensors for Physiological-Signal Monitoring. MATERIALS (BASEL, SWITZERLAND) 2023; 16:ma16113932. [PMID: 37297066 DOI: 10.3390/ma16113932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 05/16/2023] [Accepted: 05/22/2023] [Indexed: 06/12/2023]
Abstract
As the focus on physical health increases, the market demand for flexible wearable sensors increases. Textiles combined with sensitive materials and electronic circuits can form flexible, breathable high-performance sensors for physiological-signal monitoring. Carbon-based materials such as graphene, carbon nanotubes (CNTs), and carbon black (CB) have been widely utilized in the development of flexible wearable sensors due to their high electrical conductivity, low toxicity, low mass density, and easy functionalization. This review provides an overview of recent advancements in carbon-based flexible textile sensors, highlighting the development, properties, and applications of graphene, CNTs, and CB for flexible textile sensors. The physiological signals that can be monitored by carbon-based textile sensors include electrocardiogram (ECG), human body movement, pulse and respiration, body temperature, and tactile perception. We categorize and describe carbon-based textile sensors based on the physiological signals they monitor. Finally, we discuss the current challenges associated with carbon-based textile sensors and explore the future direction of textile sensors for monitoring physiological signals.
Collapse
Affiliation(s)
- Wancheng Shao
- School of Integrated Circuit, Tsinghua University, Beijing 100084, China
- Beijing National Research Center for Information Science and Technology (BNRist), Tsinghua University, Beijing 100084, China
| | - Tianrui Cui
- School of Integrated Circuit, Tsinghua University, Beijing 100084, China
- Beijing National Research Center for Information Science and Technology (BNRist), Tsinghua University, Beijing 100084, China
| | - Ding Li
- School of Integrated Circuit, Tsinghua University, Beijing 100084, China
- Beijing National Research Center for Information Science and Technology (BNRist), Tsinghua University, Beijing 100084, China
| | - Jinming Jian
- School of Integrated Circuit, Tsinghua University, Beijing 100084, China
- Beijing National Research Center for Information Science and Technology (BNRist), Tsinghua University, Beijing 100084, China
| | - Zhen Li
- School of Integrated Circuit, Tsinghua University, Beijing 100084, China
- Beijing National Research Center for Information Science and Technology (BNRist), Tsinghua University, Beijing 100084, China
| | - Shourui Ji
- School of Integrated Circuit, Tsinghua University, Beijing 100084, China
- Beijing National Research Center for Information Science and Technology (BNRist), Tsinghua University, Beijing 100084, China
| | - Aobo Cheng
- School of Integrated Circuit, Tsinghua University, Beijing 100084, China
- Beijing National Research Center for Information Science and Technology (BNRist), Tsinghua University, Beijing 100084, China
| | - Xinyue Li
- School of Integrated Circuit, Tsinghua University, Beijing 100084, China
- Beijing National Research Center for Information Science and Technology (BNRist), Tsinghua University, Beijing 100084, China
| | - Kaiyin Liu
- School of Integrated Circuit, Tsinghua University, Beijing 100084, China
- Beijing National Research Center for Information Science and Technology (BNRist), Tsinghua University, Beijing 100084, China
| | - Houfang Liu
- Beijing National Research Center for Information Science and Technology (BNRist), Tsinghua University, Beijing 100084, China
| | - Yi Yang
- School of Integrated Circuit, Tsinghua University, Beijing 100084, China
- Beijing National Research Center for Information Science and Technology (BNRist), Tsinghua University, Beijing 100084, China
| | - Tianling Ren
- School of Integrated Circuit, Tsinghua University, Beijing 100084, China
- Beijing National Research Center for Information Science and Technology (BNRist), Tsinghua University, Beijing 100084, China
- Center for Flexible Electronics Technology, Tsinghua University, Beijing 100084, China
| |
Collapse
|
6
|
Albright T, Hobeck J. Investigating the Electromechanical Properties of Carbon Black-Based Conductive Polymer Composites via Stochastic Modeling. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:nano13101641. [PMID: 37242057 DOI: 10.3390/nano13101641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Revised: 04/26/2023] [Accepted: 05/10/2023] [Indexed: 05/28/2023]
Abstract
Conductive polymer composites (CPCs) have shown potential for structural health monitoring applications based on repeated findings of irreversible transducer electromechanical property change due to fatigue. In this research, a high-fidelity stochastic modeling framework is explored for predicting the electromechanical properties of spherical element-based CPC materials at bulk scales. CPC dogbone specimens are manufactured via casting and their electromechanical properties are characterized via uniaxial tensile testing. Model parameter tuning, demonstrated in previous works, is deployed for improved simulation fidelity. Modeled predictions are found in agreement with experimental results and compared to predictions from a popular analytical model in the literature.
Collapse
Affiliation(s)
- Tyler Albright
- Alan Levin Department of Mechanical & Nuclear Engineering, Kansas State University, Manhattan, KS 66506, USA
| | - Jared Hobeck
- Alan Levin Department of Mechanical & Nuclear Engineering, Kansas State University, Manhattan, KS 66506, USA
| |
Collapse
|
7
|
Stoica I, Barzic AI, Ursu C, Stoian G, Hitruc EG, Sava I. Atomic Force Microscopy Probing and Analysis of Polyimide Supramolecular Systems for Sensor Devices. SENSORS (BASEL, SWITZERLAND) 2023; 23:s23094489. [PMID: 37177692 PMCID: PMC10181602 DOI: 10.3390/s23094489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 05/02/2023] [Accepted: 05/03/2023] [Indexed: 05/15/2023]
Abstract
A series of polyimide supramolecular systems containing different amounts of azochromophore were tested as flexible supports that can be used in the fabrication of certain devices, such as sensors for monitoring the temperature changes, by coating them with conductive metals. That is why it is required to have good interfacial compatibility between the flexible substrate and the inorganic layer. The interface of the sensor elements must be designed in such a way as to improve the sensitivity, accuracy, and response time of the device. Laser irradiation is one of the commonly employed techniques used for surface adaptation by patterning polyimides to increase contact and enhance device reliability and signal transmission. In this context, this work highlights unreported aspects arising from the azo-polyimide morphology, local nanomechanical properties and wettability, which are impacting the compatibility with silver. The texture parameters indicate an improvement of the modulations' quality arising after laser irradiation through the phase mask, increasing the bearing capacity, fluid retention, and surface anisotropy when the amount of the azochromophore increases. The force curve spectroscopy and wettability studies indicated that the modification of the polymer morphology and surface chemistry lead to a better interfacial interaction with the metal lines when the azo component and the polyamidic acid are in equimolar quantities.
Collapse
Affiliation(s)
- Iuliana Stoica
- "Petru Poni" Institute of Macromolecular Chemistry, 700487 Iasi, Romania
| | | | - Cristian Ursu
- "Petru Poni" Institute of Macromolecular Chemistry, 700487 Iasi, Romania
| | - George Stoian
- National Institute of Research and Development for Technical Physics, 700050 Iasi, Romania
| | | | - Ion Sava
- "Petru Poni" Institute of Macromolecular Chemistry, 700487 Iasi, Romania
| |
Collapse
|
8
|
Luo Q, Shen H, Zhou G, Xu X. A mini-review on the dielectric properties of cellulose and nanocellulose-based materials as electronic components. Carbohydr Polym 2023; 303:120449. [PMID: 36657840 DOI: 10.1016/j.carbpol.2022.120449] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Revised: 11/27/2022] [Accepted: 12/07/2022] [Indexed: 12/14/2022]
Abstract
Cellulose-based materials have the advantages of renewable, non-toxic, flexible, and strong mechanical properties, so it of is great significance to study the dielectric properties of cellulose-based materials. In this paper, we summarized the factors influencing the dielectric properties of cellulose and nanocellulose-based dielectric and the ways to change the dielectric properties, mainly exploring the methods to improve the dielectric constant of cellulose-based dielectric materials. Cellulose and nanocellulose-based dielectric need to improve the hygroscopic property, increase the flexibility and reduce dielectric loss of the composite materials. This review summarizes the current state-of-art progress of new dielectric materials for green energy storage and flexible electronic devices.
Collapse
Affiliation(s)
- Qiguan Luo
- Guangdong Provincial Key Laboratory of Optical Information Materials and Technology and Institute of Electronic Paper Displays, South China Academy of Advanced Optoelectronics, National Center for International Research on Green Optoelectronics, South China Normal University, Guangzhou 510006, PR China
| | - Huimin Shen
- Guangdong Provincial Key Laboratory of Optical Information Materials and Technology and Institute of Electronic Paper Displays, South China Academy of Advanced Optoelectronics, National Center for International Research on Green Optoelectronics, South China Normal University, Guangzhou 510006, PR China
| | - Guofu Zhou
- Guangdong Provincial Key Laboratory of Optical Information Materials and Technology and Institute of Electronic Paper Displays, South China Academy of Advanced Optoelectronics, National Center for International Research on Green Optoelectronics, South China Normal University, Guangzhou 510006, PR China; Shenzhen Guohua Optoelectronics Technology Co., Ltd., Shenzhen 518110, Guangdong, China; Shenzhen Guohua Optoelectronics Research Institute, Shenzhen 518110, Guangdong, China
| | - Xuezhu Xu
- Guangdong Provincial Key Laboratory of Optical Information Materials and Technology and Institute of Electronic Paper Displays, South China Academy of Advanced Optoelectronics, National Center for International Research on Green Optoelectronics, South China Normal University, Guangzhou 510006, PR China.
| |
Collapse
|
9
|
Barbosa R, Gonçalves R, Blanco GEDO, Saccardo MC, Tozzi KA, Zuquello AG, Scuracchio CH. Multi-sensing properties of hybrid filled natural rubber nanocomposites using impedance spectroscopy. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2022.141341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
10
|
Di Pasquale G, Graziani S, Kurukunda S, Pollicino A, Trigona C. Investigation on the Role of Ionic Liquids in the Output Signal Produced by Bacterial Cellulose-Based Mechanoelectrical Transducers. SENSORS 2021; 21:s21041295. [PMID: 33670269 PMCID: PMC7918817 DOI: 10.3390/s21041295] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 02/04/2021] [Accepted: 02/08/2021] [Indexed: 12/17/2022]
Abstract
Green sensors are required for the realization of a sustainable economy. Biopolymer-derived composites are a meaningful solution to such a needing. Bacterial Cellulose (BC) is a green biopolymer, with significant mechanical and electrical properties. BC-based composites have been proposed to realize generating mechanoelectrical transductors. The transductors consist of a sheet of BC, impregnated of Ionic Liquids (ILs), and covered with two layers of Conducting Polymer (CP) as the electrodes. Charges accumulate at the electrodes when the transductor is bent. Generating sensors can produce either Open Circuit (OC) voltage or Short Circuit (SC) current. In the paper, the OC voltage and SC current, generated from BC-based composites, in a cantilever configuration and subjected to dynamic deformation are compared. The influence of ILs in the transduction performance, both in the case of OC voltage and SC current is investigated. Experimental investigations of structural, chemical, and mechanoelectrical transduction properties, when the composite is dynamically bent, are performed. The mechanoelectrical investigation has been carried on both in the time and in the frequency domains. Reported results show that no relevant changes can be obtained because of the use of IL when the OC voltage is considered. On the contrary, dramatic changes are observed for the case of SC current, whose value increases by about two orders of magnitude.
Collapse
Affiliation(s)
- Giovanna Di Pasquale
- Dipartimento di Scienze Chimiche (DSC), University of Catania, Viale Andrea Doria 6, 95125 Catania, Italy;
| | - Salvatore Graziani
- Dipartimento di Ingegneria Elettrica Elettronica e Informatica (DIEEI), University of Catania, Viale Andrea Doria 6, 95125 Catania, Italy; (S.K.); (C.T.)
- Correspondence:
| | - Santhosh Kurukunda
- Dipartimento di Ingegneria Elettrica Elettronica e Informatica (DIEEI), University of Catania, Viale Andrea Doria 6, 95125 Catania, Italy; (S.K.); (C.T.)
| | - Antonino Pollicino
- Dipartimento di Ingegneria Civile e Architettura (DICAr), University of Catania, Viale Andrea Doria 6, 95125 Catania, Italy;
| | - Carlo Trigona
- Dipartimento di Ingegneria Elettrica Elettronica e Informatica (DIEEI), University of Catania, Viale Andrea Doria 6, 95125 Catania, Italy; (S.K.); (C.T.)
| |
Collapse
|
11
|
Abstract
The development of wearable sensors is aimed at enabling continuous real-time health monitoring, which leads to timely and precise diagnosis anytime and anywhere. Unlike conventional wearable sensors that are somewhat bulky, rigid, and planar, research for next-generation wearable sensors has been focused on establishing fully-wearable systems. To attain such excellent wearability while providing accurate and reliable measurements, fabrication strategies should include (1) proper choices of materials and structural designs, (2) constructing efficient wireless power and data transmission systems, and (3) developing highly-integrated sensing systems. Herein, we discuss recent advances in wearable devices for non-invasive sensing, with focuses on materials design, nano/microfabrication, sensors, wireless technologies, and the integration of those.
Collapse
|
12
|
Effect of Regenerated Cellulose Fibers Derived from Black Oat on Functional Properties of PVA-Based Biocomposite Film. Processes (Basel) 2020. [DOI: 10.3390/pr8091149] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
In this study, agricultural residue from black oat, a cover crop usually grown to improve soil nutrients between the periods of regular crop production, was used as a source of cellulose fibers. Concentrations of 1, 3, and 5 wt. % of regenerated cellulose (RC) fibers blended in poly(vinyl alcohol) (PVA) solution were used to prepare the reinforced composite films (CFs) by the solvent cast method. Compared to neat PVA film (control), the effects of RC addition on functional properties of CFs, such as water absorption, transparency, thermal stability, and mechanical property were investigated. All CFs with different RC concentrations exhibited improved mechanical property and thermal stability while the swelling property was decreased, and no significant changes were observed in the film transparency as compared with the control film. Among the CFs, films with 3% RC significantly decreased water vapor transmission rate, swelling, and soluble fraction (p < 0.05). In addition, Young’s modulus and tensile strength were increased by 40 MPa and 3 MPa, respectively, while elongation at break was decreased by 4%, compared to the control film. The results indicate that RC from black oat might be feasible as potential bio fillers to improve film properties in a bio-based composite matrix.
Collapse
|