1
|
Ngai JHL, Li Z, Wang J, He J, Ding J, Li Y. Strategic Design of Hemi-Isoindigo Polymer for a Highly Sensitive and Selective All-Printed Flexible Nitrogen Dioxide Chemiresistive Sensor. SMALL METHODS 2024; 8:e2301521. [PMID: 38319029 DOI: 10.1002/smtd.202301521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 01/15/2024] [Indexed: 02/07/2024]
Abstract
The study has developed two hemi-isoindigo (HID)-based polymers for printed flexible resistor-type nitrogen oxide (NO2) sensors: poly[2-ethylhexyl 3-((3'",4'-bis(dodecyloxy)-3,4-dimethoxy-[2,2':5',2'"-terthiophen]-5-yl)methylene)-2-oxoindoline-1-carboxylate] (P1) and poly[2-ethylhexyl 2-oxo-3-((3,3'",4,4'-tetrakis(dodecyloxy)-[2,2':5',2'"-terthiophen]-5-yl)methylene)indoline-1-carboxylate] (P2). These polymers feature thermally removable carbamate side chains on the HID units, providing solubility and creating molecular cavities after thermal annealing. These cavities enhance NO2 diffusion, and the liberated unsubstituted amide ─C(═O)NH─ groups readily form robust double hydrogen bonds (DHB), as demonstrated by computer simulations. Furthermore, both polymers possess elevated highest occupied molecular orbital (HOMO) energy levels of -4.74 and -4.77 eV, making them highly susceptible to p-doping by NO2. Gas sensors fabricated from P1 and P2 films, anneal under optimized conditions to partially remove carbamate side chains, exhibit remarkable sensitivities of +1400% ppm-1 and +3844% ppm-1, and low detection limit (LOD) values of 514 ppb and 38.9 ppb toward NO2, respectively. These sensors also demonstrate excellent selectivity for NO2 over other gases.
Collapse
Affiliation(s)
- Jenner H L Ngai
- Department of Chemical Engineering and Waterloo Institute of Nanotechnology, (WIN), University of Waterloo, 200 University Ave West, Waterloo, N2L 3G1, Canada
- Security and Disruptive Technologies, National Research Council Canada, 1200 Montreal Road, Ottawa, Ontario, K1A 0R6, Canada
| | - Zhao Li
- Security and Disruptive Technologies, National Research Council Canada, 1200 Montreal Road, Ottawa, Ontario, K1A 0R6, Canada
| | - Jia Wang
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, P. R. China
| | - Jinghui He
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, P. R. China
| | - Jianfu Ding
- Security and Disruptive Technologies, National Research Council Canada, 1200 Montreal Road, Ottawa, Ontario, K1A 0R6, Canada
| | - Yuning Li
- Department of Chemical Engineering and Waterloo Institute of Nanotechnology, (WIN), University of Waterloo, 200 University Ave West, Waterloo, N2L 3G1, Canada
| |
Collapse
|
2
|
Ganesh Moorthy S, Bouvet M. Effects of Visible Light on Gas Sensors: From Inorganic Resistors to Molecular Material-Based Heterojunctions. SENSORS (BASEL, SWITZERLAND) 2024; 24:1571. [PMID: 38475107 DOI: 10.3390/s24051571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 02/20/2024] [Accepted: 02/23/2024] [Indexed: 03/14/2024]
Abstract
In the last two decades, many research works have been focused on enhancing the properties of gas sensors by utilising external triggers like temperature and light. Most interestingly, the light-activated gas sensors show promising results, particularly using visible light as an external trigger that lowers the power consumption as well as improves the stability, sensitivity and safety of the sensors. It effectively eliminates the possible damage to sensing material caused by high operating temperature or high energy light. This review summarises the effect of visible light illumination on both chemoresistors and heterostructure gas sensors based on inorganic and organic materials and provides a clear understanding of the involved phenomena. Finally, the fascinating concept of ambipolar gas sensors is presented, which utilised visible light as an external trigger for inversion in the nature of majority charge carriers in devices. This review should offer insight into the current technologies and offer a new perspective towards future development utilising visible light in light-assisted gas sensors.
Collapse
Affiliation(s)
- Sujithkumar Ganesh Moorthy
- Institut de Chimie Moléculaire de l'Université de Bourgogne (ICMUB), UMR CNRS 6302, Université de Bourgogne, 9 Avenue Alain Savary, 21078 Dijon CEDEX, France
| | - Marcel Bouvet
- Institut de Chimie Moléculaire de l'Université de Bourgogne (ICMUB), UMR CNRS 6302, Université de Bourgogne, 9 Avenue Alain Savary, 21078 Dijon CEDEX, France
| |
Collapse
|
3
|
Kumar A, Nwosu ID, Meunier-Prest R, Lesniewska E, Bouvet M. Tuning of Interfacial Charge Transport in Organic Heterostructures via Aryl Electrografting for Efficient Gas Sensors. ACS APPLIED MATERIALS & INTERFACES 2024; 16:3795-3808. [PMID: 38224467 DOI: 10.1021/acsami.3c16144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/16/2024]
Abstract
Modulation of interfacial conductivity in organic heterostructures is a highly promising strategy to improve the performance of electronic devices. In this endeavor, the present work reports the fabrication of a bilayer heterojunction device, combining octafluoro copper phthalocyanine (CuF8Pc) and lutetium bis-phthalocyanine (LuPc2) and tunes the charge transport at the Cu(F8Pc)-(LuPc2) interface by aryl electrografting on the device electrode to improve the device NH3-sensing properties. Dimethoxybenzene (DMB) and tetrafluoro benzene (TFB) electrografted by an aryldiazonium electroreduction method form a few-nanometer-thick organic film on ITO. The conductivity of the heterojunction devices formed by coating a Cu(F8Pc)/LuPc2 bilayer over the aryl-grafted electrode strongly varies according to the electronic effects of the substituents in the aryl. Accordingly, DMB increases while TFB decreases the mobile charges accumulation at the Cu(F8Pc)-(LuPc2) interface. This is explained by the perfect alignment of the frontier molecular orbitals of DMB and Cu(F8Pc), facilitating charge injection into the Cu(F8Pc) layer. On the contrary, TFB behaves like a strong acceptor and reduces the mobile charges accumulation at the Cu(F8Pc)-(LuPc2) interface. Such interfacial conductivity variation influences the device NH3-sensing properties, which increase because of DMB grafting and decrease in the presence of TFB. DMB-based heterojunction devices contain four times higher active sites for NH3 adsorption and could detect NH3 down to 1 ppm with limited interference from humidity, making them suitable for real environment NH3 detection.
Collapse
Affiliation(s)
- Abhishek Kumar
- Institut de Chimie Moléculaire de l'Université de Bourgogne, UMR CNRS 6302, Université de Bourgogne, 9 Avenue Alain Savary, Dijon Cedex 21078, France
| | - Ikechukwu David Nwosu
- Institut de Chimie Moléculaire de l'Université de Bourgogne, UMR CNRS 6302, Université de Bourgogne, 9 Avenue Alain Savary, Dijon Cedex 21078, France
| | - Rita Meunier-Prest
- Institut de Chimie Moléculaire de l'Université de Bourgogne, UMR CNRS 6302, Université de Bourgogne, 9 Avenue Alain Savary, Dijon Cedex 21078, France
| | - Eric Lesniewska
- Laboratoire Interdisciplinaire Carnot de Bourgogne (LICB), UMR CNRS 6303, Université de Bourgogne, 9 Avenue Alain Savary, Dijon Cedex 21078, France
| | - Marcel Bouvet
- Institut de Chimie Moléculaire de l'Université de Bourgogne, UMR CNRS 6302, Université de Bourgogne, 9 Avenue Alain Savary, Dijon Cedex 21078, France
| |
Collapse
|
4
|
Sánchez Vergara ME, Toledo Dircio E, Cantera Cantera LA, Bazán-Diaz L, Salcedo R. Using Recycled Tetrapak and Doped Titanyl/Vanadyl Phthalocyanine to Make Solid-State Devices. MATERIALS (BASEL, SWITZERLAND) 2024; 17:309. [PMID: 38255476 PMCID: PMC10817484 DOI: 10.3390/ma17020309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 12/28/2023] [Accepted: 01/05/2024] [Indexed: 01/24/2024]
Abstract
In this work we studied the semiconductor behavior of titanyl phthalocyanine (TiOPc) and vanadyl phthalocyanine (VOPc), doped with anthraflavic acid and deposited on Tetrapak/graphite as flexible electrodes. The molecular structure was approached using the density functional theory and astonishingly, it was found that the structure and electronic behavior can change depending on the metal in the phthalocyanine. Experimentally, the Root Mean Square was found to be 124 and 151 nm for the VOPc-Anthraflavine and TiOPc-Anthraflavine films, respectively, and the maximum stress was 8.58 MPa for the film with VOPc. The TiOPc-Anthraflavine film presents the smallest fundamental gap of 1.81 eV and 1.98 eV for indirect and direct transitions, respectively. Finally, the solid-state devices were fabricated, and the electrical properties were examined. The tests showed that the current-voltage curves of the devices on Tetrapak and VOPc-Anthraflavine on a rigid substrate exhibit the same current saturation behavior at 10 mA, which is achieved for different voltage values. Since the current-voltage curves of the TiOPc-Anthraflavine on a rigid substrate presents a defined diode model behavior, it was approximated by nonlinear least squares, and it has been determined that the threshold voltage of the sample for the different lighting conditions is between 0.6 and 0.8 volts.
Collapse
Affiliation(s)
- María Elena Sánchez Vergara
- Facultad de Ingeniería, Universidad Anáhuac México, Avenida Universidad Anáhuac 46, Col. Lomas Anáhuac, Huixquilucan 52786, Mexico
| | - Emiliano Toledo Dircio
- Facultad de Ingeniería, Universidad Anáhuac México, Avenida Universidad Anáhuac 46, Col. Lomas Anáhuac, Huixquilucan 52786, Mexico
| | - Luis Alberto Cantera Cantera
- Facultad de Ingeniería, Universidad Anáhuac México, Avenida Universidad Anáhuac 46, Col. Lomas Anáhuac, Huixquilucan 52786, Mexico
- Instituto Politécnico Nacional—ESIME, Unidad Profesional Adolfo López Mateos, Av. Luis Enrique Erro S/N, Gustavo A. Madero, Zacatenco, Ciudad de México 07738, Mexico
| | - Lourdes Bazán-Diaz
- Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México, Circuito Exterior s/n. C.U., Ciudad de México 04510, Mexico
| | - Roberto Salcedo
- Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México, Circuito Exterior s/n. C.U., Ciudad de México 04510, Mexico
| |
Collapse
|
5
|
Kumar A, Castro M, Feller JF. Review on Sensor Array-Based Analytical Technologies for Quality Control of Food and Beverages. SENSORS (BASEL, SWITZERLAND) 2023; 23:4017. [PMID: 37112358 PMCID: PMC10141392 DOI: 10.3390/s23084017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 04/11/2023] [Accepted: 04/12/2023] [Indexed: 06/19/2023]
Abstract
Food quality control is an important area to address, as it directly impacts the health of the whole population. To evaluate the food authenticity and quality, the organoleptic feature of the food aroma is very important, such that the composition of volatile organic compounds (VOC) is unique in each aroma, providing a basis to predict the food quality. Different types of analytical approaches have been used to assess the VOC biomarkers and other parameters in the food. The conventional approaches are based on targeted analyses using chromatography and spectroscopies coupled with chemometrics, which are highly sensitive, selective, and accurate to predict food authenticity, ageing, and geographical origin. However, these methods require passive sampling, are expensive, time-consuming, and lack real-time measurements. Alternately, gas sensor-based devices, such as the electronic nose (e-nose), bring a potential solution for the existing limitations of conventional methods, offering a real-time and cheaper point-of-care analysis of food quality assessment. Currently, research advancement in this field involves mainly metal oxide semiconductor-based chemiresistive gas sensors, which are highly sensitive, partially selective, have a short response time, and utilize diverse pattern recognition methods for the classification and identification of biomarkers. Further research interests are emerging in the use of organic nanomaterials in e-noses, which are cheaper and operable at room temperature.
Collapse
|
6
|
Wang Z, Hu J, Lu J, Zhu X, Zhou X, Huang L, Chi L. Charge Transport Manipulation via Interface Doping: Achieving Ultrasensitive Organic Semiconductor Gas Sensors. ACS APPLIED MATERIALS & INTERFACES 2023; 15:8355-8366. [PMID: 36735056 DOI: 10.1021/acsami.2c20391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Organic semiconductor (OSC) gas sensors are receiving tremendous attention with the rise of wearable devices. Due to the complicated charge transport characteristics of OSCs, it is usually difficult to optimize their gas sensitivity by directly tailoring the original signals, as in many other kinds of sensors. Instead, device engineering strategies are frequently centered on enhancing the gas-film interaction. Herein, by introducing interface doping between self-assembled monolayers and triisopropylsilylethynyl-substituted pentacene films, we report a wide tuning of OSC gas sensitivity via charge transport manipulation and achieve an ultrahigh sensitivity of nearly 2000%/ppm to NO2, simultaneously resulting in a fast square-wave-like response feature. In addition, this sensor demonstrates good humidity stability and operates well in flexible devices. More importantly, we identify that charge transport manipulation tailors the gas sensibility of OSCs by means of electronic structure instead of original signal values: compared to shallow traps, the presence of proper deep traps is conducive to gaining high sensitivity and ultrafast response/recovery speeds. This approach is also effective for tuning the sensitivity to reductive gases, verifying its generality for promoting the performance of OSC gas sensors, as well as a promising strategy for other types of sensors or detectors.
Collapse
Affiliation(s)
- Zi Wang
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, 199 Ren'ai Road, Suzhou, Jiangsu 215123, P. R. China
- Gusu Laboratory of Materials, 388 Ruoshui Road, Suzhou 215123, P.R. China
| | - Jing Hu
- Suzhou Key Laboratory for Nanophotonic and Nanoelectronic Materials and Its Devices, School of Materials Science and Engineering, Suzhou University of Science and Technology, Suzhou, Jiangsu Province 215009, China
| | - Jie Lu
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, 199 Ren'ai Road, Suzhou, Jiangsu 215123, P. R. China
| | - Xiaofei Zhu
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, 199 Ren'ai Road, Suzhou, Jiangsu 215123, P. R. China
| | - Xu Zhou
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, 199 Ren'ai Road, Suzhou, Jiangsu 215123, P. R. China
| | - Lizhen Huang
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, 199 Ren'ai Road, Suzhou, Jiangsu 215123, P. R. China
| | - Lifeng Chi
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, 199 Ren'ai Road, Suzhou, Jiangsu 215123, P. R. China
| |
Collapse
|
7
|
Octafluoro-Substituted Phthalocyanines of Zinc, Cobalt, and Vanadyl: Single Crystal Structure, Spectral Study and Oriented Thin Films. Int J Mol Sci 2023; 24:ijms24032034. [PMID: 36768358 PMCID: PMC9917058 DOI: 10.3390/ijms24032034] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 01/16/2023] [Accepted: 01/17/2023] [Indexed: 01/22/2023] Open
Abstract
In this work, octafluoro-substituted phthalocyanines of zinc, vanadyl, and cobalt (MPcF8, M = Zn(II), Co(II), VO) were synthesized and studied. The structures of single crystals of the obtained phthalocyanines were determined. To visualize and compare intermolecular contacts in MPcF8, an analysis of Hirshfeld surfaces (HS) was performed. MPcF8 nanoscale thickness films were deposited by organic molecular beam deposition technique and their structure and orientation were studied using X-ray diffraction. Comparison of X-ray diffraction patterns of thin films with the calculated diffractograms showed that all three films consisted of a single crystal phase, which corresponded to a phase of single crystals. Only one strong diffraction peak corresponding to the plane (001) was observed on the diffraction pattern of each film, which indicated a strong preferred orientation with the vast majority of crystallites oriented with a (001) crystallographic plane parallel to the substrate surface. The effect of the central metals on the electronic absorption and vibrational spectra of the studied phthalocyanines as well as on the electrical conductivity of their films is also discussed.
Collapse
|
8
|
Electrospun PVC-nickel phthalocyanine composite nanofiber based conductometric methanol microsensor. Microchem J 2022. [DOI: 10.1016/j.microc.2022.107899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
9
|
Yabaş E, Biçer E, Altındal A. Novel Reduced Graphene Oxide/Zinc Phthalocyanine and Reduced Graphene Oxide/Cobalt Phthalocyanine Hybrids as High Sensitivity Room Temperature Volatile Organic Compound Gas Sensors. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.134076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
10
|
Microstructural Control of Soluble Acene Crystals for Field-Effect Transistor Gas Sensors. NANOMATERIALS 2022; 12:nano12152564. [PMID: 35893530 PMCID: PMC9331709 DOI: 10.3390/nano12152564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 07/21/2022] [Accepted: 07/22/2022] [Indexed: 12/07/2022]
Abstract
Microstructural control during the solution processing of small-molecule semiconductors (namely, soluble acene) is important for enhancing the performance of field-effect transistors (FET) and sensors. This focused review introduces strategies to enhance the gas-sensing properties (sensitivity, recovery, selectivity, and stability) of soluble acene FET sensors by considering their sensing mechanism. Defects, such as grain boundaries and crystal edges, provide diffusion pathways for target gas molecules to reach the semiconductor-dielectric interface, thereby enhancing sensitivity and recovery. Representative studies on grain boundary engineering, patterning, and pore generation in the formation of soluble acene crystals are reviewed. The phase separation and microstructure of soluble acene/polymer blends for enhancing gas-sensing performance are also reviewed. Finally, flexible gas sensors using soluble acenes and soluble acene/polymer blends are introduced, and future research perspectives in this field are suggested.
Collapse
|
11
|
Klyamer DD, Basova TV. EFFECT OF THE STRUCTURAL FEATURES OF METAL PHTHALOCYANINE FILMS ON THEIR ELECTROPHYSICAL PROPERTIES. J STRUCT CHEM+ 2022. [DOI: 10.1134/s0022476622070010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
12
|
Musa I, Raffin G, Hangouet M, Martin M, Alcacer A, Zine N, Bellagambi F, Jaffrezic-Renault N, ERRACHID A. Development of a chitosan/nickel phthalocyanine composite based conductometric micro‐sensor for methanol detection. ELECTROANAL 2022. [DOI: 10.1002/elan.202100707] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
13
|
Malyasova AS, Kostrova EA, Abramov IG, Maizlish VE, Koifman OI. Synthesis, acid-base interactions, and photostability of copper(ii) tetrakis(3,5-di-tert-butylbenzoyloxy)phthalocyanine. Russ Chem Bull 2022. [DOI: 10.1007/s11172-021-3360-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
14
|
Madhaiyan G, Sun AT, Zan HW, Meng HF, Horng SF, Chen LY, Hung HW. Solution-Processed Chloroaluminum Phthalocyanine (ClAlPc) Ammonia Gas Sensor with Vertical Organic Porous Diodes. SENSORS (BASEL, SWITZERLAND) 2021; 21:5783. [PMID: 34502673 PMCID: PMC8433672 DOI: 10.3390/s21175783] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 08/19/2021] [Accepted: 08/24/2021] [Indexed: 02/03/2023]
Abstract
In this research work, the gas sensing properties of halogenated chloroaluminum phthalocyanine (ClAlPc) thin films were studied at room temperature. We fabricated an air-stable ClAlPc gas sensor based on a vertical organic diode (VOD) with a porous top electrode by the solution process method. The surface morphology of the solution-processed ClAlPc thin film was examined by field emission scanning electron microscopy (FESEM) and atomic force microscopy (AFM). The proposed ClAlPc-based VOD sensor can detect ammonia (NH3) gas at the ppb level (100~1000 ppb) at room temperature. Additionally, the ClAlPc sensor was highly selective towards NH3 gas compared to other interfering gases (NO2, ACE, NO, H2S, and CO). In addition, the device lifetime was tested by storing the device at ambient conditions. The effect of relative humidity (RH) on the ClAlPc NH3 gas sensor was also explored. The aim of this study is to extend these findings on halogenated phthalocyanine-based materials to practical electronic nose applications in the future.
Collapse
Affiliation(s)
- Govindsamy Madhaiyan
- Institute of Physics, National Yang Ming Chiao Tung University, Hsinchu 30010, Taiwan;
| | - An-Ting Sun
- Department of Electrical Engineering, National Tsing Hua University, Hsinchu 30010, Taiwan; (A.-T.S.); (S.-F.H.)
| | - Hsiao-Wen Zan
- Department of Photonics, Institute of Electro-Optical Engineering, College of Electrical and Computer, Engineering, National Yang Ming Chiao Tung University, Hsinchu 30010, Taiwan;
| | - Hsin-Fei Meng
- Institute of Physics, National Yang Ming Chiao Tung University, Hsinchu 30010, Taiwan;
| | - Sheng-Fu Horng
- Department of Electrical Engineering, National Tsing Hua University, Hsinchu 30010, Taiwan; (A.-T.S.); (S.-F.H.)
| | - Li-Yin Chen
- Department of Photonics, Institute of Electro-Optical Engineering, College of Electrical and Computer, Engineering, National Yang Ming Chiao Tung University, Hsinchu 30010, Taiwan;
| | - Hsiao-Wen Hung
- Intelligent Energy-Saving Systems Division, Green Energy and Environment Research Laboratories, Industrial Technology Research Institute, Hsinchu 30010, Taiwan;
| |
Collapse
|
15
|
Abstract
Metal phthalocyanines bearing electron-withdrawing fluorine substituents were synthesized a long time ago, but interest in the study of their films has emerged in recent decades. This is due to the fact that, unlike unsubstituted phthalocyanines, films of some fluorinated phthalocyanines exhibit the properties of n-type semiconductors, which makes them promising candidates for application in ambipolar transistors. Apart from this, it was shown that the introduction of fluorine substituents led to an increase in the sensitivity of phthalocyanine films to reducing gases. This review analyzes the state of research over the last fifteen years in the field of applications of fluoro-substituted metal phthalocyanines as active layers of gas sensors, with a primary focus on chemiresistive ones. The active layers on the basis of phthalocyanines with fluorine and fluorine-containing substituents of optical and quartz crystal microbalance sensors are also considered. Attention is paid to the analysis of the effect of molecular structure (central metal, number and type of fluorine substituent etc.) on sensor properties of fluorinated phthalocyanine films.
Collapse
|
16
|
Schmidt AM, Calvete MJF. Phthalocyanines: An Old Dog Can Still Have New (Photo)Tricks! Molecules 2021; 26:2823. [PMID: 34068708 PMCID: PMC8126243 DOI: 10.3390/molecules26092823] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Revised: 04/23/2021] [Accepted: 05/06/2021] [Indexed: 12/13/2022] Open
Abstract
Phthalocyanines have enjoyed throughout the years the benefits of being exquisite compounds with many favorable properties arising from the straightforward and diverse possibilities of their structural modulation. Last decades appreciated a steady growth in applications for phthalocyanines, particularly those dependent on their great photophysical properties, now used in several cutting-edge technologies, particularly in photonic applications. Judging by the vivid reports currently provided by many researchers around the world, the spotlight remains assured. This review deals with the use of phthalocyanine molecules in innovative materials in photo-applications. Beyond a comprehensive view on the recent discoveries, a critical review of the most acclaimed/considered reports is the driving force, providing a brief and direct insight on the latest milestones in phthalocyanine photonic-based science.
Collapse
Affiliation(s)
- Andrea M. Schmidt
- LifeEstetika, Laser Solutions, Universitätstadt Tübingen, Maria-von-Linden Strasse, 72076 Tübingen, Germany;
| | - Mário J. F. Calvete
- University of Coimbra, CQC, Department of Chemistry, Rua Larga, 3004-535 Coimbra, Portugal
| |
Collapse
|
17
|
Hou S, Zhuang X, Fan H, Yu J. Grain Boundary Control of Organic Semiconductors via Solvent Vapor Annealing for High-Sensitivity NO 2 Detection. SENSORS 2021; 21:s21010226. [PMID: 33401403 PMCID: PMC7794992 DOI: 10.3390/s21010226] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 12/27/2020] [Accepted: 12/28/2020] [Indexed: 02/06/2023]
Abstract
The microstructure of the organic semiconductor (OSC) active layer is one of the crucial topics to improve the sensing performance of gas sensors. Herein, we introduce a simple solvent vapor annealing (SVA) process to control 6,13-bis(triisopropylsilylethynyl)-pentacene (TIPS-pentacene) OSC films morphology and thus yields high-sensitivity nitrogen organic thin-film transistor (OTFT)-based nitrogen dioxide (NO2) sensors. Compared to pristine devices, the toluene SVA-treated devices exhibit an order of magnitude responsivity enhancement to 10 ppm NO2, further with a limit of detection of 148 ppb. Systematic studies on the microstructure of the TIPS-pentacene films reveal the large density grain boundaries formed by the SVA process, improving the capability for the adsorption of gas molecules, thus causing high-sensitivity to NO2. This simple SVA processing strategy provides an effective and reliable access for realizing high-sensitivity OTFT NO2 sensors.
Collapse
|
18
|
Alizadeh S, Kösoğlu G, Erdem M, Açar-Selçuki N, Özer M, Salih B, Bekaroğlu Ö. Synthesis, characterization, third-order non-linear optical properties and DFT studies of novel SUBO bridged ball-type metallophthalocyanines. Dalton Trans 2020; 49:17263-17273. [PMID: 33201973 DOI: 10.1039/d0dt03366a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Novel 4,4'-(((2,4,8,10-tetraoxaspiro[5.5]undecane-3,9-diyl)bis(2-methylpropane-2,1-diyl))bis(oxy)) (SUBO) bridged ball-type metallophthalocyanines were synthesized starting from 4,4'-(((2,4,8,10-tetraoxaspiro[5.5]undecane-3,9-diyl)bis(2-methylpropane-2,1-diyl))bis(oxy))diphthalonitrile with convenient metal salts in 2-N,N-dimethylaminoethanol. A new bisphthalonitrile compound was obtained from 2,2'-(2,4,8,10-tetraoxaspiro[5.5]undecane-3,9-diyl)bis(2-methylpropan-1-ol) and 4-nitrophthalonitrile in acetonitrile at reflux temperature in the presence of potassium carbonate as a catalyst. The structural characterization of the compounds was performed by elemental analysis, and infrared, ultraviolet-visible and matrix-assisted laser desorption/ionization time-of-flight mass spectroscopic methods. Nonlinear absorptions of the phthalocyanine complexes were measured using the Z-scan technique with 7 ns pulse duration at a 532 nm wavelength. It is obvious that ball-type copperphthalocyanine has a high nonlinear absorption coeffıcient and imaginary component of the third-order susceptibility compared to other complexes. Therefore, ball-type copperphthalocyanine can be regarded as a very good candidate for optical limiting applications. Density functional theory was used for geometry optimizations and time-dependent density functional theory calculations of electronic transitions in order to compare with the experimental results. Molecular orbital and nonlinear optical analyses were also performed with density functional theory at the CAM-B3LYP/6-31G(d,p)/LANL2DZ level. The nonlinear optical analyses show that ball-type copperphthalocyanine has significantly better nonlinear optical properties in comparison to a common reference compound, urea.
Collapse
Affiliation(s)
- Shabnam Alizadeh
- Marmara University, Department of Chemistry, 34722 Göztepe, Istanbul, Turkey
| | | | | | | | | | | | | |
Collapse
|