1
|
Richer N, Bradford JC, Ferris DP. Mobile neuroimaging: What we have learned about the neural control of human walking, with an emphasis on EEG-based research. Neurosci Biobehav Rev 2024; 162:105718. [PMID: 38744350 DOI: 10.1016/j.neubiorev.2024.105718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 04/18/2024] [Accepted: 05/08/2024] [Indexed: 05/16/2024]
Abstract
Our understanding of the neural control of human walking has changed significantly over the last twenty years and mobile brain imaging methods have contributed substantially to current knowledge. High-density electroencephalography (EEG) has the advantages of being lightweight and mobile while providing temporal resolution of brain changes within a gait cycle. Advances in EEG hardware and processing methods have led to a proliferation of research on the neural control of locomotion in neurologically intact adults. We provide a narrative review of the advantages and disadvantages of different mobile brain imaging methods, then summarize findings from mobile EEG studies quantifying electrocortical activity during human walking. Contrary to historical views on the neural control of locomotion, recent studies highlight the widespread involvement of many areas, such as the anterior cingulate, posterior parietal, prefrontal, premotor, sensorimotor, supplementary motor, and occipital cortices, that show active fluctuations in electrical power during walking. The electrocortical activity changes with speed, stability, perturbations, and gait adaptation. We end with a discussion on the next steps in mobile EEG research.
Collapse
Affiliation(s)
- Natalie Richer
- Department of Kinesiology and Applied Health, University of Winnipeg, Winnipeg, Manitoba, Canada.
| | - J Cortney Bradford
- US Army Combat Capabilities Development Command US Army Research Laboratory, Adelphi, MD, USA
| | - Daniel P Ferris
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL, USA
| |
Collapse
|
2
|
Jacobsen NA, Ferris DP. Exploring Electrocortical Signatures of Gait Adaptation: Differential Neural Dynamics in Slow and Fast Gait Adapters. eNeuro 2024; 11:ENEURO.0515-23.2024. [PMID: 38871456 PMCID: PMC11242882 DOI: 10.1523/eneuro.0515-23.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 05/13/2024] [Accepted: 05/27/2024] [Indexed: 06/15/2024] Open
Abstract
Individuals exhibit significant variability in their ability to adapt locomotor skills, with some adapting quickly and others more slowly. Differences in brain activity likely contribute to this variability, but direct neural evidence is lacking. We investigated individual differences in electrocortical activity that led to faster locomotor adaptation rates. We recorded high-density electroencephalography while young, neurotypical adults adapted their walking on a split-belt treadmill and grouped them based on how quickly they restored their gait symmetry. Results revealed unique spectral signatures within the posterior parietal, bilateral sensorimotor, and right visual cortices that differ between fast and slow adapters. Specifically, fast adapters exhibited lower alpha power in the posterior parietal and right visual cortices during early adaptation, associated with quicker attainment of steady-state step length symmetry. Decreased posterior parietal alpha may reflect enhanced spatial attention, sensory integration, and movement planning to facilitate faster locomotor adaptation. Conversely, slow adapters displayed greater alpha and beta power in the right visual cortex during late adaptation, suggesting potential differences in visuospatial processing. Additionally, fast adapters demonstrated reduced spectral power in the bilateral sensorimotor cortices compared with slow adapters, particularly in the theta band, which may suggest variations in perception of the split-belt perturbation. These findings suggest that alpha and beta oscillations in the posterior parietal and visual cortices and theta oscillations in the sensorimotor cortex are related to the rate of gait adaptation.
Collapse
Affiliation(s)
- Noelle A Jacobsen
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, Florida 32611-6131
| | - Daniel P Ferris
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, Florida 32611-6131
| |
Collapse
|
3
|
Jacobsen NA, Ferris DP. Electrocortical theta activity may reflect sensory prediction errors during adaptation to a gradual gait perturbation. PeerJ 2024; 12:e17451. [PMID: 38854799 PMCID: PMC11162180 DOI: 10.7717/peerj.17451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 05/03/2024] [Indexed: 06/11/2024] Open
Abstract
Locomotor adaptation to abrupt and gradual perturbations are likely driven by fundamentally different neural processes. The aim of this study was to quantify brain dynamics associated with gait adaptation to a gradually introduced gait perturbation, which typically results in smaller behavioral errors relative to an abrupt perturbation. Loss of balance during standing and walking elicits transient increases in midfrontal theta oscillations that have been shown to scale with perturbation intensity. We hypothesized there would be no significant change in anterior cingulate theta power (4-7 Hz) with respect to pre-adaptation when a gait perturbation is introduced gradually because the gradual perturbation acceleration and stepping kinematic errors are small relative to an abrupt perturbation. Using mobile electroencephalography (EEG), we measured gait-related spectral changes near the anterior cingulate, posterior cingulate, sensorimotor, and posterior parietal cortices as young, neurotypical adults (n = 30) adapted their gait to an incremental split-belt treadmill perturbation. Most cortical clusters we examined (>70%) did not exhibit changes in electrocortical activity between 2-50 Hz. However, we did observe gait-related theta synchronization near the left anterior cingulate cortex during strides with the largest errors, as measured by step length asymmetry. These results suggest gradual adaptation with small gait asymmetry and perturbation magnitude may not require significant cortical resources beyond normal treadmill walking. Nevertheless, the anterior cingulate may remain actively engaged in error monitoring, transmitting sensory prediction error information via theta oscillations.
Collapse
Affiliation(s)
- Noelle A. Jacobsen
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL, United States of America
| | - Daniel Perry Ferris
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL, United States of America
| |
Collapse
|
4
|
Medvedev AV, Lehmann B. The detection of absence seizures using cross-frequency coupling analysis with a deep learning network. RESEARCH SQUARE 2024:rs.3.rs-4178484. [PMID: 38659733 PMCID: PMC11042430 DOI: 10.21203/rs.3.rs-4178484/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
High frequency oscillations are important novel biomarkers of epileptogenic tissue. The interaction of oscillations across different time scales is revealed as cross-frequency coupling (CFC) representing a high-order structure in the functional organization of brain rhythms. New artificial intelligence methods such as deep learning neural networks can provide powerful tools for automated analysis of EEG. Here we present a Stacked Sparse Autoencoder (SSAE) trained to recognize absence seizure activity based on the cross-frequency patterns within scalp EEG. We used EEG records from the Temple University Hospital database. Absence seizures (n = 94) from 12 patients were taken into analysis along with segments of background activity. Half of the records were selected randomly for network training and the second half were used for testing. Power-to-power coupling was calculated between all frequencies 2-120 Hz pairwise using the EEGLAB toolbox. The resulting CFC matrices were used as training or testing inputs to the autoencoder. The trained network was able to recognize background and seizure segments (not used in training) with a sensitivity of 96.3%, specificity of 99.8% and overall accuracy of 98.5%. Our results provide evidence that the SSAE neural networks can be used for automated detection of absence seizures within scalp EEG.
Collapse
|
5
|
Chang J, Chang C. Quantitative Electroencephalography Markers for an Accurate Diagnosis of Frontotemporal Dementia: A Spectral Power Ratio Approach. MEDICINA (KAUNAS, LITHUANIA) 2023; 59:2155. [PMID: 38138258 PMCID: PMC10744364 DOI: 10.3390/medicina59122155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 11/28/2023] [Accepted: 12/12/2023] [Indexed: 12/24/2023]
Abstract
Background and Objectives: Frontotemporal dementia (FTD) is the second most common form of presenile dementia; however, its diagnosis has been poorly investigated. Previous attempts to diagnose FTD using quantitative electroencephalography (qEEG) have yielded inconsistent results in both spectral and functional connectivity analyses. This study aimed to introduce an accurate qEEG marker that could be used to diagnose FTD and other neurological abnormalities. Materials and Methods: We used open-access electroencephalography data from OpenNeuro to investigate the power ratio between the frontal and temporal lobes in the resting state of 23 patients with FTD and 29 healthy controls. Spectral data were extracted using a fast Fourier transform in the delta (0.5 ≤ 4 Hz), theta (4 ≤ 8 Hz), alpha (8-13 Hz), beta (>13-30 Hz), and gamma (>30-45 Hz) bands. Results: We found that the spectral power ratio between the frontal and temporal lobes is a promising qEEG marker of FTD. Frontal (F)-theta/temporal (T)-alpha, F-alpha/T-theta, F-theta/F-alpha, and T-beta/T-gamma showed a consistently high discrimination score for the diagnosis of FTD for different parameters and referencing methods. Conclusions: The study findings can serve as reference for future research focused on diagnosing FTD and other neurological anomalies.
Collapse
Affiliation(s)
- Jinwon Chang
- Korean Minjok Leadership Academy, Hoengseong 25268, Republic of Korea
| | - Chul Chang
- College of Medicine, Catholic University of Korea, Seoul 06591, Republic of Korea;
| |
Collapse
|
6
|
Jacobsen NA, Ferris DP. Electrocortical activity correlated with locomotor adaptation during split-belt treadmill walking. J Physiol 2023; 601:3921-3944. [PMID: 37522890 PMCID: PMC10528133 DOI: 10.1113/jp284505] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 07/11/2023] [Indexed: 08/01/2023] Open
Abstract
Locomotor adaptation is crucial for daily gait adjustments to changing environmental demands and obstacle avoidance. Mobile brain imaging with high-density electroencephalography (EEG) now permits quantification of electrocortical dynamics during human locomotion. To determine the brain areas involved in human locomotor adaptation, we recorded high-density EEG from healthy, young adults during split-belt treadmill walking. We incorporated a dual-electrode EEG system and neck electromyography to decrease motion and muscle artefacts. Voluntary movement preparation and execution have been linked to alpha (8-13 Hz) and beta band (13-30 Hz) desynchronizations in the sensorimotor and posterior parietal cortices, whereas theta band (4-7 Hz) modulations in the anterior cingulate have been correlated with movement error monitoring. We hypothesized that relative to normal walking, split-belt walking would elicit: (1) decreases in alpha and beta band power in sensorimotor and posterior parietal cortices, reflecting enhanced motor flexibility; and (2) increases in theta band power in anterior cingulate cortex, reflecting instability and balance errors that will diminish with practice. We found electrocortical activity in multiple regions that was associated with stages of gait adaptation. Data indicated that sensorimotor and posterior parietal cortices had decreased alpha and beta band spectral power during early adaptation to split-belt treadmill walking that gradually returned to pre-adaptation levels by the end of the adaptation period. Our findings emphasize that multiple brain areas are involved in adjusting gait under changing environmental demands during human walking. Future studies could use these findings on healthy, young participants to identify dysfunctional supraspinal mechanisms that may be impairing gait adaptation. KEY POINTS: Identifying the location and time course of electrical changes in the brain correlating with gait adaptation increases our understanding of brain function and provides targets for brain stimulation interventions. Using high-density EEG in combination with 3D biomechanics, we found changes in neural oscillations localized near the sensorimotor, posterior parietal and cingulate cortices during split-belt treadmill adaptation. These findings suggest that multiple cortical mechanisms may be associated with locomotor adaptation, and their temporal dynamics can be quantified using mobile EEG. Results from this study can serve as a reference model to examine brain dynamics in individuals with movement disorders that cause gait asymmetry and reduced gait adaptation.
Collapse
Affiliation(s)
- Noelle A Jacobsen
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, Florida, USA
| | - Daniel P Ferris
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, Florida, USA
| |
Collapse
|
7
|
Liu C, Downey RJ, Salminen JS, Rojas SA, Richer N, Pliner EM, Hwang J, Cruz-Almeida Y, Manini TM, Hass CJ, Seidler RD, Clark DJ, Ferris DP. Electrical Brain Activity during Human Walking with Parametric Variations in Terrain Unevenness and Walking Speed. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.31.551289. [PMID: 37577540 PMCID: PMC10418077 DOI: 10.1101/2023.07.31.551289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/15/2023]
Abstract
Mobile brain imaging with high-density electroencephalography (EEG) can provide insight into the cortical processes involved in complex human walking tasks. While uneven terrain is common in the natural environment and poses challenges to human balance control, there is limited understanding of the supraspinal processes involved with traversing uneven terrain. The primary objective of this study was to quantify electrocortical activity related to parametric variations in terrain unevenness for neurotypical young adults. We used high-density EEG to measure brain activity when thirty-two young adults walked on a novel custom-made uneven terrain treadmill surface with four levels of difficulty at a walking speed tailored to each participant. We identified multiple brain regions associated with uneven terrain walking. Alpha (8 - 13 Hz) and beta (13 - 30 Hz) spectral power decreased in the sensorimotor and posterior parietal areas with increasing terrain unevenness while theta (4 - 8 Hz) power increased in the mid/posterior cingulate area with terrain unevenness. We also found that within stride spectral power fluctuations increased with terrain unevenness. Our secondary goal was to investigate the effect of parametric changes in walking speed (0.25 m/s, 0.5m/s, 0.75 m/s, 1.0 m/s) to differentiate the effects of walking speed from uneven terrain. Our results revealed that electrocortical activities only changed substantially with speed within the sensorimotor area but not in other brain areas. Together, these results indicate there are distinct cortical processes contributing to the control of walking over uneven terrain versus modulation of walking speed on smooth, flat terrain. Our findings increase our understanding of cortical involvement in an ecologically valid walking task and could serve as a benchmark for identifying deficits in cortical dynamics that occur in people with mobility deficits.
Collapse
Affiliation(s)
- Chang Liu
- Department of Biomedical Engineering, University of Florida, Gainesville, FL, USA
- McKnight Brain Institute, University of Florida, Gainesville, FL
| | - Ryan J. Downey
- Department of Biomedical Engineering, University of Florida, Gainesville, FL, USA
| | - Jacob S. Salminen
- Department of Biomedical Engineering, University of Florida, Gainesville, FL, USA
| | - Sofia Arvelo Rojas
- Department of Biomedical Engineering, University of Florida, Gainesville, FL, USA
| | - Natalie Richer
- Department of Biomedical Engineering, University of Florida, Gainesville, FL, USA
| | - Erika M. Pliner
- Department of Biomedical Engineering, University of Florida, Gainesville, FL, USA
| | - Jungyun Hwang
- Department of Neurology, University of Florida, Gainesville, FL, USA
| | - Yenisel Cruz-Almeida
- Department of Community Dentistry and Behavioral Science, University of Florida, Gainesville, FL, USA
- Pain Research and Intervention Center of Excellence (PRICE), University of Florida, Gainesville, FL, USA
- Department of Epidemiology, University of Florida, Gainesville, FL, USA
| | - Todd M. Manini
- Department of Health Outcomes and Biomedical Informatics, University of Florida, Gainesville, FL, USA
| | - Chris J. Hass
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, FL, USA
| | - Rachael D. Seidler
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, FL, USA
- Norman Fixel Institute for Neurological Diseases, University of Florida, Gainesville, FL, USA
- McKnight Brain Institute, University of Florida, Gainesville, FL
| | - David J. Clark
- Department of Neurology, University of Florida, Gainesville, FL, USA
- Brain Rehabilitation Research Center, Malcom Randall VA Medical Center, Gainesville, FL, USA
| | - Daniel P. Ferris
- Department of Biomedical Engineering, University of Florida, Gainesville, FL, USA
- McKnight Brain Institute, University of Florida, Gainesville, FL
| |
Collapse
|
8
|
Liu C, Downey RJ, Mu Y, Richer N, Hwang J, Shah VA, Sato SD, Clark DJ, Hass CJ, Manini TM, Seidler RD, Ferris DP. Comparison of EEG Source Localization Using Simplified and Anatomically Accurate Head Models in Younger and Older Adults. IEEE Trans Neural Syst Rehabil Eng 2023; 31:2591-2602. [PMID: 37252873 PMCID: PMC10336858 DOI: 10.1109/tnsre.2023.3281356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Accuracy of electroencephalography (EEG) source localization relies on the volume conduction head model. A previous analysis of young adults has shown that simplified head models have larger source localization errors when compared with head models based on magnetic resonance images (MRIs). As obtaining individual MRIs may not always be feasible, researchers often use generic head models based on template MRIs. It is unclear how much error would be introduced using template MRI head models in older adults that likely have differences in brain structure compared to young adults. The primary goal of this study was to determine the error caused by using simplified head models without individual-specific MRIs in both younger and older adults. We collected high-density EEG during uneven terrain walking and motor imagery for 15 younger (22±3 years) and 21 older adults (74±5 years) and obtained [Formula: see text]-weighted MRI for each individual. We performed equivalent dipole fitting after independent component analysis to obtain brain source locations using four forward modeling pipelines with increasing complexity. These pipelines included: 1) a generic head model with template electrode positions or 2) digitized electrode positions, 3) individual-specific head models with digitized electrode positions using simplified tissue segmentation, or 4) anatomically accurate segmentation. We found that when compared to the anatomically accurate individual-specific head models, performing dipole fitting with generic head models led to similar source localization discrepancies (up to 2 cm) for younger and older adults. Co-registering digitized electrode locations to the generic head models reduced source localization discrepancies by ∼ 6 mm. Additionally, we found that source depths generally increased with skull conductivity for the representative young adult but not as much for the older adult. Our results can help inform a more accurate interpretation of brain areas in EEG studies when individual MRIs are unavailable.
Collapse
|
9
|
Koshiyama D, Miyakoshi M, Tanaka-Koshiyama K, Sprock J, Light GA. High-power gamma-related delta phase alteration in schizophrenia patients at rest. Psychiatry Clin Neurosci 2022; 76:179-186. [PMID: 35037330 DOI: 10.1111/pcn.13331] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 12/12/2021] [Accepted: 01/03/2022] [Indexed: 11/30/2022]
Abstract
AIM Information processing is supported by the cortico-cortical transmission of neural oscillations across brain regions. Recent studies have demonstrated that the rhythmic firing of neural populations is not random but is governed by interactions with other frequency bands. Specifically, the amplitude of gamma-band oscillations is associated with the phase of lower frequency oscillations in support of short and long-range communications among networks. This cross-frequency relation is thought to reflect the temporal coordination of neural communication. While schizophrenia patients show abnormal oscillatory responses across multiple frequencies at rest, it is unclear whether the functional relationships among frequency bands are intact. This study aimed to characterize the lower frequency (delta/theta, 1-8 Hz) phase and the amplitude of gamma oscillations in healthy subjects and schizophrenia patients at rest. METHODS Low frequency-phase (delta- and theta- band) angles and gamma-band amplitude relationships were assessed in 142 schizophrenia patients and 128 healthy subjects. RESULTS Significant low-frequency phase alteration related to high-power gamma was detected across broadly distributed scalp regions in both healthy subjects and patients. In patients, delta phase synchronization related to high-power gamma was significantly decreased at the frontocentral, right middle temporal, and left temporoparietal electrodes but significantly increased at the left parietal electrode. CONCLUSIONS High-power gamma-related delta phase alteration may reflect a core pathophysiologic abnormality in schizophrenia. Data-driven measures of functional relationships among frequency bands may prove useful in the development of novel therapeutics. Future studies are needed to determine whether these alterations are specific to schizophrenia or appear in other neuropsychiatric patient populations.
Collapse
Affiliation(s)
- Daisuke Koshiyama
- Department of Psychiatry, University of California San Diego, La Jolla, California, USA
| | - Makoto Miyakoshi
- Swartz Center for Computational Neuroscience, Institute for Neural Computation, University of California San Diego, La Jolla, California, USA
| | | | - Joyce Sprock
- Department of Psychiatry, University of California San Diego, La Jolla, California, USA.,VISN-22 Mental Illness, Research, Education and Clinical Center (MIRECC), VA San Diego Healthcare System, San Diego, California, USA
| | - Gregory A Light
- Department of Psychiatry, University of California San Diego, La Jolla, California, USA.,VISN-22 Mental Illness, Research, Education and Clinical Center (MIRECC), VA San Diego Healthcare System, San Diego, California, USA
| |
Collapse
|
10
|
A Comparative Study of Window Size and Channel Arrangement on EEG-Emotion Recognition Using Deep CNN. SENSORS 2021; 21:s21051678. [PMID: 33804366 PMCID: PMC7957771 DOI: 10.3390/s21051678] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 02/19/2021] [Accepted: 02/23/2021] [Indexed: 12/31/2022]
Abstract
Emotion recognition based on electroencephalograms has become an active research area. Yet, identifying emotions using only brainwaves is still very challenging, especially the subject-independent task. Numerous studies have tried to propose methods to recognize emotions, including machine learning techniques like convolutional neural network (CNN). Since CNN has shown its potential in generalization to unseen subjects, manipulating CNN hyperparameters like the window size and electrode order might be beneficial. To our knowledge, this is the first work that extensively observed the parameter selection effect on the CNN. The temporal information in distinct window sizes was found to significantly affect the recognition performance, and CNN was found to be more responsive to changing window sizes than the support vector machine. Classifying the arousal achieved the best performance with a window size of ten seconds, obtaining 56.85% accuracy and a Matthews correlation coefficient (MCC) of 0.1369. Valence recognition had the best performance with a window length of eight seconds at 73.34% accuracy and an MCC value of 0.4669. Spatial information from varying the electrode orders had a small effect on the classification. Overall, valence results had a much more superior performance than arousal results, which were, perhaps, influenced by features related to brain activity asymmetry between the left and right hemispheres.
Collapse
|