1
|
Ryazanova O, Voloshin I, Dubey I, Dubey L, Karachevtsev V. Binding of a Tricationic meso-Substituted Porphyrin to poly(A)⋅poly(U): an Experimental Study. J Fluoresc 2024:10.1007/s10895-024-04000-4. [PMID: 39465484 DOI: 10.1007/s10895-024-04000-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Accepted: 10/07/2024] [Indexed: 10/29/2024]
Abstract
The porphyrins are macrocyclic compounds widely used as photosensitizers in anticancer photodynamic therapy. The binding of a tricationic meso-tris(N-methylpyridinium)-porphyrin, TMPyP3+, to poly(A)⋅poly(U) polynucleotide has been studied in neutral buffered solution, pH6.9, of low and near-physiological ionic strength in a wide range of molar phosphate-to-dye ratios (P/D). Effective TMPyP3+ binding to the biopolymer was established using absorption spectroscopy, polarized fluorescence, fluorimetric titration and resonance light scattering. We propose a model in which TMPyP3+ binds to the polynucleotide in two competitive binding modes: at low P/D ratios (< 4) external binding of the porphyrin to polynucleotide backbone without self-stacking dominates, and at higher P/D (> 30) the partially stacked porphyrin J-dimers are embedded into the polymer groove. Enhancement of the porphyrin emission was observed upon binding in all P/D range, contrasting the binding of this porphyrin to poly(G)⋅poly(C) with significant quenching of the porphyrin fluorescence at low P/D ratios. This observation indicates that TMPyP3+ can discriminate between poly(A)⋅poly(U) and poly(G)⋅poly(C) polynucleotides at low P/D ratios. Formation of highly scattering extended porphyrin aggregates was observed near the stoichiometric in charge binding ratio, P/D = 3. It was revealed that the efficiency of the porphyrin external binding and aggregation is reduced in the solution of near-physiological ionic strength.
Collapse
Affiliation(s)
- Olga Ryazanova
- Department of Molecular Biophysics, B. Verkin Institute for Low Temperature Physics and Engineering, National Academy of Sciences of Ukraine, 47 Nauky Ave, Kharkiv, 61103, Ukraine.
| | - Igor Voloshin
- Department of Molecular Biophysics, B. Verkin Institute for Low Temperature Physics and Engineering, National Academy of Sciences of Ukraine, 47 Nauky Ave, Kharkiv, 61103, Ukraine
| | - Igor Dubey
- Department of Synthetic Bioregulators, Institute of Molecular Biology and Genetics, National Academy of Sciences of Ukraine, 150 Zabolotnogo Str., Kiev, 03143, Ukraine
| | - Larysa Dubey
- Department of Synthetic Bioregulators, Institute of Molecular Biology and Genetics, National Academy of Sciences of Ukraine, 150 Zabolotnogo Str., Kiev, 03143, Ukraine
| | - Victor Karachevtsev
- Department of Molecular Biophysics, B. Verkin Institute for Low Temperature Physics and Engineering, National Academy of Sciences of Ukraine, 47 Nauky Ave, Kharkiv, 61103, Ukraine
| |
Collapse
|
2
|
Tavernelli LE, Alonso VL, Peña I, Rodríguez Araya E, Manarin R, Cantizani J, Martin J, Salamanca J, Bamborough P, Calderón F, Gabarro R, Serra E. Identification of novel bromodomain inhibitors of Trypanosoma cruzi bromodomain factor 2 ( TcBDF2) using a fluorescence polarization-based high-throughput assay. Antimicrob Agents Chemother 2024; 68:e0024324. [PMID: 39028190 PMCID: PMC11304739 DOI: 10.1128/aac.00243-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 06/30/2024] [Indexed: 07/20/2024] Open
Abstract
Bromodomains are structural folds present in all eukaryotic cells that bind to other proteins recognizing acetylated lysines. Most proteins with bromodomains are part of nuclear complexes that interact with acetylated histone residues and regulate DNA replication, transcription, and repair through chromatin structure remodeling. Bromodomain inhibitors are small molecules that bind to the hydrophobic pocket of bromodomains, interfering with the interaction with acetylated histones. Using a fluorescent probe, we have developed an assay to select inhibitors of the bromodomain factor 2 of Trypanosoma cruzi (TcBDF2) using fluorescence polarization. Initially, a library of 28,251 compounds was screened in an endpoint assay. The top 350-ranked compounds were further analyzed in a dose-response assay. From this analysis, seven compounds were obtained that had not been previously characterized as bromodomain inhibitors. Although these compounds did not exhibit significant trypanocidal activity, all showed bona fide interaction with TcBDF2 with dissociation constants between 1 and 3 µM validating these assays to search for bromodomain inhibitors.
Collapse
Affiliation(s)
- Luis E. Tavernelli
- Instituto de Biología Molecular y Celular de Rosario, CONICET, Rosario, Argentina
- GlaxoSmithKline Global Health, Madrid, Spain
| | - Victoria L. Alonso
- Instituto de Biología Molecular y Celular de Rosario, CONICET, Rosario, Argentina
- Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Rosario, Argentina
| | - Imanol Peña
- GlaxoSmithKline Global Health, Madrid, Spain
| | - Elvio Rodríguez Araya
- Instituto de Biología Molecular y Celular de Rosario, CONICET, Rosario, Argentina
- Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Rosario, Argentina
| | - Romina Manarin
- Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Rosario, Argentina
| | | | | | | | - Paul Bamborough
- Molecular Design, GlaxoSmithKline, Stevenage, United Kingdom
| | | | | | - Esteban Serra
- Instituto de Biología Molecular y Celular de Rosario, CONICET, Rosario, Argentina
- Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Rosario, Argentina
| |
Collapse
|
3
|
Ji Y, Wang R, Zhao H. Toward Sensitive and Reliable Immunoassays of Marine Biotoxins: From Rational Design to Food Analysis. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:16076-16094. [PMID: 39010820 DOI: 10.1021/acs.jafc.4c01865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/17/2024]
Abstract
Marine biotoxins are metabolites produced by algae that can accumulate in shellfish or fish and enter organisms through the food chain, posing a serious threat to biological health. Therefore, accurate and rapid detection is an urgent requirement for food safety. Although various detection methods, including the mouse bioassay, liquid chromatography-mass spectrometry, and cell detection methods, and protein phosphatase inhibition assays have been developed in the past decades, the current detection methods cannot fully meet these demands. Among these methods, the outstanding immunoassay virtues of high sensitivity, reliability, and low cost are highly advantageous for marine biotoxin detection in complex samples. In this work, we review the recent 5-year progress in marine biotoxin immunodetection technologies such as optical immunoassays, electrochemical immunoassays, and piezoelectric immunoassays. With the assistance of immunoassays, the detection of food-related marine biotoxins can be implemented for ensuring public health and preventing food poisoning. In addition, the immunodetection technique platforms including lateral flow chips and microfluidic chips are also discussed. We carefully investigate the advantages and disadvantages for each immunoassay, which are compared to demonstrate the guidance for selecting appropriate immunoassays and platforms for the detection of marine biotoxins. It is expected that this review will provide insights for the further development of immunoassays and promote the rapid progress and successful translation of advanced immunoassays with food safety detection.
Collapse
Affiliation(s)
- Yuxiang Ji
- State Key Laboratory of Marine Resources Utilization in South China Sea and Center for Eco-Environment Restoration of Hainan Province, Hainan University, Haikou 570228, China
- NHC Key Laboratory of Tropical Disease Control, School of Tropical Medicine, Hainan Medical University, Haikou, Hainan 571199, China
| | - Rui Wang
- Key Laboratory of Hainan Trauma and Disaster Rescue, The First Affiliated Hospital of Hainan Medical University, Engineering Research Center for Hainan Bio-Smart Materials and Bio-Medical Devices, College of Emergency and Trauma, Hainan Medical University, Haikou 571199, China
| | - Hongwei Zhao
- State Key Laboratory of Marine Resources Utilization in South China Sea and Center for Eco-Environment Restoration of Hainan Province, Hainan University, Haikou 570228, China
| |
Collapse
|
4
|
Samokhvalov AV, Mironova AA, Eremin SA, Zherdev AV, Dzantiev BB. Polycations as Aptamer-Binding Modulators for Sensitive Fluorescence Anisotropy Assay of Aflatoxin B1. SENSORS (BASEL, SWITZERLAND) 2024; 24:3230. [PMID: 38794084 PMCID: PMC11125339 DOI: 10.3390/s24103230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 05/01/2024] [Accepted: 05/15/2024] [Indexed: 05/26/2024]
Abstract
Fluorescence induced by the excitation of a fluorophore with plane-polarized light has a different polarization depending on the size of the fluorophore-containing reagent and the rate of its rotation. Based on this effect, many analytical systems have been implemented in which an analyte contained in a sample and labeled with a fluorophore (usually fluorescein) competes to bind to antibodies. Replacing antibodies in such assays with aptamers, low-cost and stable oligonucleotide receptors, is complicated because binding a fluorophore to them causes a less significant change in the polarization of emissions. This work proposes and characterizes the compounds of the reaction medium that improve analyte binding and reduce the mobility of the aptamer-fluorophore complex, providing a higher analytical signal and a lower detection limit. This study was conducted on aflatoxin B1 (AFB1), a ubiquitous toxicant contaminating foods of plant origins. Eight aptamers specific to AFB1 with the same binding site and different regions stabilizing their structures were compared for affinity, based on which the aptamer with 38 nucleotides in length was selected. The polymers that interact reversibly with oligonucleotides, such as poly-L-lysine and polyethylene glycol, were tested. It was found that they provide the desired reduction in the depolarization of emitted light as well as high concentrations of magnesium cations. In the selected optimal medium, AFB1 detection reached a limit of 1 ng/mL, which was 12 times lower than in the tris buffer commonly used for anti-AFB1 aptamers. The assay time was 30 min. This method is suitable for controlling almond samples according to the maximum permissible levels of their contamination by AFB1. The proposed approach could be applied to improve other aptamer-based analytical systems.
Collapse
Affiliation(s)
- Alexey V. Samokhvalov
- A.N. Bach Institute of Biochemistry, Research Center of Biotechnology, Russian Academy of Sciences, 119071 Moscow, Russia; (A.V.S.); (A.A.M.); (A.V.Z.)
| | - Alena A. Mironova
- A.N. Bach Institute of Biochemistry, Research Center of Biotechnology, Russian Academy of Sciences, 119071 Moscow, Russia; (A.V.S.); (A.A.M.); (A.V.Z.)
| | - Sergei A. Eremin
- Faculty of Chemistry, M.V. Lomonosov Moscow State University, 119991 Moscow, Russia;
| | - Anatoly V. Zherdev
- A.N. Bach Institute of Biochemistry, Research Center of Biotechnology, Russian Academy of Sciences, 119071 Moscow, Russia; (A.V.S.); (A.A.M.); (A.V.Z.)
| | - Boris B. Dzantiev
- A.N. Bach Institute of Biochemistry, Research Center of Biotechnology, Russian Academy of Sciences, 119071 Moscow, Russia; (A.V.S.); (A.A.M.); (A.V.Z.)
| |
Collapse
|
5
|
Douglas JT, Johnson DK, Roy A, Park T. Use of phosphotyrosine-containing peptides to target SH2 domains: Antagonist peptides of the Crk/CrkL-p130Cas axis. Methods Enzymol 2024; 698:301-342. [PMID: 38886037 PMCID: PMC11542726 DOI: 10.1016/bs.mie.2024.04.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/20/2024]
Abstract
Protein-protein interactions between SH2 domains and segments of proteins that include a post-translationally phosphorylated tyrosine residue (pY) underpin numerous signal transduction cascades that allow cells to respond to their environment. Dysregulation of the writing, erasing, and reading of these posttranslational modifications is a hallmark of human disease, notably cancer. Elucidating the precise role of the SH2 domain-containing adaptor proteins Crk and CrkL in tumor cell migration and invasion is challenging because there are no specific and potent antagonists available. Crk and CrkL SH2s interact with a region of the docking protein p130Cas containing 15 potential pY-containing tetrapeptide motifs. This chapter summarizes recent efforts toward peptide antagonists for this Crk/CrkL-p130Cas interaction. We describe our protocol for recombinant expression and purification of Crk and CrkL SH2s for functional assays and our procedure to determine the consensus binding motif from the p130Cas sequence. To develop a more potent antagonist, we employ methods often associated with structure-based drug design. Computational docking using Rosetta FlexPepDock, which accounts for peptides having a greater number of conformational degrees of freedom than small organic molecules that typically constitute libraries, provides quantitative docking metrics to prioritize candidate peptides for experimental testing. A battery of biophysical assays, including fluorescence polarization, differential scanning fluorimetry and saturation transfer difference nuclear magnetic resonance spectroscopy, were employed to assess the candidates. In parallel, GST pulldown competition assays characterized protein-protein binding in vitro. Taken together, our methodology yields peptide antagonists of the Crk/CrkL-p130Cas axis that will be used to validate targets, assess druggability, foster in vitro assay development, and potentially serve as lead compounds for therapeutic intervention.
Collapse
Affiliation(s)
- Justin T. Douglas
- Nuclear Magnetic Resonance Core Lab, University of Kansas, Lawrence, KS 66047, USA
| | - David K. Johnson
- Computational Chemical Biology Core Lab, NIH COBRE in Chemical Biology of Infectious Disease, University of Kansas, Lawrence, Kansas 66047, USA
| | - Anuradha Roy
- High Throughput Screening Laboratory, University of Kansas, Lawrence, KS 66047, USA
| | - Taeju Park
- Department of Pediatrics, Children’s Mercy Kansas City and University of Missouri Kansas City School of Medicine, Kansas City, MO 64108, USA
| |
Collapse
|
6
|
Ahmed MA, Hessz D, Gyarmati B, Páncsics M, Kovács N, Gyurcsányi RE, Kubinyi M, Horváth V. A generic approach based on long-lifetime fluorophores for the assessment of protein binding to polymer nanoparticles by fluorescence anisotropy. NANOSCALE 2024; 16:3659-3667. [PMID: 38287773 DOI: 10.1039/d3nr02460a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2024]
Abstract
Quantitation of protein-nanoparticle interactions is essential for the investigation of the protein corona around NPs in vivo and when using synthetic polymer nanoparticles as affinity reagents for selective protein recognition in vitro. Here, a method based on steady-state fluorescence anisotropy measurement is presented as a novel, separation-free tool for the assessment of protein-nanoparticle interactions. For this purpose, a long-lifetime luminescent Ru-complex is used for protein labelling, which exhibits low anisotropy when conjugated to the protein but displays high anisotropy when the proteins are bound to the much larger polymer nanoparticles. As a proof of concept, the interaction of lysozyme with poly(N-isopropylacrylamide-co-N-tert-butylacrylamide-co-acrylic acid) nanoparticles is studied, and fluorescence anisotropy measurements are used to establish the binding kinetics, binding isotherm and a competitive binding assay.
Collapse
Affiliation(s)
- Marwa A Ahmed
- Department of Inorganic and Analytical Chemistry, Faculty of Chemical Technology and Biotechnology, Budapest University of Technology and Economics, Műegyetem rkp. 3., H-1111 Budapest, Hungary.
- Department of Chemistry, Faculty of Science, Arish University, 45511 El-Arish, North Sinai, Dahyet El Salam, Egypt
| | - Dóra Hessz
- Department of Physical Chemistry and Materials Science, Faculty of Chemical Technology and Biotechnology, Budapest University of Technology and Economics, Műegyetem rkp. 3., H-1111 Budapest, Hungary
- MTA-BME "Lendület" Quantum Chemistry Research Group, Műegyetem rkp. 3., H-1111 Budapest, Hungary
| | - Benjámin Gyarmati
- Department of Physical Chemistry and Materials Science, Faculty of Chemical Technology and Biotechnology, Budapest University of Technology and Economics, Műegyetem rkp. 3., H-1111 Budapest, Hungary
| | - Mirkó Páncsics
- Department of Inorganic and Analytical Chemistry, Faculty of Chemical Technology and Biotechnology, Budapest University of Technology and Economics, Műegyetem rkp. 3., H-1111 Budapest, Hungary.
| | - Norbert Kovács
- Department of Inorganic and Analytical Chemistry, Faculty of Chemical Technology and Biotechnology, Budapest University of Technology and Economics, Műegyetem rkp. 3., H-1111 Budapest, Hungary.
| | - Róbert E Gyurcsányi
- Department of Inorganic and Analytical Chemistry, Faculty of Chemical Technology and Biotechnology, Budapest University of Technology and Economics, Műegyetem rkp. 3., H-1111 Budapest, Hungary.
- MTA-BME "Lendület" Chemical Nanosensors Research Group, Műegyetem rkp. 3., H-1111 Budapest, Hungary
- ELKH-BME Computation Driven Chemistry Research Group, Műegyetem rkp. 3., H-1111 Budapest, Hungary
| | - Miklós Kubinyi
- Department of Physical Chemistry and Materials Science, Faculty of Chemical Technology and Biotechnology, Budapest University of Technology and Economics, Műegyetem rkp. 3., H-1111 Budapest, Hungary
| | - Viola Horváth
- Department of Inorganic and Analytical Chemistry, Faculty of Chemical Technology and Biotechnology, Budapest University of Technology and Economics, Műegyetem rkp. 3., H-1111 Budapest, Hungary.
- ELKH-BME Computation Driven Chemistry Research Group, Műegyetem rkp. 3., H-1111 Budapest, Hungary
| |
Collapse
|
7
|
Mukhametova LI, Zherdev DO, Kuznetsov AN, Yudina ON, Tsvetkov YE, Eremin SA, Krylov VB, Nifantiev NE. Fluorescence-Polarization-Based Assaying of Lysozyme with Chitooligosaccharide Tracers. Biomolecules 2024; 14:170. [PMID: 38397407 PMCID: PMC10886901 DOI: 10.3390/biom14020170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 01/27/2024] [Accepted: 01/29/2024] [Indexed: 02/25/2024] Open
Abstract
Lysozyme is a well-known enzyme found in many biological fluids which plays an important role in the antibacterial protection of humans and animals. Lysozyme assays are used for the diagnosis of a number of diseases and utilized in immunohistochemistry, genetic and cellular engineering studies. The assaying methods are divided into two categories measuring either the concentration of lysozyme as a protein or its activity as an enzyme. While the first category of methods traditionally uses an enzyme-linked immunosorbent assay (ELISA), the methods for the determination of the enzymatic activity of lysozyme use either live bacteria, which is rather inconvenient, or natural peptidoglycans of high heterogeneity and variability, which leads to the low reproducibility of the assay results. In this work, we propose the use of a chemically synthesized substrate of a strictly defined structure to measure in a single experiment both the concentration of lysozyme as a protein and its enzymatic activity by means of the fluorescence polarization (FP) method. Chito-oligosaccharides of different chain lengths were fluorescently labeled and tested leading to the selection of the pentasaccharide as the optimal size tracer and the further optimization of the assay conditions for the accurate (detection limit 0.3 μM) and rapid (<30 min) determination of human lysozyme. The proposed protocol was applied to assay human lysozyme in tear samples and resulted in good correlation with the reference assay. The use of synthetic fluorescently labeled tracer, in contrast to natural peptidoglycan, in FP analysis allows for the development of a reproducible method for the determination of lysozyme activity.
Collapse
Affiliation(s)
- Liliya I. Mukhametova
- Faculty of Chemistry, M.V. Lomonosov Moscow State University, Leninsky Gory 1/3, 119991 Moscow, Russia; (L.I.M.); (S.A.E.)
| | - Dmitry O. Zherdev
- Faculty of Chemistry, M.V. Lomonosov Moscow State University, Leninsky Gory 1/3, 119991 Moscow, Russia; (L.I.M.); (S.A.E.)
- Laboratory of Glycoconjugate Chemistry, N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky Prospect 47, 119991 Moscow, Russia (Y.E.T.)
| | - Anton N. Kuznetsov
- Laboratory of Synthetic Glycovaccines, N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky Prospect 47, 119991 Moscow, Russia;
| | - Olga N. Yudina
- Laboratory of Glycoconjugate Chemistry, N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky Prospect 47, 119991 Moscow, Russia (Y.E.T.)
| | - Yury E. Tsvetkov
- Laboratory of Glycoconjugate Chemistry, N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky Prospect 47, 119991 Moscow, Russia (Y.E.T.)
| | - Sergei A. Eremin
- Faculty of Chemistry, M.V. Lomonosov Moscow State University, Leninsky Gory 1/3, 119991 Moscow, Russia; (L.I.M.); (S.A.E.)
| | - Vadim B. Krylov
- Laboratory of Synthetic Glycovaccines, N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky Prospect 47, 119991 Moscow, Russia;
| | - Nikolay E. Nifantiev
- Laboratory of Glycoconjugate Chemistry, N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky Prospect 47, 119991 Moscow, Russia (Y.E.T.)
| |
Collapse
|
8
|
Alfonso C, Sobrinos-Sanguino M, Luque-Ortega JR, Zorrilla S, Monterroso B, Nuero OM, Rivas G. Studying Macromolecular Interactions of Cellular Machines by the Combined Use of Analytical Ultracentrifugation, Light Scattering, and Fluorescence Spectroscopy Methods. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 3234:89-107. [PMID: 38507202 DOI: 10.1007/978-3-031-52193-5_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/22/2024]
Abstract
Cellular machines formed by the interaction and assembly of macromolecules are essential in many processes of the living cell. These assemblies involve homo- and hetero-associations, including protein-protein, protein-DNA, protein-RNA, and protein-polysaccharide associations, most of which are reversible. This chapter describes the use of analytical ultracentrifugation, light scattering, and fluorescence-based methods, well-established biophysical techniques, to characterize interactions leading to the formation of macromolecular complexes and their modulation in response to specific or unspecific factors. We also illustrate, with several examples taken from studies on bacterial processes, the advantages of the combined use of subsets of these techniques as orthogonal analytical methods to analyze protein oligomerization and polymerization, interactions with ligands, hetero-associations involving membrane proteins, and protein-nucleic acid complexes.
Collapse
Affiliation(s)
- Carlos Alfonso
- Structural and Chemical Biology Department, Centro de Investigaciones Biológicas Margarita Salas, Consejo Superior de Investigaciones Científicas, Madrid, Spain.
| | - Marta Sobrinos-Sanguino
- Molecular Interactions Facility, Centro de Investigaciones Biológicas Margarita Salas, Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | - Juan Román Luque-Ortega
- Molecular Interactions Facility, Centro de Investigaciones Biológicas Margarita Salas, Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | - Silvia Zorrilla
- Structural and Chemical Biology Department, Centro de Investigaciones Biológicas Margarita Salas, Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | - Begoña Monterroso
- Structural and Chemical Biology Department, Centro de Investigaciones Biológicas Margarita Salas, Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | - Oscar M Nuero
- Molecular Interactions Facility, Centro de Investigaciones Biológicas Margarita Salas, Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | - Germán Rivas
- Structural and Chemical Biology Department, Centro de Investigaciones Biológicas Margarita Salas, Consejo Superior de Investigaciones Científicas, Madrid, Spain
| |
Collapse
|
9
|
Song JG, Baral KC, Kim GL, Park JW, Seo SH, Kim DH, Jung DH, Ifekpolugo NL, Han HK. Quantitative analysis of therapeutic proteins in biological fluids: recent advancement in analytical techniques. Drug Deliv 2023; 30:2183816. [PMID: 36880122 PMCID: PMC10003146 DOI: 10.1080/10717544.2023.2183816] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 02/06/2023] [Indexed: 03/08/2023] Open
Abstract
Pharmaceutical application of therapeutic proteins has been continuously expanded for the treatment of various diseases. Efficient and reliable bioanalytical methods are essential to expedite the identification and successful clinical development of therapeutic proteins. In particular, selective quantitative assays in a high-throughput format are critical for the pharmacokinetic and pharmacodynamic evaluation of protein drugs and to meet the regulatory requirements for new drug approval. However, the inherent complexity of proteins and many interfering substances presented in biological matrices have a great impact on the specificity, sensitivity, accuracy, and robustness of analytical assays, thereby hindering the quantification of proteins. To overcome these issues, various protein assays and sample preparation methods are currently available in a medium- or high-throughput format. While there is no standard or universal approach suitable for all circumstances, a liquid chromatography-tandem mass spectrometry (LC-MS/MS) assay often becomes a method of choice for the identification and quantitative analysis of therapeutic proteins in complex biological samples, owing to its high sensitivity, specificity, and throughput. Accordingly, its application as an essential analytical tool is continuously expanded in pharmaceutical R&D processes. Proper sample preparation is also important since clean samples can minimize the interference from co-existing substances and improve the specificity and sensitivity of LC-MS/MS assays. A combination of different methods can be utilized to improve bioanalytical performance and ensure more accurate quantification. This review provides an overview of various protein assays and sample preparation methods, with particular emphasis on quantitative protein analysis by LC-MS/MS.
Collapse
Affiliation(s)
- Jae Geun Song
- BK21 FOUR Team and Integrated Research Institute for Drug Development, College of Pharmacy, Dongguk University-Seoul, Goyang, Korea
| | - Kshitis Chandra Baral
- BK21 FOUR Team and Integrated Research Institute for Drug Development, College of Pharmacy, Dongguk University-Seoul, Goyang, Korea
| | - Gyu-Lin Kim
- BK21 FOUR Team and Integrated Research Institute for Drug Development, College of Pharmacy, Dongguk University-Seoul, Goyang, Korea
| | - Ji-Won Park
- BK21 FOUR Team and Integrated Research Institute for Drug Development, College of Pharmacy, Dongguk University-Seoul, Goyang, Korea
| | - Soo-Hwa Seo
- BK21 FOUR Team and Integrated Research Institute for Drug Development, College of Pharmacy, Dongguk University-Seoul, Goyang, Korea
| | - Da-Hyun Kim
- BK21 FOUR Team and Integrated Research Institute for Drug Development, College of Pharmacy, Dongguk University-Seoul, Goyang, Korea
| | - Dong Hoon Jung
- BK21 FOUR Team and Integrated Research Institute for Drug Development, College of Pharmacy, Dongguk University-Seoul, Goyang, Korea
| | - Nonye Linda Ifekpolugo
- BK21 FOUR Team and Integrated Research Institute for Drug Development, College of Pharmacy, Dongguk University-Seoul, Goyang, Korea
| | - Hyo-Kyung Han
- BK21 FOUR Team and Integrated Research Institute for Drug Development, College of Pharmacy, Dongguk University-Seoul, Goyang, Korea
| |
Collapse
|
10
|
Ogura Y, Fukuyama M, Kasuya M, Shigemura K, Eremin SA, Tokeshi M, Hibara A. Rapid determination of domoic acid in seafood by fluorescence polarization immunoassay using a portable analyzer. ANAL SCI 2023; 39:2001-2006. [PMID: 37653216 PMCID: PMC10667144 DOI: 10.1007/s44211-023-00413-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 08/16/2023] [Indexed: 09/02/2023]
Abstract
Monitoring phycotoxin accumulation in marine products such as edible shellfish is a regulatory requirement in many countries. Therefore, a simple and rapid onsite quantification method is sought. Herein, we present a fluorescence polarization immunoassay (FPIA), a well-known one-step immunoassay, using a portable fluorescence polarization analyzer for domoic acid (DA), widely referred to as the primary toxin of amnesic shellfish poisoning (ASP). To establish FPIA for DA, the matrix effect of methanol, which is widely used to extract DA from shellfish, on FPIA was investigated. To validate this method, we performed a spike recovery test using oysters containing DA at a concentration equivalent to the regulatory limits of North America and the European Union (20 mg/kg). The recovery rate was found to be 79.4-114.7%, which is equivalent to that of the commercially available enzyme-linked immunosorbent assay (ELISA). We expect that this FPIA system will enable the quantitative onsite analysis of DA and significantly contribute to the safety of marine products.
Collapse
Affiliation(s)
- Yu Ogura
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Sendai, Japan
| | - Mao Fukuyama
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Sendai, Japan.
| | - Motohiro Kasuya
- Faculty of Production Systems Engineering and Sciences, Komatsu University, Komatsu, Japan
| | | | - Sergei A Eremin
- Bach Institute of Biochemistry, Research Centre of Biotechnology, Russian Acad. Sci, Moscow, Russia
| | - Manabu Tokeshi
- Division of Applied Chemistry, Faculty of Engineering, Hokkaido University, Sapporo, Japan
| | - Akihide Hibara
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Sendai, Japan.
- Departmentof Chemistry, School of Science, Tokyo Institute of Technology, Tokyo, Japan.
| |
Collapse
|
11
|
Guliy OI, Karavaeva OA, Smirnov AV, Eremin SA, Bunin VD. Optical Sensors for Bacterial Detection. SENSORS (BASEL, SWITZERLAND) 2023; 23:9391. [PMID: 38067765 PMCID: PMC10708710 DOI: 10.3390/s23239391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 11/12/2023] [Accepted: 11/20/2023] [Indexed: 12/18/2023]
Abstract
Analytical devices for bacterial detection are an integral part of modern laboratory medicine, as they permit the early diagnosis of diseases and their timely treatment. Therefore, special attention is directed to the development of and improvements in monitoring and diagnostic methods, including biosensor-based ones. A promising direction in the development of bacterial detection methods is optical sensor systems based on colorimetric and fluorescence techniques, the surface plasmon resonance, and the measurement of orientational effects. This review shows the detecting capabilities of these systems and the promise of electro-optical analysis for bacterial detection. It also discusses the advantages and disadvantages of optical sensor systems and the prospects for their further improvement.
Collapse
Affiliation(s)
- Olga I. Guliy
- Institute of Biochemistry and Physiology of Plants and Microorganisms—Subdivision of the Federal State Budgetary Research Institution Saratov Federal Scientific Centre of the Russian Academy of Sciences (IBPPM RAS), Saratov 410049, Russia;
| | - Olga A. Karavaeva
- Institute of Biochemistry and Physiology of Plants and Microorganisms—Subdivision of the Federal State Budgetary Research Institution Saratov Federal Scientific Centre of the Russian Academy of Sciences (IBPPM RAS), Saratov 410049, Russia;
| | - Andrey V. Smirnov
- Kotelnikov Institute of Radio Engineering and Electronics, Russian Academy of Sciences, Moscow 125009, Russia;
| | - Sergei A. Eremin
- Department of Chemistry, M. V. Lomonosov Moscow State University, Moscow 119991, Russia;
| | | |
Collapse
|
12
|
Nath P, Mahtaba KR, Ray A. Fluorescence-Based Portable Assays for Detection of Biological and Chemical Analytes. SENSORS (BASEL, SWITZERLAND) 2023; 23:s23115053. [PMID: 37299780 DOI: 10.3390/s23115053] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 05/16/2023] [Accepted: 05/22/2023] [Indexed: 06/12/2023]
Abstract
Fluorescence-based detection techniques are part of an ever-expanding field and are widely used in biomedical and environmental research as a biosensing tool. These techniques have high sensitivity, selectivity, and a short response time, making them a valuable tool for developing bio-chemical assays. The endpoint of these assays is defined by changes in fluorescence signal, in terms of its intensity, lifetime, and/or shift in spectrum, which is monitored using readout devices such as microscopes, fluorometers, and cytometers. However, these devices are often bulky, expensive, and require supervision to operate, which makes them inaccessible in resource-limited settings. To address these issues, significant effort has been directed towards integrating fluorescence-based assays into miniature platforms based on papers, hydrogels, and microfluidic devices, and to couple these assays with portable readout devices like smartphones and wearable optical sensors, thereby enabling point-of-care detection of bio-chemical analytes. This review highlights some of the recently developed portable fluorescence-based assays by discussing the design of fluorescent sensor molecules, their sensing strategy, and the fabrication of point-of-care devices.
Collapse
Affiliation(s)
- Peuli Nath
- Department of Physics and Astronomy, University of Toledo, Toledo, OH 43606, USA
| | - Kazi Ridita Mahtaba
- Department of Physics and Astronomy, University of Toledo, Toledo, OH 43606, USA
| | - Aniruddha Ray
- Department of Physics and Astronomy, University of Toledo, Toledo, OH 43606, USA
| |
Collapse
|
13
|
Hendrickson OD, Mukhametova LI, Zvereva EA, Zherdev AV, Eremin SA. A Sensitive Fluorescence Polarization Immunoassay for the Rapid Detection of Okadaic Acid in Environmental Waters. BIOSENSORS 2023; 13:bios13040477. [PMID: 37185552 PMCID: PMC10136290 DOI: 10.3390/bios13040477] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 04/07/2023] [Accepted: 04/14/2023] [Indexed: 05/17/2023]
Abstract
In this study, a homogeneous fluorescence polarization immunoassay (FPIA) for the detection of hazardous aquatic toxin okadaic acid (OA) contaminating environmental waters was for the first time developed. A conjugate of the analyte with a fluorophore based on a fluorescein derivative (tracer) was synthesized, and its interaction with specific anti-OA monoclonal antibodies (MAbs) was tested. A MAbs-tracer pair demonstrated highly affine immune binding (KD = 0.8 nM). Under optimal conditions, the limit of OA detection in the FPIA was 0.08 ng/mL (0.1 nM), and the working range of detectable concentrations was 0.4-72.5 ng/mL (0.5-90 nM). The developed FPIA was approbated for the determination of OA in real matrices: river water and seawater samples. No matrix effect of water was observed; therefore, no sample preparation was required before analysis. Due to this factor, the entire analytical procedure took less than 10 min. Using a compact portable fluorescence polarization analyzer enables the on-site testing of water samples. The developed analysis is very fast, easy to operate, and sensitive and can be extended to the determination of other aquatic toxins or low-molecular-weight water or food contaminants.
Collapse
Affiliation(s)
- Olga D Hendrickson
- A. N. Bach Institute of Biochemistry, Research Center of Biotechnology, Russian Academy of Sciences, Leninsky Prospect 33, 119071 Moscow, Russia
| | - Liliya I Mukhametova
- Department of Chemical Enzymology, Faculty of Chemistry, M. V. Lomonosov Moscow State University, Leninskie Gory 1, 119991 Moscow, Russia
| | - Elena A Zvereva
- A. N. Bach Institute of Biochemistry, Research Center of Biotechnology, Russian Academy of Sciences, Leninsky Prospect 33, 119071 Moscow, Russia
| | - Anatoly V Zherdev
- A. N. Bach Institute of Biochemistry, Research Center of Biotechnology, Russian Academy of Sciences, Leninsky Prospect 33, 119071 Moscow, Russia
| | - Sergei A Eremin
- A. N. Bach Institute of Biochemistry, Research Center of Biotechnology, Russian Academy of Sciences, Leninsky Prospect 33, 119071 Moscow, Russia
- Department of Chemical Enzymology, Faculty of Chemistry, M. V. Lomonosov Moscow State University, Leninskie Gory 1, 119991 Moscow, Russia
| |
Collapse
|
14
|
Okła E, Białecki P, Kędzierska M, Pędziwiatr-Werbicka E, Miłowska K, Takvor S, Gómez R, de la Mata FJ, Bryszewska M, Ionov M. Pegylated Gold Nanoparticles Conjugated with siRNA: Complexes Formation and Cytotoxicity. Int J Mol Sci 2023; 24:ijms24076638. [PMID: 37047610 PMCID: PMC10094790 DOI: 10.3390/ijms24076638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 03/26/2023] [Accepted: 04/01/2023] [Indexed: 04/05/2023] Open
Abstract
Drug delivery systems such as dendrimers, liposomes, polymers or gold/silver nanoparticles could be used to advance modern medicine. One significant pharmacological problem is crossing biological barriers by commonly used drugs, e.g., in the treatment of neurodegenerative diseases, which have a problem of the blood-brain barrier (BBB) restricting drug delivery. Numerous studies have been conducted to find appropriate drug carriers that are safe, biocompatible and efficient. In this work, we evaluate pegylated gold nanoparticles AuNP14a and AuNP14b after their conjugation with therapeutic siRNA directed against APOE4. This genetic risk factor remains the strongest predictor for late-onset Alzheimer’s disease. The study aimed to assess the biophysical properties of AuNPs/siAPOE complexes and to check their biological safety on healthy cells using human brain endothelial cells (HBEC-5i). Techniques such as fluorescence polarization, circular dichroism, dynamic light scattering, ζ-potential measurements and gel retardation assay showed that AuNPs form stable complexes with siRNA. Subsequently, cytotoxicity assays proved the biological safety of formed conjugates. Obtained results enabled us to find effective concentrations of AuNPs when complexes are formed and non-toxic for healthy cells. One of the studied nanoparticles, AuNP14b complexed with siRNA, displayed lower cytotoxicity (MTT assay, cells viability −74.8 ± 3.1%) than free nanoparticles (44.7 ± 3.6%). This may be promising for further investigations in nucleic acid delivery and could have practical use in treating neurodegenerative diseases.
Collapse
Affiliation(s)
- Elżbieta Okła
- Department of General Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, 141/143 Pomorska St., 90-236 Lodz, Poland
| | - Piotr Białecki
- Department of General Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, 141/143 Pomorska St., 90-236 Lodz, Poland
| | - Marta Kędzierska
- Department of General Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, 141/143 Pomorska St., 90-236 Lodz, Poland
| | - Elżbieta Pędziwiatr-Werbicka
- Department of General Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, 141/143 Pomorska St., 90-236 Lodz, Poland
| | - Katarzyna Miłowska
- Department of General Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, 141/143 Pomorska St., 90-236 Lodz, Poland
| | - Samuel Takvor
- Department of Organic and Inorganic Chemistry, Research Chemistry Institute “Andrés M. del Río” (IQAR), University of Alcalá, 28871 Alcalá de Henares, Spain
- Networking Research Center for Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), 28029 Madrid, Spain
- Institute “Ramón y Cajal” for Health Research (IRYCIS), 28034 Madrid, Spain
| | - Rafael Gómez
- Department of Organic and Inorganic Chemistry, Research Chemistry Institute “Andrés M. del Río” (IQAR), University of Alcalá, 28871 Alcalá de Henares, Spain
- Networking Research Center for Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), 28029 Madrid, Spain
- Institute “Ramón y Cajal” for Health Research (IRYCIS), 28034 Madrid, Spain
| | - Francisco Javier de la Mata
- Department of Organic and Inorganic Chemistry, Research Chemistry Institute “Andrés M. del Río” (IQAR), University of Alcalá, 28871 Alcalá de Henares, Spain
- Networking Research Center for Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), 28029 Madrid, Spain
- Institute “Ramón y Cajal” for Health Research (IRYCIS), 28034 Madrid, Spain
| | - Maria Bryszewska
- Department of General Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, 141/143 Pomorska St., 90-236 Lodz, Poland
| | - Maksim Ionov
- Department of General Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, 141/143 Pomorska St., 90-236 Lodz, Poland
| |
Collapse
|
15
|
Del Real Mata C, Jeanne O, Jalali M, Lu Y, Mahshid S. Nanostructured-Based Optical Readouts Interfaced with Machine Learning for Identification of Extracellular Vesicles. Adv Healthc Mater 2023; 12:e2202123. [PMID: 36443009 DOI: 10.1002/adhm.202202123] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 11/14/2022] [Indexed: 11/30/2022]
Abstract
Extracellular vesicles (EVs) are shed from cancer cells into body fluids, enclosing molecular information about the underlying disease with the potential for being the target cancer biomarker in emerging diagnosis approaches such as liquid biopsy. Still, the study of EVs presents major challenges due to their heterogeneity, complexity, and scarcity. Recently, liquid biopsy platforms have allowed the study of tumor-derived materials, holding great promise for early-stage diagnosis and monitoring of cancer when interfaced with novel adaptations of optical readouts and advanced machine learning analysis. Here, recent advances in labeled and label-free optical techniques such as fluorescence, plasmonic, and chromogenic-based systems interfaced with nanostructured sensors like nanoparticles, nanoholes, and nanowires, and diverse machine learning analyses are reviewed. The adaptability of the different optical methods discussed is compared and insights are provided into prospective avenues for the translation of the technological approaches for cancer diagnosis. It is discussed that the inherent augmented properties of nanostructures enhance the sensitivity of the detection of EVs. It is concluded by reviewing recent integrations of nanostructured-based optical readouts with diverse machine learning models as novel analysis ventures that can potentially increase the capability of the methods to the point of translation into diagnostic applications.
Collapse
Affiliation(s)
| | - Olivia Jeanne
- McGill University, Department of Bioengineering, Montreal, QC, H3A 0E9, Canada
| | - Mahsa Jalali
- McGill University, Department of Bioengineering, Montreal, QC, H3A 0E9, Canada
| | - Yao Lu
- McGill University, Department of Bioengineering, Montreal, QC, H3A 0E9, Canada
| | - Sara Mahshid
- McGill University, Department of Bioengineering, Montreal, QC, H3A 0E9, Canada
| |
Collapse
|
16
|
Liu M, Martyn AP, Quinn RJ. Natural product-based PROteolysis TArgeting Chimeras (PROTACs). Nat Prod Rep 2022; 39:2292-2307. [PMID: 36196977 DOI: 10.1039/d2np00038e] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Covering: upto 2022Natural products have an embedded recognition of protein surfaces. They possess this property as they are produced by biosynthetic enzymes and are substrates for one or more enzymes in the biosynthetic pathway. The inherent advantages, compared to synthetic compound libraries, is this ligand-protein binding which is, in many cases, a function of the 3-dimensional properties. Protein degradation is a recent novel therapeutic approach with several compounds now in the clinic. This review highlights the potential of PROteolysis TArgeting Chimeras (PROTACs) in the area of natural products. The approach will complement existing approaches such as the direct use of a bioactive natural product or its analogues, pharmacophore development and drug-antibody conjugates. The chemical synthesis and challenges of using natural product-based PROTACs are summarised. The review also highlights methods to detect the ternary complexes necessary for PROTAC mechanism of action.
Collapse
Affiliation(s)
- Miaomiao Liu
- Griffith Institute for Drug Discovery, Griffith University, Brisbane, Queensland, Australia.
| | - Alexander P Martyn
- Cancer and Ageing Research Program (CARP), Centre for Genomics and Personalised Health (CGPH), Queensland University of Technology (QUT), Brisbane, QLD, Australia
| | - Ronald J Quinn
- Griffith Institute for Drug Discovery, Griffith University, Brisbane, Queensland, Australia.
| |
Collapse
|
17
|
Mukhametova LI, Eremin SA, Arutyunyan DA, Goryainova OS, Ivanova TI, Tillib SV. Fluorescence Polarization Immunoassay of Human Lactoferrin in Milk Using Small Single-Domain Antibodies. BIOCHEMISTRY. BIOKHIMIIA 2022; 87:1679-1688. [PMID: 36717456 DOI: 10.1134/s0006297922120227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Due to its unique structure and properties, human breast milk lactoferrin (hLF) has many nutritional and health-promoting functions in infants, including protection against inflammation and bacterial infections. The lack of LF in breastmilk or formula can result in the weakening of the infant's immune system. Noncompetitive polarization fluorescence immunoassay (FPIA) is a promising method for hLF quantification in milk and dairy products, which does not require the separation of the bound and free protein and allows to avoid time-consuming sample preparation. The use of fluorescently labeled single-domain camelid antibodies (nanobodies) for protein recognition in FPIA makes it possible to quantify relatively large antigens, in particular, hLF. In this work, we used previously obtained fluorescein isothiocyanate (FITC)-conjugated anti-hLF5 and anti-hLF16 nanobodies, which selectively recognized two different human lactoferrin epitopes, but did not bind to goat lactoferrin. The kinetics of hLF interaction with the FITC-labeled nanobodies was studied. The dissociation constant (KD) for the anti-LF5 and antiLF16 nanobodies was 3.2 ± 0.3 and 4.9 ± 0.4 nM, respectively, indicating the high-affinity binding of these nanobodies to hLF. We developed the FPIA protocol and determined the concentration of FITC-labeled anti-hLF5 and anti-hLF16 nanobodies that provided the optimal fluorescence signal and stable fluorescence polarization value. We also studied the dependence of fluorescence polarization on the hLF concentration in the noncompetitive FPIA with FITC-anti-hLF5 nanobody. The detection limit for hLF was 2.1 ± 0.2 µg/ml and the linear range for determining the hLF concentration was 3-10 µg/ml. FPIA is commonly used to assay low-molecular-weight substances; however, the use of fluorescently labeled nanobodies allows quantification of high-molecular-weight proteins. Here, we demonstrated that FPIA with fluorescently labeled nanobodies can be used for hLF quantification in milk.
Collapse
Affiliation(s)
- Lilia I Mukhametova
- Lomonosov Moscow State University, Faculty of Chemistry, Moscow, 119234, Russia
| | - Sergei A Eremin
- Lomonosov Moscow State University, Faculty of Chemistry, Moscow, 119234, Russia
| | | | - Oksana S Goryainova
- Institute of Gene Biology, Russian Academy of Sciences, Moscow, 119334, Russia
| | - Tatiana I Ivanova
- Institute of Gene Biology, Russian Academy of Sciences, Moscow, 119334, Russia
| | - Sergei V Tillib
- Institute of Gene Biology, Russian Academy of Sciences, Moscow, 119334, Russia
| |
Collapse
|
18
|
Gu J, Peng RK, Guo CL, Zhang M, Yang J, Yan X, Zhou Q, Li H, Wang N, Zhu J, Ouyang Q. Construction of a synthetic methodology-based library and its application in identifying a GIT/PIX protein-protein interaction inhibitor. Nat Commun 2022; 13:7176. [PMID: 36418900 PMCID: PMC9684509 DOI: 10.1038/s41467-022-34598-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Accepted: 10/24/2022] [Indexed: 11/24/2022] Open
Abstract
In recent years, the flourishing of synthetic methodology studies has provided concise access to numerous molecules with new chemical space. These compounds form a large library with unique scaffolds, but their application in hit discovery is not systematically evaluated. In this work, we establish a synthetic methodology-based compound library (SMBL), integrated with compounds obtained from our synthetic researches, as well as their virtual derivatives in significantly larger scale. We screen the library and identify small-molecule inhibitors to interrupt the protein-protein interaction (PPI) of GIT1/β-Pix complex, an unrevealed target involved in gastric cancer metastasis. The inhibitor 14-5-18 with a spiro[bicyclo[2.2.1]heptane-2,3'-indolin]-2'-one scaffold, considerably retards gastric cancer metastasis in vitro and in vivo. Since the PPI targets are considered undruggable as they are hard to target, the successful application illustrates the structural specificity of SMBL, demonstrating its potential to be utilized as compound source for more challenging targets.
Collapse
Affiliation(s)
- Jing Gu
- grid.410570.70000 0004 1760 6682Department of Medicinal Chemistry, College of Pharmacy, Third Military Medical University, 400038 Chongqing, China
| | - Rui-Kun Peng
- grid.410570.70000 0004 1760 6682Department of Medicinal Chemistry, College of Pharmacy, Third Military Medical University, 400038 Chongqing, China
| | - Chun-Ling Guo
- grid.410570.70000 0004 1760 6682Department of Medicinal Chemistry, College of Pharmacy, Third Military Medical University, 400038 Chongqing, China
| | - Meng Zhang
- grid.16821.3c0000 0004 0368 8293Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong University, Shanghai, China
| | - Jie Yang
- grid.410570.70000 0004 1760 6682Department of Medicinal Chemistry, College of Pharmacy, Third Military Medical University, 400038 Chongqing, China
| | - Xiao Yan
- grid.410570.70000 0004 1760 6682Department of Medicinal Chemistry, College of Pharmacy, Third Military Medical University, 400038 Chongqing, China
| | - Qian Zhou
- grid.410570.70000 0004 1760 6682Department of Medicinal Chemistry, College of Pharmacy, Third Military Medical University, 400038 Chongqing, China
| | - Hongwei Li
- grid.410570.70000 0004 1760 6682Department of Medicinal Chemistry, College of Pharmacy, Third Military Medical University, 400038 Chongqing, China
| | - Na Wang
- grid.410570.70000 0004 1760 6682Department of Medicinal Chemistry, College of Pharmacy, Third Military Medical University, 400038 Chongqing, China
| | - Jinwei Zhu
- grid.16821.3c0000 0004 0368 8293Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong University, Shanghai, China
| | - Qin Ouyang
- grid.410570.70000 0004 1760 6682Department of Medicinal Chemistry, College of Pharmacy, Third Military Medical University, 400038 Chongqing, China
| |
Collapse
|
19
|
Recent advances in immunoassay-based mycotoxin analysis and toxicogenomic technologies. J Food Drug Anal 2022; 30:549-561. [PMID: 36753365 PMCID: PMC9910299 DOI: 10.38212/2224-6614.3430] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Accepted: 08/08/2022] [Indexed: 11/27/2022] Open
Abstract
The co-occurrence and accumulation of mycotoxin in food and feed constitutes a major issue to food safety, food security, and public health. Accurate and sensitive mycotoxins analysis can avoid toxin contamination as well as reduce food wastage caused by false positive results. This mini review focuses on the recent advance in detection methods for multiple mycotoxins, which mainly depends on immunoassay technologies. Advance immunoassay technologies integrated in mycotoxin analysis enable simultaneous detection of multiple mycotoxins and enhance the outcomes' quality. It highlights toxicogenomic as novel approach for hazard assessment by utilizing computational methods to map molecular events and biological processes. Indeed, toxicogenomic is a powerful tool to understand health effects from mycotoxin exposure as it offers insight on the mechanisms by which mycotoxins exposures cause diseases.
Collapse
|
20
|
Zhang J, Yan H, Yan G, Liu X, Wang Y, Chen Y. Protocol for high-throughput screening of SARS-CoV-2 main protease inhibitors using a robust fluorescence polarization assay. STAR Protoc 2022; 3:101794. [PMID: 36317181 PMCID: PMC9527224 DOI: 10.1016/j.xpro.2022.101794] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
Discovery of efficacious antiviral agents targeting SARS-CoV-2 main protease (Mpro) is of the highest importance to fight against COVID-19. Here, we describe a simple protocol for high-throughput screening of Mpro inhibitors using a robust fluorescence polarization (FP) assay. Candidate Mpro inhibitors from large compound libraries could be rapidly identified by monitoring the change of millipolarization unit value. This affordable FP assay can be modified to screen antiviral agents targeting virus protease. For complete details on the use and execution of this protocol, please refer to Li et al. (2022), Yan et al. (2021), and Yan et al. (2022c). Production of SARS-CoV-2 main protease (Mpro) in E. coli cells Measurement of Mpro activity using the fluorescence resonance energy transfer assay A robust fluorescence polarization (FP) assay for rapid screening of Mpro inhibitors Discovery of anacardic acid as an inhibitor targeting Mpro using this FP assay
Publisher’s note: Undertaking any experimental protocol requires adherence to local institutional guidelines for laboratory safety and ethics.
Collapse
Affiliation(s)
- Jing Zhang
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Haohao Yan
- Institute for Drug Screening and Evaluation, Wannan Medical College, Wuhu 241002, China
| | - Gangan Yan
- Institute for Drug Screening and Evaluation, Wannan Medical College, Wuhu 241002, China
| | - Xiaoping Liu
- Institute for Drug Screening and Evaluation, Wannan Medical College, Wuhu 241002, China
| | - Yanchang Wang
- Department of Biomedical Sciences, College of Medicine, Florida State University, Tallahassee, FL 32306, USA,Corresponding author
| | - Yunyu Chen
- Institute for Drug Screening and Evaluation, Wannan Medical College, Wuhu 241002, China,Corresponding author
| |
Collapse
|
21
|
Takahashi K, Chida S, Suwatthanarak T, Iida M, Zhang M, Fukuyama M, Maeki M, Ishida A, Tani H, Yasui T, Baba Y, Hibara A, Okochi M, Tokeshi M. Non-competitive fluorescence polarization immunosensing for CD9 detection using a peptide as a tracer. LAB ON A CHIP 2022; 22:2971-2977. [PMID: 35713150 DOI: 10.1039/d2lc00224h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
This paper is the first report of a non-competitive fluorescence polarization immunoassay (NC-FPIA) using a peptide as a tracer. The NC-FPIA can easily and quickly quantify the target after simply mixing them together. This feature is desirable for point-of-need applications such as clinical diagnostics, infectious disease screening, on-site analysis for food safety, etc. In this study, the NC-FPIA was applied to detect CD9, which is one of the exosome markers. We succeeded in detecting not only CD9 but also CD9 expressing exosomes derived from HeLa cells. This method can be applied to various targets if a tracer for the target can be prepared, and expectations are high for its future uses.
Collapse
Affiliation(s)
- Kazuki Takahashi
- Graduate School of Chemical Sciences and Engineering, Hokkaido University, Kita 13 Nishi 8, Kita-ku, Sapporo 060-8628, Japan
| | - Shunsuke Chida
- Graduate School of Chemical Sciences and Engineering, Hokkaido University, Kita 13 Nishi 8, Kita-ku, Sapporo 060-8628, Japan
| | - Thanawat Suwatthanarak
- Department of Chemical Science & Engineering, Tokyo Institute of Technology, 2-12-2 O-okayama, Meguro-ku, Tokyo 152-8552, Japan
| | - Mikiko Iida
- Department of Biomolecular Engineering, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan
| | - Min Zhang
- Department of Biomolecular Engineering, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan
| | - Mao Fukuyama
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577, Japan
| | - Masatoshi Maeki
- Division of Applied Chemistry, Faculty of Engineering, Hokkaido University, Kita 13 Nishi 8, Kita-ku, Sapporo 060-8628, Japan.
- Japan Science and Technology Agency (JST), PRESTO, 4-1-8, Honcho, Kawaguchi, Saitama 332-0012, Japan
| | - Akihiko Ishida
- Division of Applied Chemistry, Faculty of Engineering, Hokkaido University, Kita 13 Nishi 8, Kita-ku, Sapporo 060-8628, Japan.
| | - Hirofumi Tani
- Division of Applied Chemistry, Faculty of Engineering, Hokkaido University, Kita 13 Nishi 8, Kita-ku, Sapporo 060-8628, Japan.
| | - Takao Yasui
- Department of Biomolecular Engineering, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan
- Japan Science and Technology Agency (JST), PRESTO, 4-1-8, Honcho, Kawaguchi, Saitama 332-0012, Japan
- Institute of Nano-Life Systems, Institute of Innovation for Future Society, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan
| | - Yoshinobu Baba
- Department of Biomolecular Engineering, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan
- Institute of Nano-Life Systems, Institute of Innovation for Future Society, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan
- Institute for Quantum Life Science, National Institutes for Quantum Science and Technology (QST), 4-9-1, Anagawa, Inage-ku, Chiba 263-0024, Japan
| | - Akihide Hibara
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577, Japan
| | - Mina Okochi
- Department of Chemical Science & Engineering, Tokyo Institute of Technology, 2-12-2 O-okayama, Meguro-ku, Tokyo 152-8552, Japan
| | - Manabu Tokeshi
- Division of Applied Chemistry, Faculty of Engineering, Hokkaido University, Kita 13 Nishi 8, Kita-ku, Sapporo 060-8628, Japan.
- Institute of Nano-Life Systems, Institute of Innovation for Future Society, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan
- Institute for Quantum Life Science, National Institutes for Quantum Science and Technology (QST), 4-9-1, Anagawa, Inage-ku, Chiba 263-0024, Japan
- Innovative Research Center for Preventive Medical Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan
| |
Collapse
|
22
|
Zhang J, Zhang M, Yang Q, Wei L, Yuan B, Pang C, Zhang Y, Sun X, Guo Y. A simple and rapid homogeneous fluorescence polarization immunoassay for rapid identification of gutter cooking oil by detecting capsaicinoids. Anal Bioanal Chem 2022; 414:6127-6137. [PMID: 35804073 DOI: 10.1007/s00216-022-04177-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 06/13/2022] [Accepted: 06/13/2022] [Indexed: 11/30/2022]
Abstract
In order to address the widespread concerns with food safety such as adulteration and forgery in the edible oil field, this study developed a fluorescence polarization immunoassay (FPIA) based on a monoclonal antibody in a homogeneous solution system for determination of capsaicinoids in gutter cooking oil by using chemically stable capsaicinoids as an adulteration marker. The prepared fluoresceinthiocarbamyl ethylenediamine (EDF) was coupled with capsaicinoid hapten C, and the synthesized tracer was purified by thin-layer chromatography (TLC) and showed good binding to the monoclonal antibody CPC Ab-D8. The effects of concentration of tracer and recognition components, type and pH of buffer and incubation time on the performance of FPIA were studied. The linear range (IC20 to IC80) was 3.97-97.99 ng/mL, and the half maximal inhibitory concentration (IC50) was 19.73 ng/mL, and the limit of detection (LOD) was 1.56 ng/mL. The recovery rates of corn germ oil, soybean oil and peanut blend oil were in the range of 94.7-132.3%. The experimental results showed that the fluorescence polarization detection system could realize the rapid detection of capsaicinoids, and had the potential to realize on-site identification of gutter cooking oil. As a universal monoclonal antibody, CPC Ab-D8 can also specifically identify capsaicin and dihydrocapsaicin, so the proposed method can be used to quickly monitor for the presence of gutter cooking oil in normal cooking oil.
Collapse
Affiliation(s)
- Jiali Zhang
- School of Agricultural Engineering and Food Science, Shandong University of Technology, No. 266 Xincun Xilu, Zibo, 255049, Shandong Province, China.,Shandong Provincial Engineering Research Center of Vegetable Safety and Quality Traceability, No. 266 Xincun Xilu, Zibo, 255049, Shandong Province, China.,Zibo City Key Laboratory of Agricultural Product Safety Traceability, No. 266 Xincun Xilu, Zibo, 255049, Shandong Province, China
| | - Minghui Zhang
- School of Agricultural Engineering and Food Science, Shandong University of Technology, No. 266 Xincun Xilu, Zibo, 255049, Shandong Province, China
| | - Qingqing Yang
- School of Agricultural Engineering and Food Science, Shandong University of Technology, No. 266 Xincun Xilu, Zibo, 255049, Shandong Province, China. .,Shandong Provincial Engineering Research Center of Vegetable Safety and Quality Traceability, No. 266 Xincun Xilu, Zibo, 255049, Shandong Province, China. .,Zibo City Key Laboratory of Agricultural Product Safety Traceability, No. 266 Xincun Xilu, Zibo, 255049, Shandong Province, China.
| | - Lin Wei
- School of Agricultural Engineering and Food Science, Shandong University of Technology, No. 266 Xincun Xilu, Zibo, 255049, Shandong Province, China.,Shandong Provincial Engineering Research Center of Vegetable Safety and Quality Traceability, No. 266 Xincun Xilu, Zibo, 255049, Shandong Province, China.,Zibo City Key Laboratory of Agricultural Product Safety Traceability, No. 266 Xincun Xilu, Zibo, 255049, Shandong Province, China
| | - Bei Yuan
- School of Agricultural Engineering and Food Science, Shandong University of Technology, No. 266 Xincun Xilu, Zibo, 255049, Shandong Province, China.,Shandong Provincial Engineering Research Center of Vegetable Safety and Quality Traceability, No. 266 Xincun Xilu, Zibo, 255049, Shandong Province, China.,Zibo City Key Laboratory of Agricultural Product Safety Traceability, No. 266 Xincun Xilu, Zibo, 255049, Shandong Province, China
| | - Chengchen Pang
- School of Agricultural Engineering and Food Science, Shandong University of Technology, No. 266 Xincun Xilu, Zibo, 255049, Shandong Province, China.,Shandong Provincial Engineering Research Center of Vegetable Safety and Quality Traceability, No. 266 Xincun Xilu, Zibo, 255049, Shandong Province, China.,Zibo City Key Laboratory of Agricultural Product Safety Traceability, No. 266 Xincun Xilu, Zibo, 255049, Shandong Province, China
| | - Yanyan Zhang
- School of Agricultural Engineering and Food Science, Shandong University of Technology, No. 266 Xincun Xilu, Zibo, 255049, Shandong Province, China.,Shandong Provincial Engineering Research Center of Vegetable Safety and Quality Traceability, No. 266 Xincun Xilu, Zibo, 255049, Shandong Province, China.,Zibo City Key Laboratory of Agricultural Product Safety Traceability, No. 266 Xincun Xilu, Zibo, 255049, Shandong Province, China
| | - Xia Sun
- School of Agricultural Engineering and Food Science, Shandong University of Technology, No. 266 Xincun Xilu, Zibo, 255049, Shandong Province, China.,Shandong Provincial Engineering Research Center of Vegetable Safety and Quality Traceability, No. 266 Xincun Xilu, Zibo, 255049, Shandong Province, China.,Zibo City Key Laboratory of Agricultural Product Safety Traceability, No. 266 Xincun Xilu, Zibo, 255049, Shandong Province, China
| | - Yemin Guo
- School of Agricultural Engineering and Food Science, Shandong University of Technology, No. 266 Xincun Xilu, Zibo, 255049, Shandong Province, China.,Shandong Provincial Engineering Research Center of Vegetable Safety and Quality Traceability, No. 266 Xincun Xilu, Zibo, 255049, Shandong Province, China.,Zibo City Key Laboratory of Agricultural Product Safety Traceability, No. 266 Xincun Xilu, Zibo, 255049, Shandong Province, China
| |
Collapse
|
23
|
Baranovskaya VS, Berlina AN, Eremin SA. A Fluorescence Polarization Immunoassay Procedure for Determining Dibutyl Phthalate in Water. JOURNAL OF ANALYTICAL CHEMISTRY 2022. [DOI: 10.1134/s1061934822040037] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
24
|
Li Y, Yu H, Zhao Q. Aptamer fluorescence anisotropy assays for detection of aflatoxin B1 and adenosine triphosphate using antibody to amplify signal change. RSC Adv 2022; 12:7464-7468. [PMID: 35424710 PMCID: PMC8982223 DOI: 10.1039/d2ra00843b] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 02/18/2022] [Indexed: 12/21/2022] Open
Abstract
Fluorescence polarization/anisotropy (FP/FA) is an attractive technology for determining small molecules in homogeneous solution based on rotation changes of a fluorescent reporter. Binding induced conformation change is a specific property of aptamers. This property has been integrated into aptamer based FA assays for small molecules. In this work, we reported aptamer FA assays for aflatoxin B1 (AFB1) and adenosine triphosphate (ATP) by using antibody conjugated complementary DNA at the 3′ end and a fluorescein (FAM)-labeled aptamer at the 5′ end. The hybridization of aptamer and cDNA induced a FAM label close to the large-sized antibody, which restricts the local rotation of FAM and gives high FA signal. With the addition of target, the aptamer probe binds with the target, and the aptamer–cDNA duplex is inhibited, causing FA signal decreases. This method achieved detection of 25 pM AFB1 and 1 μM ATP, respectively. The assay is promising for application. Aptamer fluorescence anisotropy assays for small molecules (aflatoxin B1 and ATP) using antibody to amplify signal change.![]()
Collapse
Affiliation(s)
- Yapiao Li
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences Beijing 100085 China .,University of Chinese Academy of Sciences Beijing 100049 China
| | - Hao Yu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences Beijing 100085 China .,University of Chinese Academy of Sciences Beijing 100049 China
| | - Qiang Zhao
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences Beijing 100085 China .,University of Chinese Academy of Sciences Beijing 100049 China.,School of Environment, Hangzhou Institute for Advanced Study, UCAS Hangzhou 310000 China
| |
Collapse
|
25
|
Xiao X, Zhen S. Recent advances in fluorescence anisotropy/polarization signal amplification. RSC Adv 2022; 12:6364-6376. [PMID: 35424604 PMCID: PMC8982260 DOI: 10.1039/d2ra00058j] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Accepted: 02/16/2022] [Indexed: 12/25/2022] Open
Abstract
Fluorescence anisotropy/polarization is an attractive and versatile technique based on molecular rotation in biochemical/biophysical systems. Traditional fluorescence anisotropy/polarization assays showed relatively low sensitivity for molecule detection, because widespread molecular masses are too small to produce detectable changes in fluorescence anisotropy/polarization value. In this review, we discuss in detail how the potential of fluorescence anisotropy/polarization signal approach considerably expanded through the implementation of mass amplification, recycle the target amplification, fluorescence probes structure-switching amplification, resonance energy transfer amplification, and provide perspectives at future directions and applications.
Collapse
Affiliation(s)
- Xue Xiao
- Key Laboratory of Basic Chemistry of the State Ethnic Commission, College of Chemistry and Environment, Southwest Minzu University 610041 Chengdu PR China
| | - Shujun Zhen
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University 400715 Chongqing PR China
| |
Collapse
|
26
|
Jang B, Jang H, Kim H, Kim M, Jeong M, Lee GS, Lee K, Lee H. Protein-RNA interaction guided chemical modification of Dicer substrate RNA nanostructures for superior in vivo gene silencing. J Control Release 2021; 343:57-65. [PMID: 34763005 DOI: 10.1016/j.jconrel.2021.11.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 11/02/2021] [Accepted: 11/04/2021] [Indexed: 01/11/2023]
Abstract
Dicer substrate RNA is an alternative gene silencing agent to canonical siRNA. Enhanced in vitro gene silencing can be achieved with RNA substrates by facilitating Ago loading of dsRNA after Dicer processing. However, the in vivo use of Dicer substrate RNA has been hindered by its instability and immunogenicity in the body due to the lack of proper chemical modification in the structure. Here, we report a universal chemical modification approach for Dicer substrate RNA nanostructures by optimizing protein-RNA interactions in the RNAi pathway. Proteins involved in the RNAi pathway were utilized for evaluating their recognition and binding of substrate RNA. It was found that conventional chemical modifications could severely affect the binding and processing of substrate RNA, consequently reducing RNAi activity. Protein-RNA interaction guided chemical modification was introduced to RNA nanostructures, and their gene silencing activity was assessed. The optimized RNA nanostructures showed excellent binding and processability with RNA binding proteins and offered the enhancement of in vivo EC50 up to 1/8 of its native form.
Collapse
Affiliation(s)
- Bora Jang
- College of Pharmacy, Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Hyejin Jang
- College of Pharmacy, Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Hyunsook Kim
- College of Pharmacy, Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Minjeong Kim
- College of Pharmacy, Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Michaela Jeong
- College of Pharmacy, Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Gyeong Seok Lee
- College of Pharmacy, Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Kyuri Lee
- College of Pharmacy, Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul 03760, Republic of Korea; College of Pharmacy and Research Institute of Pharmaceutical Sciences, Gyeongsang National University, Jinju 52828, Republic of Korea.
| | - Hyukjin Lee
- College of Pharmacy, Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul 03760, Republic of Korea.
| |
Collapse
|
27
|
Yang H, He Q, Eremin SA, Pan J, Zou Y, Cui X, Zhao S. Fluorescence polarization immunoassay for rapid determination of dehydroepiandrosterone in human urine. Anal Bioanal Chem 2021; 413:4459-4469. [PMID: 34137913 DOI: 10.1007/s00216-021-03403-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 04/14/2021] [Accepted: 05/10/2021] [Indexed: 12/11/2022]
Abstract
In this paper, five fluorescein-labeled dehydroepiandrosterone (DHEA) derivatives (tracers) with different chain lengths between the fluorescein and hapten were synthesized and featured so as to establish a fluorescence polarization immunoassay (FPIA) for DHEA detection in human urine samples with previously prepared polyclonal antibody against DHEA. The outcomes of the structure of tracer on FPIA sensitivity were investigated. Under the optimal condition, the fluorescence polarization value (FP) decreases linearly in DHEA concentration, ranging from 1.6 to 243.3 ng mL-1, with the limit of detection of 1.1 ng mL-1 and IC50 value of 25.1 ng mL-1. Moreover, the developed FPIA was time-saving as it could complete the detection within 3 min. FPIA and commercial enzyme-linked immunosorbent assay kit were both applied to analyze the spiked human urine samples with DHEA. Excellent recoveries (92.1-108.0%) and satisfactory correlation coefficient (R2 = 0.98) were acquired with the two methods, indicating that the developed FPIA was a fast and efficient screening immunoassay with accuracy and sensitivity for DHEA detection in human urine samples. Graphical abstract.
Collapse
Affiliation(s)
- Huiyi Yang
- Department of Pharmaceutical Engineering, School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, 510006, Guangdong, People's Republic of China
| | - Qiyi He
- Department of Pharmaceutical Engineering, School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, 510006, Guangdong, People's Republic of China
| | - Sergei A Eremin
- Faculty of Chemistry, M. V. Lomonosov Moscow State University, 119991, Moscow, Russia
| | - Junkang Pan
- Department of Pharmaceutical Engineering, School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, 510006, Guangdong, People's Republic of China
| | - Yikui Zou
- Department of Pharmaceutical Engineering, School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, 510006, Guangdong, People's Republic of China
| | - Xiping Cui
- Department of Pharmaceutical Engineering, School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, 510006, Guangdong, People's Republic of China.
| | - Suqing Zhao
- Department of Pharmaceutical Engineering, School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, 510006, Guangdong, People's Republic of China.
| |
Collapse
|
28
|
Nishiyama K, Takahashi K, Fukuyama M, Kasuya M, Imai A, Usukura T, Maishi N, Maeki M, Ishida A, Tani H, Hida K, Shigemura K, Hibara A, Tokeshi M. Facile and rapid detection of SARS-CoV-2 antibody based on a noncompetitive fluorescence polarization immunoassay in human serum samples. Biosens Bioelectron 2021; 190:113414. [PMID: 34130087 PMCID: PMC8178067 DOI: 10.1016/j.bios.2021.113414] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 05/27/2021] [Accepted: 06/03/2021] [Indexed: 01/14/2023]
Abstract
Antibody detection methods for viral infections have received broad attention due to the COVID-19 pandemic. In addition, there remains an ever-increasing need to quantitatively evaluate the immune response to develop vaccines and treatments for COVID-19. Here, we report an analytical method for the rapid and quantitative detection of SARS-CoV-2 antibody in human serum by fluorescence polarization immunoassay (FPIA). A recombinant SARS-CoV-2 receptor binding domain (RBD) protein labeled with HiLyte Fluor 647 (F-RBD) was prepared and used for FPIA. When the anti-RBD antibody in human serum binds to F-RBD, the degree of polarization (P) increases by suppressing the rotational diffusion of F-RBD. The measurement procedure required only mixing a reagent containing F-RBD with serum sample and measuring the P value with a portable fluorescence polarization analyzer after 15 min incubation. We evaluated analytical performance of the developed FPIA system using 30 samples: 20 COVID-19 positive sera and 10 negative sera. The receiver operating characteristic curve drawn with the obtained results showed that this FPIA system had high accuracy for discriminating COVID-19 positive or negative serum (AUC = 0.965). The total measurement time was about 20 min, and the serum volume required for measurement was 0.25 μL. Therefore, we successfully developed the FPIA system that enables rapid and easy quantification of SARS-CoV-2 antibody. It is believed that our FPIA system will facilitate rapid on-site identification of infected persons and deepen understanding of the immune response to COVID-19.
Collapse
Affiliation(s)
- Keine Nishiyama
- Graduate School of Chemical Sciences and Engineering, Hokkaido University, Kita 13 Nishi 8, Kita-ku, Sapporo, 060-8628, Japan
| | - Kazuki Takahashi
- Graduate School of Chemical Sciences and Engineering, Hokkaido University, Kita 13 Nishi 8, Kita-ku, Sapporo, 060-8628, Japan
| | - Mao Fukuyama
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Katahira 2-1-1, Aoba-ku, Sendai, 980-8577, Japan
| | - Motohiro Kasuya
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Katahira 2-1-1, Aoba-ku, Sendai, 980-8577, Japan
| | - Ayuko Imai
- Tianma Japan, Ltd., Shin-Kawasaki Mitsui Building West Tower 28F 1-1-2, Kashimada, Saiwai-ku, Kawasaki, Kanagawa, 212-0058, Japan
| | - Takumi Usukura
- Tianma Japan, Ltd., Shin-Kawasaki Mitsui Building West Tower 28F 1-1-2, Kashimada, Saiwai-ku, Kawasaki, Kanagawa, 212-0058, Japan
| | - Nako Maishi
- Vascular Biology and Molecular Pathology, Graduate School of Dental Medicine, Hokkaido University, Kita 13 Nishi 7, Kita-ku, Sapporo, 060-8586, Japan
| | - Masatoshi Maeki
- Division of Applied Chemistry, Faculty of Engineering, Hokkaido University, Kita 13 Nishi 8, Kita-ku, Sapporo, 060-8628, Japan
| | - Akihiko Ishida
- Division of Applied Chemistry, Faculty of Engineering, Hokkaido University, Kita 13 Nishi 8, Kita-ku, Sapporo, 060-8628, Japan
| | - Hirofumi Tani
- Division of Applied Chemistry, Faculty of Engineering, Hokkaido University, Kita 13 Nishi 8, Kita-ku, Sapporo, 060-8628, Japan
| | - Kyoko Hida
- Vascular Biology and Molecular Pathology, Graduate School of Dental Medicine, Hokkaido University, Kita 13 Nishi 7, Kita-ku, Sapporo, 060-8586, Japan
| | - Koji Shigemura
- Tianma Japan, Ltd., Shin-Kawasaki Mitsui Building West Tower 28F 1-1-2, Kashimada, Saiwai-ku, Kawasaki, Kanagawa, 212-0058, Japan
| | - Akihide Hibara
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Katahira 2-1-1, Aoba-ku, Sendai, 980-8577, Japan
| | - Manabu Tokeshi
- Division of Applied Chemistry, Faculty of Engineering, Hokkaido University, Kita 13 Nishi 8, Kita-ku, Sapporo, 060-8628, Japan; Innovative Research Centre for Preventive Medical Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8601, Japan; Institute of Innovation for Future Society, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8601, Japan.
| |
Collapse
|
29
|
Billet B, Chovelon B, Fiore E, Oukacine F, Petrillo MA, Faure P, Ravelet C, Peyrin E. Aptamer Switches Regulated by Post-Transition/Transition Metal Ions. Angew Chem Int Ed Engl 2021; 60:12346-12350. [PMID: 33742515 DOI: 10.1002/anie.202102254] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2021] [Indexed: 12/11/2022]
Abstract
We introduced an aptamer switch design that relies on the ability of post-transition/transition metal ions to trigger, through their coordination to nucleobases, substantial DNA destabilization. In the absence of molecular target, the addition of one such metal ion to usual aptamer working solutions promotes the formation of an alternative, inert DNA state. Upon exposure to the cognate compound, the equilibrium is shifted towards the competent DNA form. The switching process was preferentially activated by metal ions of intermediate base over phosphate complexation preference (i.e. Pb2+ , Cd2+ ) and operated with diversely structured DNA molecules. This very simple aptamer switch scheme was applied to the detection of small organics using the fluorescence anisotropy readout mode. We envision that the approach could be adapted to a variety of signalling methods that report on changes in the surface charge density of DNA receptors.
Collapse
Affiliation(s)
- Blandine Billet
- DPM UMR 5063, University Grenoble Alpes, CNRS, 38041, Grenoble, France.,Biochemistry, Toxicology and Pharmacology Department, Grenoble site Nord CHU- Biology and Pathology Institute, 38041, Grenoble, France
| | - Benoit Chovelon
- DPM UMR 5063, University Grenoble Alpes, CNRS, 38041, Grenoble, France.,Biochemistry, Toxicology and Pharmacology Department, Grenoble site Nord CHU- Biology and Pathology Institute, 38041, Grenoble, France
| | - Emmanuelle Fiore
- DPM UMR 5063, University Grenoble Alpes, CNRS, 38041, Grenoble, France
| | - Farid Oukacine
- DPM UMR 5063, University Grenoble Alpes, CNRS, 38041, Grenoble, France
| | | | - Patrice Faure
- DPM UMR 5063, University Grenoble Alpes, CNRS, 38041, Grenoble, France.,Biochemistry, Toxicology and Pharmacology Department, Grenoble site Nord CHU- Biology and Pathology Institute, 38041, Grenoble, France
| | - Corinne Ravelet
- DPM UMR 5063, University Grenoble Alpes, CNRS, 38041, Grenoble, France
| | - Eric Peyrin
- DPM UMR 5063, University Grenoble Alpes, CNRS, 38041, Grenoble, France
| |
Collapse
|
30
|
Billet B, Chovelon B, Fiore E, Oukacine F, Petrillo M, Faure P, Ravelet C, Peyrin E. Aptamer Switches Regulated by Post‐Transition/Transition Metal Ions. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202102254] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Affiliation(s)
- Blandine Billet
- DPM UMR 5063 University Grenoble Alpes CNRS 38041 Grenoble France
- Biochemistry, Toxicology and Pharmacology Department Grenoble site Nord CHU- Biology and Pathology Institute 38041 Grenoble France
| | - Benoit Chovelon
- DPM UMR 5063 University Grenoble Alpes CNRS 38041 Grenoble France
- Biochemistry, Toxicology and Pharmacology Department Grenoble site Nord CHU- Biology and Pathology Institute 38041 Grenoble France
| | - Emmanuelle Fiore
- DPM UMR 5063 University Grenoble Alpes CNRS 38041 Grenoble France
| | - Farid Oukacine
- DPM UMR 5063 University Grenoble Alpes CNRS 38041 Grenoble France
| | | | - Patrice Faure
- DPM UMR 5063 University Grenoble Alpes CNRS 38041 Grenoble France
- Biochemistry, Toxicology and Pharmacology Department Grenoble site Nord CHU- Biology and Pathology Institute 38041 Grenoble France
| | - Corinne Ravelet
- DPM UMR 5063 University Grenoble Alpes CNRS 38041 Grenoble France
| | - Eric Peyrin
- DPM UMR 5063 University Grenoble Alpes CNRS 38041 Grenoble France
| |
Collapse
|
31
|
Li Y, Zhao Q. Antibody- and aptamer-based competitive fluorescence polarization/anisotropy assays for ochratoxin A with tetramethylrhodamine-labeled ochratoxin A. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2021; 13:1612-1617. [PMID: 33734257 DOI: 10.1039/d1ay00003a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Ochratoxin A (OTA) is one of the mycotoxins that often contaminate a variety of food stuffs, and it is a potential carcinogen for humans. Taking advantage of selective affinity binding and simple, rapid, and sensitive fluorescence polarization (FP)/fluorescence anisotropy (FA) analysis, here, we report two competitive FP/FA assays for OTA using tetramethylrhodamine (TMR)-labeled OTA as a fluorescence tracer and either antibody or aptamer as an affinity ligand to recognize OTA. In the absence of OTA, the TMR-labeled OTA binds with a large-sized affinity ligand, showing a high FA value due to the slow rotation of the affinity complex. When OTA is present, OTA competes with the TMR-labeled OTA tracer in binding limited amount of affinity ligand, causing more free TMR-labeled OTA and a significant FA decrease. We found that the antibody showed a stronger affinity towards TMR-labeled OTA compared to the aptamer. The antibody-based FA assay showed higher signal changes than the aptamer based FA assay due to the larger size of antibody over aptamer. The antibody-based competitive FA assay enabled the detection of 2.4 nM OTA, while the aptamer-based FA assay also achieved a detection limit of 2.4 nM OTA at 10 °C with the help of streptavidin conjugation to increase the molecular size and to improve aptamer affinity. These two competitive FA assays were selective, showing capability for analysis in diluted red wine.
Collapse
Affiliation(s)
- Yapiao Li
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
| | | |
Collapse
|