1
|
Jessernig A, Anthis AH, Vonna E, Rosendorf J, Liska V, Widmer J, Schlegel AA, Herrmann IK. Early Detection and Monitoring of Anastomotic Leaks via Naked Eye-Readable, Non-Electronic Macromolecular Network Sensors. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2400673. [PMID: 38775058 PMCID: PMC11304232 DOI: 10.1002/advs.202400673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 03/22/2024] [Indexed: 08/09/2024]
Abstract
Anastomotic leakage (AL) is the leaking of non-sterile gastrointestinal contents into a patient's abdominal cavity. AL is one of the most dreaded complications following gastrointestinal surgery, with mortality rates reaching up to 27%. The current diagnostic methods for anastomotic leaks are limited in sensitivity and specificity. Since the timing of detection directly impacts patient outcomes, developing new, fast, and simple methods for early leak detection is crucial. Here, a naked eye-readable, electronic-free macromolecular network drain fluid sensor is introduced for continuous monitoring and early detection of AL at the patient's bedside. The sensor array comprises three different macromolecular network sensing elements, each tailored for selectivity toward the three major digestive enzymes found in the drainage fluid during a developing AL. Upon digestion of the macromolecular network structure by the respective digestive enzymes, the sensor produces an optical shift discernible to the naked eye. The diagnostic efficacy and clinical applicability of these sensors are demonstrated using clinical samples from 32 patients, yielding a Receiver Operating Characteristic Area Under the Curve (ROC AUC) of 1.0. This work has the potential to significantly contribute to improved patient outcomes through continuous monitoring and early, low-cost, and reliable AL detection.
Collapse
Affiliation(s)
- Alexander Jessernig
- Nanoparticle Systems Engineering LaboratoryInstitute of Energy and Process Engineering (IEPE)Department of Mechanical and Process Engineering (D‐MAVT)ETH ZurichSonneggstrasse 3Zurich8092Switzerland
- Particles‐Biology Interactions LaboratoryDepartment of Materials Meet LifeSwiss Federal Laboratories for Materials Science and Technology (Empa)Lerchenfeldstrasse 5St. Gallen9014Switzerland
| | - Alexandre H.C. Anthis
- Nanoparticle Systems Engineering LaboratoryInstitute of Energy and Process Engineering (IEPE)Department of Mechanical and Process Engineering (D‐MAVT)ETH ZurichSonneggstrasse 3Zurich8092Switzerland
- Particles‐Biology Interactions LaboratoryDepartment of Materials Meet LifeSwiss Federal Laboratories for Materials Science and Technology (Empa)Lerchenfeldstrasse 5St. Gallen9014Switzerland
| | - Emilie Vonna
- Nanoparticle Systems Engineering LaboratoryInstitute of Energy and Process Engineering (IEPE)Department of Mechanical and Process Engineering (D‐MAVT)ETH ZurichSonneggstrasse 3Zurich8092Switzerland
| | - Jachym Rosendorf
- Department of SurgeryFaculty of Medicine in PilsenCharles UniversityAlej Svobody 923/80Pilsen32300Czech Republic
- Biomedical CenterFaculty of Medicine in PilsenCharles UniversityAlej Svobody 1655/76Pilsen32300Czech Republic
| | - Vaclav Liska
- Department of SurgeryFaculty of Medicine in PilsenCharles UniversityAlej Svobody 923/80Pilsen32300Czech Republic
- Biomedical CenterFaculty of Medicine in PilsenCharles UniversityAlej Svobody 1655/76Pilsen32300Czech Republic
| | - Jeannette Widmer
- Department of Surgery and TransplantationSwiss HPB CentreUniversity Hospital ZurichZürich8091Switzerland
| | - Andrea A. Schlegel
- Transplantation CenterDigestive Disease and Surgery Institute and Department of Immunity and InflammationLerner Research InstituteCleveland Clinic9620 Carnegie AveClevelandOH44106USA
| | - Inge K. Herrmann
- Nanoparticle Systems Engineering LaboratoryInstitute of Energy and Process Engineering (IEPE)Department of Mechanical and Process Engineering (D‐MAVT)ETH ZurichSonneggstrasse 3Zurich8092Switzerland
- Particles‐Biology Interactions LaboratoryDepartment of Materials Meet LifeSwiss Federal Laboratories for Materials Science and Technology (Empa)Lerchenfeldstrasse 5St. Gallen9014Switzerland
- The Ingenuity LabUniversity Hospital BalgristBalgrist CampusForchstrasse 340Zurich8008Switzerland
- Faculty of MedicineUniversity of ZurichRämistrasse 74Zürich8006Switzerland
| |
Collapse
|
2
|
Zhao X, Kolbinger FR, Distler M, Weitz J, Makarov D, Bachmann M, Baraban L. Portable droplet-based real-time monitoring of pancreatic α-amylase in postoperative patients. Biosens Bioelectron 2024; 251:116034. [PMID: 38359666 DOI: 10.1016/j.bios.2024.116034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 12/21/2023] [Accepted: 01/11/2024] [Indexed: 02/17/2024]
Abstract
Postoperative complications after pancreatic surgery are frequent and can be life-threatening. Current clinical diagnostic strategies involve time-consuming quantification of α-amylase activity in abdominal drain fluid, which is performed on the first and third postoperative day. The lack of real-time monitoring may delay adjustment of medical treatment upon complications and worsen prognosis for patients. We report a bedside portable droplet-based millifluidic device enabling real-time sensing of drain α-amylase activity for postoperative monitoring of patients undergoing pancreatic surgery. Here, a tiny amount of drain liquid of patient samples is continuously collected and co-encapsulated with a starch reagent in nanoliter-sized droplets to track the fluorescence intensity released upon reaction with α-amylase. Comparing the α-amylase levels of 32 patients, 97 % of the results of the droplet-based millifluidic system matched the clinical data. Our method reduces the α-amylase assay duration to approximately 3 min with the limit of detection 7 nmol/s·L, enabling amylase activity monitoring at the bedside in clinical real-time. The presented droplet-based platform can be extended for analysis of different body fluids, diseases, and towards a broader range of biomarkers, including lipase, bilirubin, lactate, inflammation, or liquid biopsy markers, paving the way towards new standards in postoperative patient monitoring.
Collapse
Affiliation(s)
- Xinne Zhao
- Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf e. V, 01328, Dresden, Germany.
| | - Fiona R Kolbinger
- Department of Visceral, Thoracic and Vascular Surgery, University Hospital and Faculty of Medicine Carl Gustav. Carus, TUD Dresden University of Technology, Germany; Else Kröner Fresenius Center for Digital Health (EKFZ), TUD Dresden University of Technology, Germany.
| | - Marius Distler
- Department of Visceral, Thoracic and Vascular Surgery, University Hospital and Faculty of Medicine Carl Gustav. Carus, TUD Dresden University of Technology, Germany
| | - Jürgen Weitz
- Department of Visceral, Thoracic and Vascular Surgery, University Hospital and Faculty of Medicine Carl Gustav. Carus, TUD Dresden University of Technology, Germany; Else Kröner Fresenius Center for Digital Health (EKFZ), TUD Dresden University of Technology, Germany
| | - Denys Makarov
- Institute of Ion Beam Physics and Materials Research, Helmholtz-Zentrum Dresden-Rossendorf e. V, 01328, Dresden, Germany.
| | - Michael Bachmann
- Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf e. V, 01328, Dresden, Germany.
| | - Larysa Baraban
- Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf e. V, 01328, Dresden, Germany; Else Kröner Fresenius Center for Digital Health (EKFZ), TUD Dresden University of Technology, Germany.
| |
Collapse
|
3
|
Seggio M, Arcadio F, Radicchi E, Cennamo N, Zeni L, Bossi AM. Toward Nano- and Microplastic Sensors: Identification of Nano- and Microplastic Particles via Artificial Intelligence Combined with a Plasmonic Probe Functionalized with an Estrogen Receptor. ACS OMEGA 2024; 9:18984-18994. [PMID: 38708270 PMCID: PMC11064004 DOI: 10.1021/acsomega.3c09485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 02/23/2024] [Accepted: 02/28/2024] [Indexed: 05/07/2024]
Abstract
Nano- and microplastic particles are a global and emerging environmental issue that might pose potential threats to human health. The present work exploits artificial intelligence (AI) to identify nano- and microplastics in water by monitoring the interaction of the sample with a sensitive surface. An estrogen receptor (ER) grafted onto a gold surface, realized on a nonexpensive and easy-to-produce plastic optical fiber (POF) platform in order to excite a surface plasmon resonance (SPR) phenomenon, has been developed in order to carry out a "smart" sensitive interface (ER-SPR-POF interface). The ER-SPR-POF interface offers output data useful for exploiting a machine learning-based approach to achieve nano- and microplastic particle sensors. This work developed a proof-of-concept sensor through a training phase carried out by different particles, in terms of materials and size. The experimental results have demonstrated that the proposed "smart" ER-SPR-POF interface combined with AI can be used to identify the kind of particles in terms of the materials (polystyrene; poly(methyl methacrylate)) and size (20 μm; 100 nm) with an accuracy of 90.3%.
Collapse
Affiliation(s)
- Mimimorena Seggio
- Department
of Biotechnology, University of Verona, Strada Le Grazie 15, 37134 Verona, Italy
| | - Francesco Arcadio
- Department
of Engineering, University of Campania Luigi
Vanvitelli, via Roma 29, 81031 Aversa, Italy
| | - Eros Radicchi
- Department
of Biotechnology, University of Verona, Strada Le Grazie 15, 37134 Verona, Italy
| | - Nunzio Cennamo
- Department
of Engineering, University of Campania Luigi
Vanvitelli, via Roma 29, 81031 Aversa, Italy
| | - Luigi Zeni
- Department
of Engineering, University of Campania Luigi
Vanvitelli, via Roma 29, 81031 Aversa, Italy
| | - Alessandra Maria Bossi
- Department
of Biotechnology, University of Verona, Strada Le Grazie 15, 37134 Verona, Italy
| |
Collapse
|
4
|
Seggio M, Arcadio F, Cennamo N, Zeni L, Bossi AM. A plasmonic gold nano-surface functionalized with the estrogen receptor for fast and highly sensitive detection of nanoplastics. Talanta 2024; 267:125211. [PMID: 37734287 DOI: 10.1016/j.talanta.2023.125211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 09/10/2023] [Accepted: 09/14/2023] [Indexed: 09/23/2023]
Abstract
Nanoplastics are a global emerging environmental problem whose effects might pose potential threats to the human's health. Despite the relevance of the issue, fast, reliable and quantitative in situ analytical approaches to determine nanoplastics are not yet available. The aim of this work was to devise an optical sensor with the goal of direct detecting and quantifying nanoplastics in seawater without sample pre-treatments. To this purpose, a nano-plasmonic biosensor was developed by exploiting an Estrogen Receptor (ER) recognition element grafted onto a polymer-based gold nanograting (GNG) plasmonic platform. The ER-GNG biosensor required just minute sample volumes (2 μL), allowed rapid detection (3 min) and enabled to determine nanoplastics in simulated seawater with a linear dynamic concentrations range of 1-100 ng/mL, thus encompassing the expected environmental loads. The nanostructured grating (GNG) provided remarkable performance enhancements, extending the measurement range across five orders of magnitude, thanks to the both the SPR and the localized SPR phenomena occurring at the GNG chip. At last, the ER-GNG biosensor was tested on real seawater samples collected in the Naples area and the results (∼30 ng/mL) were verified by a conventional approach (filtration and evaporation), confirming the ER-GNG sensor offers a straightforward and highly sensitive method for the direct in-field nanoplastics monitoring.
Collapse
Affiliation(s)
- Mimimorena Seggio
- University of Verona, Department of Biotechnology, Strada Le Grazie 15, 37134, Verona, Italy.
| | - Francesco Arcadio
- University of Campania Luigi Vanvitelli, Department of Engineering, Via Roma 29, 81031 Aversa, Italy.
| | - Nunzio Cennamo
- University of Campania Luigi Vanvitelli, Department of Engineering, Via Roma 29, 81031 Aversa, Italy.
| | - Luigi Zeni
- University of Campania Luigi Vanvitelli, Department of Engineering, Via Roma 29, 81031 Aversa, Italy.
| | - Alessandra Maria Bossi
- University of Verona, Department of Biotechnology, Strada Le Grazie 15, 37134, Verona, Italy.
| |
Collapse
|
5
|
Pasquardini L, Vanzetti L, Canteri R, Cennamo N, Arcadio F, Perri C, D'Agostino G, Pitruzzella R, Rovida R, Chiodi A, Zeni L. Optimization of the immunorecognition layer towards Brucella sp. on gold surface for SPR platform. Colloids Surf B Biointerfaces 2023; 231:113577. [PMID: 37797466 DOI: 10.1016/j.colsurfb.2023.113577] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 08/08/2023] [Accepted: 09/30/2023] [Indexed: 10/07/2023]
Abstract
A successful immunosensor is characterized by a proper antibody immobilization and orientation in order to enhance the antigen recognition. In this work, a thorough characterization of the antibody functionalized gold surface is performed to set up the best conditions to implement in an optical platform for the detection of Brucella sp. Two different strategies are evaluated, based on a random immobilization and on an oriented one: a direct antibody immobilization on carboxylic mixed polyethylene (PEG) self-assembled monolayer (SAM) or only carboxylic PEG SAM interface is compared to an oriented immobilization on a layer of protein G on the same PEG SAM interfaces. X-ray Photoelectron Spectroscopy (XPS), Time of Flight Secondary Ion Mass Spectrometry (ToF-SIMS) and contact angle (CA) are used to chemically characterize the gold functionalized surface and ToF-SIMS is also used to confirm the right antibody orientation. Optical characterization is applied to monitor the functionalization steps and fluorescence measurements are used to set up the proper experimental conditions and also to detect Brucella bacteria on the surface. Best results are obtained with a 10 ng/μl incubation solution of antibody immobilized, in an oriented way, on a mixed PEG SAM interface.
Collapse
Affiliation(s)
| | - Lia Vanzetti
- Fondazione Bruno Kessler (FBK), Micro Nano Facility (MNF), Via Sommarive 18, 38123 Trento, Italy
| | - Roberto Canteri
- Fondazione Bruno Kessler (FBK), Micro Nano Facility (MNF), Via Sommarive 18, 38123 Trento, Italy
| | - Nunzio Cennamo
- Department of Engineering, University of Campania "L. Vanvitelli", Via Roma 29, 81031 Aversa, Italy
| | - Francesco Arcadio
- Department of Engineering, University of Campania "L. Vanvitelli", Via Roma 29, 81031 Aversa, Italy
| | - Chiara Perri
- Moresense srl, Filarete Foundation, Viale Ortles 22/4, 20139 Milano, Italy
| | | | - Rosalba Pitruzzella
- Department of Engineering, University of Campania "L. Vanvitelli", Via Roma 29, 81031 Aversa, Italy
| | - Riccardo Rovida
- Department of Engineering, University of Campania "L. Vanvitelli", Via Roma 29, 81031 Aversa, Italy
| | - Alessandro Chiodi
- Moresense srl, Filarete Foundation, Viale Ortles 22/4, 20139 Milano, Italy
| | - Luigi Zeni
- Department of Engineering, University of Campania "L. Vanvitelli", Via Roma 29, 81031 Aversa, Italy.
| |
Collapse
|
6
|
Fluorometric biosensing of α-amylase using an artificial allosteric biosensor immobilized on nanostructured interface. Talanta 2023; 255:124215. [PMID: 36603441 DOI: 10.1016/j.talanta.2022.124215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Revised: 12/13/2022] [Accepted: 12/20/2022] [Indexed: 12/29/2022]
Abstract
Protein biosensors hold a promise to transform the way we collect physiological data by enabling quantification of biomarkers outside of specialized laboratory environment. However, achieving high specificity and sensitivity in homogeneous assay format remains challenging. Here we report construction of fluorescent biosensor arrays based on artificial allosteric α-amylase-activated PQQ-dependent glucose dehydrogenase (Amy-GDH). Amy-GDH was covalently immobilized on silica nanoparticles that were then arrayed on fiberglass sheets. The activity of the biosensor was monitored using a smartphone camera via emergence of bright fluorescence (λex 365 nm) originating from reduced phenazine methosulfate upon glucose oxidation by Amy-GDH. We show that such biosensor arrays demonstrate an apparent Kd of 115 pM for α-amylase with a detection limit of 2 pM. Using the developed biosensor arrays, we were able to specifically and accurately quantify the concentration of α-amylase in biological fluids such as serum and saliva. We propose that the presented approach can enable construction of ultrasensitive point-of-care diagnostic arrays.
Collapse
|
7
|
Arcadio F, Seggio M, Zeni L, Bossi AM, Cennamo N. Estradiol Detection for Aquaculture Exploiting Plasmonic Spoon-Shaped Biosensors. BIOSENSORS 2023; 13:bios13040432. [PMID: 37185507 PMCID: PMC10136336 DOI: 10.3390/bios13040432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 03/25/2023] [Accepted: 03/27/2023] [Indexed: 05/17/2023]
Abstract
In this work, a surface plasmon resonance (SPR) biosensor based on a spoon-shaped waveguide combined with an estrogen receptor (ERα) was developed and characterized for the detection and the quantification of estradiol in real water samples. The fabrication process for realizing the SPR platform required a single step consisting of metal deposition on the surface of a polystyrene spoon-shaped waveguide featuring a built-in measuring cell. The biosensor was achieved by functionalizing the bowl sensitive surface with a specific estrogen receptor (ERα) that was able to bind the estradiol. In a first phase, the biosensor tests were performed in a phosphate buffer solution obtaining a limit of detection (LOD) equal to 0.1 pM. Then, in order to evaluate the biosensor's response in different real matrices related to aquaculture, its performances were examined in seawater and freshwater. The experimental results support the possibility of using the ERα-based biosensor for the screening of estradiol in both matrices.
Collapse
Affiliation(s)
- Francesco Arcadio
- Department of Engineering, University of Campania Luigi Vanvitelli, Via Roma 29, 81031 Aversa, Italy
| | - Mimimorena Seggio
- Department of Biotechnology, University of Verona, Strada Le Grazie 15, 37134 Verona, Italy
| | - Luigi Zeni
- Department of Engineering, University of Campania Luigi Vanvitelli, Via Roma 29, 81031 Aversa, Italy
| | - Alessandra Maria Bossi
- Department of Biotechnology, University of Verona, Strada Le Grazie 15, 37134 Verona, Italy
| | - Nunzio Cennamo
- Department of Engineering, University of Campania Luigi Vanvitelli, Via Roma 29, 81031 Aversa, Italy
| |
Collapse
|
8
|
Minardo A, Bernini R, Berruti GM, Breglio G, Bruno FA, Buontempo S, Campopiano S, Catalano E, Consales M, Coscetta A, Cusano A, Cutolo MA, Di Palma P, Esposito F, Fienga F, Giordano M, Iele A, Iadicicco A, Irace A, Janneh M, Laudati A, Leone M, Maresca L, Marrazzo VR, Pisco M, Quero G, Riccio M, Srivastava A, Vaiano P, Zeni L, Cutolo A. Innovative Photonic Sensors for Safety and Security, Part I: Fundamentals, Infrastructural and Ground Transportations. SENSORS (BASEL, SWITZERLAND) 2023; 23:2558. [PMID: 36904762 PMCID: PMC10007142 DOI: 10.3390/s23052558] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 02/14/2023] [Accepted: 02/21/2023] [Indexed: 06/18/2023]
Abstract
Our group, involving researchers from different universities in Campania, Italy, has been working for the last twenty years in the field of photonic sensors for safety and security in healthcare, industrial and environment applications. This is the first in a series of three companion papers. In this paper, we introduce the main concepts of the technologies employed for the realization of our photonic sensors. Then, we review our main results concerning the innovative applications for infrastructural and transportation monitoring.
Collapse
Affiliation(s)
- Aldo Minardo
- Dipartimento di Ingegneria, Università della Campania Luigi Vanvitelli, Via Roma 29, 81031 Aversa, Italy
| | - Romeo Bernini
- Istituto per il Rilevamento Elettromagnetico dell’Ambiente, Consiglio Nazionale delle Ricerche, Via Diocleziano 328, 81024 Napoli, Italy
| | - Gaia Maria Berruti
- Dipartimento di Ingegneria, Università degli Studi del Sannio, Corso Garibaldi 107, Palazzo Bosco Lucarelli, 82100 Benevento, Italy
| | - Giovanni Breglio
- Dipartimento di Ingegneria Elettrica e delle Tecnologie dell’Informazione, Università degli Studi di Napoli Federico II, Via Claudio 21, 80125 Napoli, Italy
| | - Francesco Antonio Bruno
- Dipartimento di Ingegneria, Università degli Studi del Sannio, Corso Garibaldi 107, Palazzo Bosco Lucarelli, 82100 Benevento, Italy
| | - Salvatore Buontempo
- National Institute for Nuclear Physics (INFN), 80125 Napoli, Italy
- European Organization for Nuclear Research (CERN), CH-1211 Geneva, Switzerland
| | - Stefania Campopiano
- Dipartimento di Ingegneria, Università degli Studi di Napoli Parthenope, Centro Direzionale Isola C4, 80143 Napoli, Italy
| | - Ester Catalano
- Dipartimento di Ingegneria, Università della Campania Luigi Vanvitelli, Via Roma 29, 81031 Aversa, Italy
- Optosensing Ltd., Via Carlo de Marco 69, 80137 Napoli, Italy
| | - Marco Consales
- Dipartimento di Ingegneria, Università degli Studi del Sannio, Corso Garibaldi 107, Palazzo Bosco Lucarelli, 82100 Benevento, Italy
| | - Agnese Coscetta
- Dipartimento di Ingegneria, Università della Campania Luigi Vanvitelli, Via Roma 29, 81031 Aversa, Italy
| | - Andrea Cusano
- Dipartimento di Ingegneria, Università degli Studi del Sannio, Corso Garibaldi 107, Palazzo Bosco Lucarelli, 82100 Benevento, Italy
| | - Maria Alessandra Cutolo
- Dipartimento di Ingegneria Elettrica e delle Tecnologie dell’Informazione, Università degli Studi di Napoli Federico II, Via Claudio 21, 80125 Napoli, Italy
| | - Pasquale Di Palma
- Dipartimento di Ingegneria, Università degli Studi di Napoli Parthenope, Centro Direzionale Isola C4, 80143 Napoli, Italy
| | - Flavio Esposito
- Dipartimento di Ingegneria, Università degli Studi di Napoli Parthenope, Centro Direzionale Isola C4, 80143 Napoli, Italy
| | - Francesco Fienga
- Dipartimento di Ingegneria Elettrica e delle Tecnologie dell’Informazione, Università degli Studi di Napoli Federico II, Via Claudio 21, 80125 Napoli, Italy
| | - Michele Giordano
- Istituto per i Polimeri, Compositi e Biomateriali Consiglio Nazionale delle Ricerche via Enrico Fermi 1, 80055 Portici, Italy
| | - Antonio Iele
- CERICT SCARL, CNOS Center, Viale Traiano, Palazzo ex Poste, 82100 Benevento, Italy
| | - Agostino Iadicicco
- Dipartimento di Ingegneria, Università degli Studi di Napoli Parthenope, Centro Direzionale Isola C4, 80143 Napoli, Italy
| | - Andrea Irace
- Dipartimento di Ingegneria Elettrica e delle Tecnologie dell’Informazione, Università degli Studi di Napoli Federico II, Via Claudio 21, 80125 Napoli, Italy
| | - Mohammed Janneh
- CERICT SCARL, CNOS Center, Viale Traiano, Palazzo ex Poste, 82100 Benevento, Italy
| | | | - Marco Leone
- Dipartimento di Ingegneria, Università degli Studi del Sannio, Corso Garibaldi 107, Palazzo Bosco Lucarelli, 82100 Benevento, Italy
| | - Luca Maresca
- Dipartimento di Ingegneria Elettrica e delle Tecnologie dell’Informazione, Università degli Studi di Napoli Federico II, Via Claudio 21, 80125 Napoli, Italy
| | - Vincenzo Romano Marrazzo
- Dipartimento di Ingegneria Elettrica e delle Tecnologie dell’Informazione, Università degli Studi di Napoli Federico II, Via Claudio 21, 80125 Napoli, Italy
| | - Marco Pisco
- Dipartimento di Ingegneria, Università degli Studi del Sannio, Corso Garibaldi 107, Palazzo Bosco Lucarelli, 82100 Benevento, Italy
| | - Giuseppe Quero
- Dipartimento di Ingegneria, Università degli Studi del Sannio, Corso Garibaldi 107, Palazzo Bosco Lucarelli, 82100 Benevento, Italy
| | - Michele Riccio
- Dipartimento di Ingegneria Elettrica e delle Tecnologie dell’Informazione, Università degli Studi di Napoli Federico II, Via Claudio 21, 80125 Napoli, Italy
| | - Anubhav Srivastava
- Dipartimento di Ingegneria, Università degli Studi di Napoli Parthenope, Centro Direzionale Isola C4, 80143 Napoli, Italy
| | - Patrizio Vaiano
- Dipartimento di Ingegneria, Università degli Studi del Sannio, Corso Garibaldi 107, Palazzo Bosco Lucarelli, 82100 Benevento, Italy
| | - Luigi Zeni
- Dipartimento di Ingegneria, Università della Campania Luigi Vanvitelli, Via Roma 29, 81031 Aversa, Italy
- Optosensing Ltd., Via Carlo de Marco 69, 80137 Napoli, Italy
| | - Antonello Cutolo
- Dipartimento di Ingegneria Elettrica e delle Tecnologie dell’Informazione, Università degli Studi di Napoli Federico II, Via Claudio 21, 80125 Napoli, Italy
| |
Collapse
|
9
|
Cennamo N, Arcadio F, Seggio M, Maniglio D, Zeni L, Bossi AM. Spoon-shaped polymer waveguides to excite multiple plasmonic phenomena: A multisensor based on antibody and molecularly imprinted nanoparticles to detect albumin concentrations over eight orders of magnitude. Biosens Bioelectron 2022; 217:114707. [PMID: 36116224 DOI: 10.1016/j.bios.2022.114707] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 08/13/2022] [Accepted: 09/06/2022] [Indexed: 11/18/2022]
Abstract
A polymeric multimode waveguide, characterized by a pioneering spoon-shaped geometry, was herein proposed for the first time to devise Surface Plasmon Resonance (SPR) biochemical sensors. The plasmon excitation was enabled by layering a gold nanofilm of ∼60 nm onto the spoon-waveguide. As a consequence of the waveguide's extra-ordinary geometry, two distinct sensing regions were identified: a planar one, located on the spoon's neck, and a concave one on the bowl, with angled surfaces. The bulk sensitivity (Sn) is correlated both to the way the light was launched in/collected from the sensor (parallel or orthogonal to the main axis of the waveguide) and to the sensing area interrogated (planar-neck or angled-bowl), indicating that the sensor's performance can be conveniently tuned, depending on the chosen measuring configuration. The SPR sensor's characterization showed Sn equal to 750 nm/RIU for the neck and to 950 nm/RIU for the bowl. To further inspect the peculiar sensing-features and assess the application niches, the spoon-shaped waveguide was functionalized with two kinds of receptors, both specific for human serum albumin (HSA): an antibody on the bowl region (high Sn); molecularly imprinted nanoparticles (nanoMIPs) on the neck region (low Sn). The experimental results showed a limit of detection (LOD) for the immune-sensor of 280 pM and an LOD for the nanoMIP-sensor of 4.16 fM. The overall response of the HSA multi-sensor encompassed eight orders of magnitude, suggesting that the spoon-shaped waveguide's provides multi-scale detection and holds potential to devise multi-analyte sensing platforms.
Collapse
Affiliation(s)
- Nunzio Cennamo
- University of Campania Luigi Vanvitelli, Department of Engineering, Via Roma 29, 81031, Aversa, Italy
| | - Francesco Arcadio
- University of Campania Luigi Vanvitelli, Department of Engineering, Via Roma 29, 81031, Aversa, Italy
| | - Mimimorena Seggio
- University of Verona, Department of Biotechnology, Strada Le Grazie 15, 37134, Verona, Italy
| | - Devid Maniglio
- University of Trento, Department of Industrial Engineering, Via Sommarive 9, 38123, Trento, Italy
| | - Luigi Zeni
- University of Campania Luigi Vanvitelli, Department of Engineering, Via Roma 29, 81031, Aversa, Italy
| | - Alessandra Maria Bossi
- University of Verona, Department of Biotechnology, Strada Le Grazie 15, 37134, Verona, Italy.
| |
Collapse
|
10
|
Leitão C, Pereira SO, Marques C, Cennamo N, Zeni L, Shaimerdenova M, Ayupova T, Tosi D. Cost-Effective Fiber Optic Solutions for Biosensing. BIOSENSORS 2022; 12:575. [PMID: 36004971 PMCID: PMC9405647 DOI: 10.3390/bios12080575] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 07/22/2022] [Accepted: 07/22/2022] [Indexed: 05/13/2023]
Abstract
In the last years, optical fiber sensors have proven to be a reliable and versatile biosensing tool. Optical fiber biosensors (OFBs) are analytical devices that use optical fibers as transducers, with the advantages of being easily coated and biofunctionalized, allowing the monitorization of all functionalization and detection in real-time, as well as being small in size and geometrically flexible, thus allowing device miniaturization and portability for point-of-care (POC) testing. Knowing the potential of such biosensing tools, this paper reviews the reported OFBs which are, at the moment, the most cost-effective. Different fiber configurations are highlighted, namely, end-face reflected, unclad, D- and U-shaped, tips, ball resonators, tapered, light-diffusing, and specialty fibers. Packaging techniques to enhance OFBs' application in the medical field, namely for implementing in subcutaneous, percutaneous, and endoscopic operations as well as in wearable structures, are presented and discussed. Interrogation approaches of OFBs using smartphones' hardware are a great way to obtain cost-effective sensing approaches. In this review paper, different architectures of such interrogation methods and their respective applications are presented. Finally, the application of OFBs in monitoring three crucial fields of human life and wellbeing are reported: detection of cancer biomarkers, detection of cardiovascular biomarkers, and environmental monitoring.
Collapse
Affiliation(s)
- Cátia Leitão
- i3N, Department of Physics, University of Aveiro, 3810-193 Aveiro, Portugal; (S.O.P.); (C.M.)
| | - Sónia O. Pereira
- i3N, Department of Physics, University of Aveiro, 3810-193 Aveiro, Portugal; (S.O.P.); (C.M.)
| | - Carlos Marques
- i3N, Department of Physics, University of Aveiro, 3810-193 Aveiro, Portugal; (S.O.P.); (C.M.)
| | - Nunzio Cennamo
- Department of Engineering, University of Campania Luigi Vanvitelli, Via Roma 29, 81031 Aversa, Italy; (N.C.); (L.Z.)
| | - Luigi Zeni
- Department of Engineering, University of Campania Luigi Vanvitelli, Via Roma 29, 81031 Aversa, Italy; (N.C.); (L.Z.)
| | - Madina Shaimerdenova
- School of Engineering and Digital Sciences, Nazarbayev University, Nur-Sultan 010000, Kazakhstan; (M.S.); (T.A.)
| | - Takhmina Ayupova
- School of Engineering and Digital Sciences, Nazarbayev University, Nur-Sultan 010000, Kazakhstan; (M.S.); (T.A.)
| | - Daniele Tosi
- School of Engineering and Digital Sciences, Nazarbayev University, Nur-Sultan 010000, Kazakhstan; (M.S.); (T.A.)
- Laboratory of Biosensors and Bioinstruments, National Laboratory Astana, Nur-Sultan 010000, Kazakhstan
| |
Collapse
|
11
|
Loyez M, DeRosa MC, Caucheteur C, Wattiez R. Overview and emerging trends in optical fiber aptasensing. Biosens Bioelectron 2022; 196:113694. [PMID: 34637994 DOI: 10.1016/j.bios.2021.113694] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 09/30/2021] [Accepted: 10/01/2021] [Indexed: 12/16/2022]
Abstract
Optical fiber biosensors have attracted growing interest over the last decade and quickly became a key enabling technology, especially for the detection of biomarkers at extremely low concentrations and in small volumes. Among the many and recent fiber-optic sensing amenities, aptamers-based sensors have shown unequalled performances in terms of ease of production, specificity, and sensitivity. The immobilization of small and highly stable bioreceptors such as DNA has bolstered their use for the most varied applications e.g., medical diagnosis, food safety and environmental monitoring. This review highlights the recent advances in aptamer-based optical fiber biosensors. An in-depth analysis of the literature summarizes different fiber-optic structures and biochemical strategies for molecular detection and immobilization of receptors over diverse surfaces. In this review, we analyze the features offered by those sensors and discuss about the next challenges to be addressed. This overview investigates both biochemical and optical parameters, drawing the guiding lines for forthcoming innovations and prospects in this ever-growing field of research.
Collapse
Affiliation(s)
- Médéric Loyez
- Proteomics and Microbiology Department, University of Mons, Avenue du Champ de Mars 6, 7000, Mons, Belgium; Electromagnetism and Telecommunication Department, University of Mons, Bld. Dolez 31, 7000, Mons, Belgium.
| | - Maria C DeRosa
- Department of Chemistry, 203 Steacie Building, Carleton University, 1125, Colonel By Drive, Ottawa, ON K1S 5B6, Canada
| | - Christophe Caucheteur
- Electromagnetism and Telecommunication Department, University of Mons, Bld. Dolez 31, 7000, Mons, Belgium
| | - Ruddy Wattiez
- Proteomics and Microbiology Department, University of Mons, Avenue du Champ de Mars 6, 7000, Mons, Belgium
| |
Collapse
|
12
|
Vestri A, Rippa M, Marchesano V, Sagnelli D, Margheri G, Zhou J, Petti L. LSPR immuno-sensing based on iso-Y nanopillars for highly sensitive and specific imidacloprid detection. J Mater Chem B 2021; 9:9153-9161. [PMID: 34694310 DOI: 10.1039/d1tb01344k] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Imidacloprid is the most widely used insecticide in agriculture and its intensive use over the last 30 years has caused a global concern due to its potentially toxic effects on the ecosystem. Considering the recent scientific interest in novel simple methods for imidacloprid analysis, we propose a label-free sensitive and specific localised surface plasmon resonance system for the detection of the insecticide based on 2D nanostructured metasurfaces with highly performing plasmonic properties. The specificity of the sensor proposed was achieved by covalent bio-functionalization of the metasurface using a smart and easy one-step procedure mediated by carbon disulphide. The biosensor produced was tested using a set of imidacloprid standard solutions showing a competitive limit of detection, lower than 1 ng mL-1. Our novel nanosensing configuration represents a valid and reliable solution to realize low-cost portable POC tests as an alternative to the laborious and expensive methods traditionally used for insecticide detection.
Collapse
Affiliation(s)
- Ambra Vestri
- Institute of Applied Sciences and Intelligent Systems "E. Caianiello" of CNR, Pozzuoli 80072, Italy.
| | - Massimo Rippa
- Institute of Applied Sciences and Intelligent Systems "E. Caianiello" of CNR, Pozzuoli 80072, Italy.
| | - Valentina Marchesano
- Institute of Applied Sciences and Intelligent Systems "E. Caianiello" of CNR, Pozzuoli 80072, Italy.
| | - Domenico Sagnelli
- Institute of Applied Sciences and Intelligent Systems "E. Caianiello" of CNR, Pozzuoli 80072, Italy.
| | | | - Jun Zhou
- Institute of Photonics, Faculty of Science, Ningbo University, Ningbo, People's Republic of China
| | - Lucia Petti
- Institute of Applied Sciences and Intelligent Systems "E. Caianiello" of CNR, Pozzuoli 80072, Italy.
| |
Collapse
|