1
|
Goida A, Rogov A, Kuzin Y, Porfireva A, Evtugyn G. Impedimetric DNA Sensors for Epirubicin Detection Based on Polythionine Films Electropolymerized from Deep Eutectic Solvent. SENSORS (BASEL, SWITZERLAND) 2023; 23:8242. [PMID: 37837072 PMCID: PMC10575168 DOI: 10.3390/s23198242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Revised: 09/22/2023] [Accepted: 10/02/2023] [Indexed: 10/15/2023]
Abstract
An electrochemically active polymer, polythionine (PTN), was synthesized in natural deep eutectic solvent (NADES) via multiple potential scans and characterized using cyclic voltammetry and electrochemical impedance spectroscopy (EIS). NADES consists of citric acid monohydrate, glucose, and water mixed in the molar ratio of 1:1:6. Electrodeposited PTN film was then applied for the electrostatic accumulation of DNA from salmon sperm and used for the sensitive detection of the anticancer drug epirubicin. Its reaction with DNA resulted in regular changes in the EIS parameters that made it possible to determine 1.0-100 µM of epirubicin with the limit of detection (LOD) of 0.3 µM. The DNA sensor developed was successfully applied for the detection of epirubicin in spiked samples of artificial and natural urine and saliva, with recovery ranging from 90 to 109%. The protocol of the DNA sensor assembling utilized only one drop of reactants and was performed with a minimal number of steps. Together with a simple measurement protocol requiring 100 µL of the sample, this offers good opportunities for the further use of the DNA sensor in monitoring the drug level in biological samples, which is necessary in oncology treatment and for the pharmacokinetics studies of new antitumor drugs.
Collapse
Affiliation(s)
- Anastasia Goida
- A.M. Butlerov’ Chemistry Institute, Kazan Federal University, 18 Kremlevskaya Street, Kazan 420008, Russia; (A.G.); (Y.K.); (A.P.)
| | - Alexey Rogov
- Interdisciplinary Center of Analytical Microscopy, Kazan Federal University, 18 Kremlevskaya Street, Kazan 420008, Russia;
| | - Yurii Kuzin
- A.M. Butlerov’ Chemistry Institute, Kazan Federal University, 18 Kremlevskaya Street, Kazan 420008, Russia; (A.G.); (Y.K.); (A.P.)
| | - Anna Porfireva
- A.M. Butlerov’ Chemistry Institute, Kazan Federal University, 18 Kremlevskaya Street, Kazan 420008, Russia; (A.G.); (Y.K.); (A.P.)
| | - Gennady Evtugyn
- A.M. Butlerov’ Chemistry Institute, Kazan Federal University, 18 Kremlevskaya Street, Kazan 420008, Russia; (A.G.); (Y.K.); (A.P.)
- Analytical Chemistry Department, Chemical Technology Institute, Ural Federal University, 19 Mira Street, Ekaterinburg 620002, Russia
| |
Collapse
|
2
|
ERDEM A, ŞENTÜRK H, YILDIZ E, MARAL M, YILDIRIM A, BOZOĞLU A, KIVRAK B, AY NC. Electrochemical DNA biosensors developed for the monitoring of biointeractions with drugs: a review. Turk J Chem 2023; 47:864-887. [PMID: 38173734 PMCID: PMC10760829 DOI: 10.55730/1300-0527.3584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 10/31/2023] [Accepted: 09/30/2023] [Indexed: 01/05/2024] Open
Abstract
The interaction of drugs with DNA is important for the discovery of novel drug molecules and for understanding the therapeutic effects of drugs as well as the monitoring of side effects. For this reason, many studies have been carried out to investigate the interactions of drugs with nucleic acids. In recent years, a large number of studies have been performed to electrochemically detect drug-DNA interactions. The fast, sensitive, and accurate results of electrochemical techniques have resulted in a leading role for their implementation in this field. By means of electrochemical techniques, it is possible not only to demonstrate drug-DNA interactions but also to quantitatively analyze drugs. In this context, electrochemical biosensors for drug-DNA interactions have been examined under different headings including anticancer, antiviral, antibiotic, and central nervous system drugs as well as DNA-targeted drugs. An overview of the studies related to electrochemical DNA biosensors developed for the detection of drug-DNA interactions that were reported in the last two decades in the literature is presented herein along with their applications and they are discussed together with their future perspectives.
Collapse
Affiliation(s)
- Arzum ERDEM
- Analytical Chemistry Department, Faculty of Pharmacy, Ege University, İzmir,
Turkiye
| | - Huseyin ŞENTÜRK
- Analytical Chemistry Department, Faculty of Pharmacy, Ege University, İzmir,
Turkiye
| | - Esma YILDIZ
- Analytical Chemistry Department, Faculty of Pharmacy, Ege University, İzmir,
Turkiye
| | - Meltem MARAL
- Analytical Chemistry Department, Faculty of Pharmacy, Ege University, İzmir,
Turkiye
| | - Ayla YILDIRIM
- Analytical Chemistry Department, Faculty of Pharmacy, Ege University, İzmir,
Turkiye
| | - Aysen BOZOĞLU
- Analytical Chemistry Department, Faculty of Pharmacy, Ege University, İzmir,
Turkiye
| | - Burak KIVRAK
- Analytical Chemistry Department, Faculty of Pharmacy, Ege University, İzmir,
Turkiye
| | - Neslihan Ceren AY
- Analytical Chemistry Department, Faculty of Pharmacy, Ege University, İzmir,
Turkiye
| |
Collapse
|
3
|
Malanina A, Kuzin Y, Khadieva A, Shibaeva K, Padnya P, Stoikov I, Evtugyn G. Voltammetric Sensor for Doxorubicin Determination Based on Self-Assembled DNA-Polyphenothiazine Composite. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:2369. [PMID: 37630955 PMCID: PMC10459114 DOI: 10.3390/nano13162369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 08/11/2023] [Accepted: 08/12/2023] [Indexed: 08/27/2023]
Abstract
A novel voltammetric sensor based on a self-assembled composite formed by native DNA and electropolymerized N-phenyl-3-(phenylimino)-3H-phenothiazin-7-amine has been developed and applied for sensitive determination of doxorubicin, an anthracycline drug applied for cancer therapy. For this purpose, a monomeric phenothiazine derivative has been deposited on the glassy carbon electrode from the 0.4 M H2SO4-acetone mixture (1:1 v/v) by multiple potential cycling. The DNA aliquot was either on the electrode modified with electropolymerized film or added to the reaction medium prior to electropolymerization. The DNA entrapment and its influence on the redox behavior of the underlying layer were studied by scanning electron microscopy and electrochemical impedance spectroscopy. The DNA-doxorubicin interactions affected the charge distribution in the surface layer and, hence, altered the redox equilibrium of the polyphenothiazine coating. The voltametric signal was successfully applied for the determination of doxorubicin in the concentration range from 10 pM to 0.2 mM (limit of detection 5 pM). The DNA sensor was tested on spiked artificial plasma samples and two commercial medications (recovery of 90-95%). After further testing on real clinical samples, the electrochemical DNA sensor developed can find application in monitoring drug release and screening new antitumor drugs able to intercalate DNA.
Collapse
Affiliation(s)
- Anastasiya Malanina
- A.M. Butlerov Chemistry Institute, Kazan Federal University, 18 Kremlevskaya Street, Kazan 420008, Russia
| | - Yurii Kuzin
- A.M. Butlerov Chemistry Institute, Kazan Federal University, 18 Kremlevskaya Street, Kazan 420008, Russia
| | - Alena Khadieva
- A.M. Butlerov Chemistry Institute, Kazan Federal University, 18 Kremlevskaya Street, Kazan 420008, Russia
| | - Kseniya Shibaeva
- A.M. Butlerov Chemistry Institute, Kazan Federal University, 18 Kremlevskaya Street, Kazan 420008, Russia
| | - Pavel Padnya
- A.M. Butlerov Chemistry Institute, Kazan Federal University, 18 Kremlevskaya Street, Kazan 420008, Russia
| | - Ivan Stoikov
- A.M. Butlerov Chemistry Institute, Kazan Federal University, 18 Kremlevskaya Street, Kazan 420008, Russia
| | - Gennady Evtugyn
- A.M. Butlerov Chemistry Institute, Kazan Federal University, 18 Kremlevskaya Street, Kazan 420008, Russia
- Analytical Chemistry Department, Chemical Technology Institute, Ural Federal University, 19 Mira Street, Ekaterinburg 620002, Russia
| |
Collapse
|
4
|
Evtugyn GA, Porfireva AV, Belyakova SV. Electrochemical DNA sensors for drug determination. J Pharm Biomed Anal 2022; 221:115058. [PMID: 36179503 DOI: 10.1016/j.jpba.2022.115058] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 09/13/2022] [Accepted: 09/14/2022] [Indexed: 11/16/2022]
Abstract
In this review, recent achievements in the development of the DNA biosensors developed for the drug determination have been presented with particular emphasis to the main principles of their assembling and signal measurement approaches. The design of the DNA sensors is considered with characterization of auxiliary components and their necessity for the biosensor operation. Carbon nanomaterials, metals and their complexes as well as electropolymerized polymers are briefly described in the assembly of DNA sensors. The performance of the DNA sensors is summarized within 2017-2022 for various drugs and factors influencing the sensitivity and selectivity of the response are discussed. Special attention is paid to the mechanism of the signal generation and possible drawbacks in the analysis of real samples.
Collapse
Affiliation(s)
- G A Evtugyn
- A.M. Butlerov' Chemistry Institute of Kazan Federal University, 18 Kremlevskaya Street, 420008 Kazan, Russian Federation; Analytical Chemistry Department of Chemical Technology Institute of Ural Federal University, 19 Mira Street, Ekaterinburg 620002, Russian Federation.
| | - A V Porfireva
- A.M. Butlerov' Chemistry Institute of Kazan Federal University, 18 Kremlevskaya Street, 420008 Kazan, Russian Federation
| | - S V Belyakova
- A.M. Butlerov' Chemistry Institute of Kazan Federal University, 18 Kremlevskaya Street, 420008 Kazan, Russian Federation
| |
Collapse
|
5
|
Chakraborty G, Bhattarai A, De R. Polyelectrolyte-Dye Interactions: An Overview. Polymers (Basel) 2022; 14:598. [PMID: 35160587 PMCID: PMC8840521 DOI: 10.3390/polym14030598] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 01/24/2022] [Accepted: 01/31/2022] [Indexed: 02/01/2023] Open
Abstract
Polyelectrolytes are polymers with repeating units of ionizable groups coupled with counterions. Recently, polyelectrolytes have drawn significant attention as highly promising macromolecular materials with potential for applications in almost every sector of our daily lives. Dyes are another class of chemical compounds that can interact with substrates and subsequently impart color through the selective absorption of electromagnetic radiation in the visible range. This overview begins with an introduction to polyelectrolytes and dyes with their respective definitions, classifications (based on origin, molecular architecture, etc.), and applications in diverse fields. Thereafter, it explores the different possible interactions between polyelectrolytes and dyes, which is the main focus of this study. The various mechanisms involved in dye-polyelectrolyte interactions and the factors that influence them are also surveyed. Finally, these discussions are summarized, and their future perspectives are presented.
Collapse
Affiliation(s)
- Gulmi Chakraborty
- Department of Chemistry, C. V. Raman Global University, Odisha 752054, India;
| | - Ajaya Bhattarai
- Department of Chemistry, Mahendra Morang Adarsh Multiple Campus, Tribhuvan University, Biratnagar 56613, Nepal
| | - Ranjit De
- School of Material Science and Engineering, Gwangju Institute of Science and Technology, Gwangju 61005, Korea
- Department of Life Sciences, Pohang University of Science and Technology, Pohang 37673, Korea
| |
Collapse
|
6
|
Electrochemical Sensing of Idarubicin—DNA Interaction Using Electropolymerized Azure B and Methylene Blue Mediation. CHEMOSENSORS 2022. [DOI: 10.3390/chemosensors10010033] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
A highly sensitive electrochemical DNA sensor for detection of the chemotherapeutic drug idarubicin mediated by Methylene blue (MB) has been developed. DNA from fish sperm has been immobilized at the electropolymerized layers of Azure B. The incorporation of MB into the DNA layers substantially increased the sensor sensitivity. The concentration range for idarubicin determination by cyclic voltammetry was from 1 fM to 0.1 nM, with a limit of detection (LOD) of 0.3 fM. Electrochemical impedance spectroscopy (EIS) in the presence of a redox probe ([Fe(CN)6]3−/4−) allowed for the widening of a linear range of idarubicin detection from 1 fM to 100 nM, retaining LOD 0.3 fM. The DNA sensor has been tested in various real and artificial biological fluids with good recovery ranging between 90–110%. The sensor has been successfully used for impedimetric idarubicin detection in medical preparation Zavedos®. The developed DNA biosensor could be useful for the control of the level of idarubicin during cancer therapy as well as for pharmacokinetics studies.
Collapse
|
7
|
Electrochemical DNA Sensor Based on Acridine Yellow Adsorbed on Glassy Carbon Electrode. SENSORS 2021; 21:s21227763. [PMID: 34833839 PMCID: PMC8621912 DOI: 10.3390/s21227763] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 11/18/2021] [Accepted: 11/19/2021] [Indexed: 12/19/2022]
Abstract
Electrochemical DNA sensors offer unique opportunities for the sensitive detection of specific DNA interactions. In this work, a voltametric DNA sensor is proposed on the base of glassy carbon electrode modified with carbon black, adsorbed acridine yellow and DNA for highly sensitive determination of doxorubicin antitumor drug. The signal recorded by cyclic voltammetry was attributed to irreversible oxidation of the dye. Its value was altered by aggregation of the hydrophobic dye molecules on the carbon black particles. DNA molecules promote disaggregation of the dye and increased the signal. This effect was partially suppressed by doxorubicin compensate for the charge of DNA in the intercalation. Sensitivity of the signal toward DNA and doxorubicin was additionally increased by treatment of the layer with dimethylformamide. In optimal conditions, the linear range of doxorubicin concentrations determined was 0.1 pM–1.0 nM, and the detection limit was 0.07 pM. No influence of sulfonamide medicines and plasma electrolytes on the doxorubicin determination was shown. The DNA sensor was tested on two medications (doxorubicin-TEVA and doxorubicin-LANS) and showed recoveries of 102–105%. The DNA sensor developed can find applications in the determination of drug residues in blood and for the pharmacokinetics studies.
Collapse
|