1
|
Yanagisawa N, Yao B, Zhang J, Nishizaki Y, Kasai T. Comparative analysis of heart rate variability indices from ballistocardiogram and electrocardiogram: a study on measurement agreement. Heart Vessels 2024:10.1007/s00380-024-02506-2. [PMID: 39672926 DOI: 10.1007/s00380-024-02506-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Accepted: 12/04/2024] [Indexed: 12/15/2024]
Abstract
Ballistocardiogram (BCG) captures minute vibrations generated by heart movements. These vibrations are converted into heart rate variability (HRV) indices, allowing their unobtrusive monitoring over extended periods, while reducing the burden on patients or subjects. In this study, to evaluate the agreement between the HRV indices, we compared the HRV indices estimated from the BCG device with those obtained from the gold standard electrocardiogram (ECG). Twenty-five healthy volunteers (mean age: 40.6 ± 12.8 years; 14 males and 11 females) rested in the supine position on a bed with a BCG device placed under a pillow while ECG electrodes were attached. BCG and ECG measurements were simultaneously recorded for 20 min. Five min of time-series data for the JJ and RR intervals obtained from BCG and ECG were converted into HRV indices. These indices included the time-domain measures (mean inter-beat intervals [IBIs], standard deviation of normal-to-normal intervals [SDNN], root mean square of successive differences [RMSSD], and percent of difference between adjacent normal RR intervals greater than 50 ms [pNN50]) and frequency-domain measures (normalized low-frequency [LF], high-frequency power [HF], and LF/HF ratio). Of the 25 individuals, data of 22 (mean age: 38.9 ± 12.3 years; 13 males and 9 females) were used to assess the agreement between the two methods, excluding 3 (1 male and 2 females) with frequent premature ventricular contractions observed on ECG. Correlations between measurements were examined using scatter plots and Pearson's product-moment correlation coefficients; in contrast, differences between measurements were evaluated using paired t-tests. The Bland-Altman analysis was used to assess the agreement. For the mean IBIs, the correlation coefficient was 0.999 (p < 0.001), and the limits of agreement ranged from - 8.35 to 11.70, with no evidence of fixed bias (p = 0.139) or proportional bias (p = 0.402), indicating excellent agreement. In contrast, the correlation coefficients for SDNN, RMSSD, and pNN50 were 0.931 (p < 0.001), 0.923 (p < 0.001), and 0.964 (p < 0.001), respectively, showing high correlations. However, a fixed bias was observed in RMSSD (p = 0.007) and pNN50 (p = 0.010), and a proportional bias in SDNN (p = 0.002). The correlation coefficients for LF, HF, and LF/HF ratio were approximately 0.7, indicating lower agreement owing to observed fixed and proportional biases. These results indicate that, while the degree of agreement varies among HRV indices, the JJ intervals measured from BCG can be used as a suitable alternative to the RR intervals from ECG.
Collapse
Affiliation(s)
- Naotake Yanagisawa
- Medical Technology Innovation Center, Juntendo University, 2-1-1, Hongo, Bunkyo-ku, Tokyo, 113-8421, Japan.
| | - Bingwei Yao
- E3 Enterprise, 32nd Floor, Shinjuku Nomura Building, 1-26-2 Nishishinjuku, Shinjuku-ku, Tokyo, 160-0023, Japan
| | - Jianting Zhang
- Zhejiang Huiyang Technology, 5th Floor, Building 8, Science and Technology Park, No. 1088 Zhongxing North Road, Mogan Mountain Economic Development Zone, Huzhou, 313200, Zhejiang Province , China
| | - Yuji Nishizaki
- Division of Medical Education, Juntendo University School of Medicine, 2-1-1, Hongo, Bunkyo-ku, Tokyo, 113-8421, Japan
| | - Takatoshi Kasai
- Department of Cardiovascular Biology and Medicine, Juntendo University Graduate School of Medicine, 2-1-1, Hongo, Bunkyo-ku, Tokyo, 113-8421, Japan
| |
Collapse
|
2
|
Choo YJ, Lee GW, Moon JS, Chang MC. Application of non-contact sensors for health monitoring in hospitals: a narrative review. Front Med (Lausanne) 2024; 11:1421901. [PMID: 38933102 PMCID: PMC11199382 DOI: 10.3389/fmed.2024.1421901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 05/31/2024] [Indexed: 06/28/2024] Open
Abstract
The continuous monitoring of the health status of patients is essential for the effective monitoring of disease progression and the management of symptoms. Recently, health monitoring using non-contact sensors has gained interest. Therefore, this study aimed to investigate the use of non-contact sensors for health monitoring in hospital settings and evaluate their potential clinical applications. A comprehensive literature search was conducted using PubMed to identify relevant studies published up to February 26, 2024. The search terms included "hospital," "monitoring," "sensor," and "non-contact." Studies that used non-contact sensors to monitor health status in hospital settings were included in this review. Of the 38 search results, five studies met the inclusion criteria. The non-contact sensors described in the studies were radar, infrared, and microwave sensors. These non-contact sensors were used to obtain vital signs, such as respiratory rate, heart rate, and body temperature, and were then compared with the results from conventional measurement methods (polysomnography, nursing records, and electrocardiography). In all the included studies, non-contact sensors demonstrated a performance similar to that of conventional health-related parameter measurement methods. Non-contact sensors are expected to be a promising solution for health monitoring in hospital settings.
Collapse
Affiliation(s)
- Yoo Jin Choo
- Department of Physical Medicine and Rehabilitation, College of Medicine, Yeungnam University, Daegu, Republic of Korea
| | - Gun Woo Lee
- Department of Orthopaedic Surgery, College of Medicine, Yeungnam University, Daegu, Republic of Korea
| | - Jun Sung Moon
- Division of Endocrinology and Metabolism, Department of Internal Medicine, College of Medicine, Yeungnam University, Daegu, Republic of Korea
| | - Min Cheol Chang
- Department of Physical Medicine and Rehabilitation, College of Medicine, Yeungnam University, Daegu, Republic of Korea
| |
Collapse
|
3
|
Neri L, Corazza I, Oberdier MT, Lago J, Gallelli I, Cicero AFG, Diemberger I, Orro A, Beker A, Paolocci N, Halperin HR, Borghi C. Comparison Between a Single-Lead ECG Garment Device and a Holter Monitor: A Signal Quality Assessment. J Med Syst 2024; 48:57. [PMID: 38801649 PMCID: PMC11129969 DOI: 10.1007/s10916-024-02077-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 05/16/2024] [Indexed: 05/29/2024]
Abstract
Wearable electronics are increasingly common and useful as health monitoring devices, many of which feature the ability to record a single-lead electrocardiogram (ECG). However, recording the ECG commonly requires the user to touch the device to complete the lead circuit, which prevents continuous data acquisition. An alternative approach to enable continuous monitoring without user initiation is to embed the leads in a garment. This study assessed ECG data obtained from the YouCare device (a novel sensorized garment) via comparison with a conventional Holter monitor. A cohort of thirty patients (age range: 20-82 years; 16 females and 14 males) were enrolled and monitored for twenty-four hours with both the YouCare device and a Holter monitor. ECG data from both devices were qualitatively assessed by a panel of three expert cardiologists and quantitatively analyzed using specialized software. Patients also responded to a survey about the comfort of the YouCare device as compared to the Holter monitor. The YouCare device was assessed to have 70% of its ECG signals as "Good", 12% as "Acceptable", and 18% as "Not Readable". The R-wave, independently recorded by the YouCare device and Holter monitor, were synchronized within measurement error during 99.4% of cardiac cycles. In addition, patients found the YouCare device more comfortable than the Holter monitor (comfortable 22 vs. 5 and uncomfortable 1 vs. 18, respectively). Therefore, the quality of ECG data collected from the garment-based device was comparable to a Holter monitor when the signal was sufficiently acquired, and the garment was also comfortable.
Collapse
Affiliation(s)
- Luca Neri
- Department of Medicine, Division of Cardiology, Johns Hopkins University, 1721 East Madison Street Traylor Hall 901, Baltimore, MD, 21205, USA
- Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
| | - Ivan Corazza
- Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
| | - Matt T Oberdier
- Department of Medicine, Division of Cardiology, Johns Hopkins University, 1721 East Madison Street Traylor Hall 901, Baltimore, MD, 21205, USA
| | - Jessica Lago
- Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
| | - Ilaria Gallelli
- Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
| | - Arrigo F G Cicero
- Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
- Cardiovascular Medicine Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Igor Diemberger
- Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
- Cardiology Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Alessandro Orro
- Institute for Biomedical Technologies, National Research Council (ITB-CNR), Segrate, Italy
| | | | - Nazareno Paolocci
- Department of Medicine, Division of Cardiology, Johns Hopkins University, 1721 East Madison Street Traylor Hall 901, Baltimore, MD, 21205, USA
- Department of Biomedical Sciences, University of Padova, Padova, Italy
| | - Henry R Halperin
- Department of Medicine, Division of Cardiology, Johns Hopkins University, 1721 East Madison Street Traylor Hall 901, Baltimore, MD, 21205, USA
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA
- Department of Radiology, Johns Hopkins University, Baltimore, MD, USA
| | - Claudio Borghi
- Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy.
- Cardiovascular Medicine Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy.
| |
Collapse
|
4
|
Yang K, McErlain-Naylor SA, Isaia B, Callaway A, Beeby S. E-Textiles for Sports and Fitness Sensing: Current State, Challenges, and Future Opportunities. SENSORS (BASEL, SWITZERLAND) 2024; 24:1058. [PMID: 38400216 PMCID: PMC10893116 DOI: 10.3390/s24041058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 01/23/2024] [Accepted: 01/30/2024] [Indexed: 02/25/2024]
Abstract
E-textiles have emerged as a fast-growing area in wearable technology for sports and fitness due to the soft and comfortable nature of textile materials and the capability for smart functionality to be integrated into familiar sports clothing. This review paper presents the roles of wearable technologies in sport and fitness in monitoring movement and biosignals used to assess performance, reduce injury risk, and motivate training/exercise. The drivers of research in e-textiles are discussed after reviewing existing non-textile and textile-based commercial wearable products. Different sensing components/materials (e.g., inertial measurement units, electrodes for biosignals, piezoresistive sensors), manufacturing processes, and their applications in sports and fitness published in the literature were reviewed and discussed. Finally, the paper presents the current challenges of e-textiles to achieve practical applications at scale and future perspectives in e-textiles research and development.
Collapse
Affiliation(s)
- Kai Yang
- Winchester School of Art, University of Southampton, Southampton SO23 8DL, UK;
| | | | - Beckie Isaia
- Centre for Flexible Electronics and E-Textiles (C-FLEET), School of Electronics and Computer Science, University of Southampton, Southampton SO17 1BJ, UK;
| | - Andrew Callaway
- Department of Rehabilitation and Sport Sciences, Bournemouth University, Bournemouth BH12 5BB, UK;
| | - Steve Beeby
- Centre for Flexible Electronics and E-Textiles (C-FLEET), School of Electronics and Computer Science, University of Southampton, Southampton SO17 1BJ, UK;
| |
Collapse
|
5
|
Kim J, Lee SJ, Ko B, Lee M, Lee YS, Lee KH. Identification of Atrial Fibrillation With Single-Lead Mobile ECG During Normal Sinus Rhythm Using Deep Learning. J Korean Med Sci 2024; 39:e56. [PMID: 38317452 PMCID: PMC10843976 DOI: 10.3346/jkms.2024.39.e56] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 12/04/2023] [Indexed: 02/07/2024] Open
Abstract
BACKGROUND The acquisition of single-lead electrocardiogram (ECG) from mobile devices offers a more practical approach to arrhythmia detection. Using artificial intelligence for atrial fibrillation (AF) identification enhances screening efficiency. However, the potential of single-lead ECG for AF identification during normal sinus rhythm (NSR) remains under-explored. This study introduces a method to identify AF using single-lead mobile ECG during NSR. METHODS We employed three deep learning models: recurrent neural network (RNN), long short-term memory (LSTM), and residual neural networks (ResNet50). From a dataset comprising 13,509 ECGs from 6,719 patients, 10,287 NSR ECGs from 5,170 patients were selected. Single-lead mobile ECGs underwent noise filtering and segmentation into 10-second intervals. A random under-sampling was applied to reduce bias from data imbalance. The final analysis involved 31,767 ECG segments, including 15,157 labeled as masked AF and 16,610 as Healthy. RESULTS ResNet50 outperformed the other models, achieving a recall of 79.3%, precision of 65.8%, F1-score of 71.9%, accuracy of 70.5%, and an area under the receiver operating characteristic curve (AUC) of 0.79 in identifying AF from NSR ECGs. Comparative performance scores for RNN and LSTM were 0.75 and 0.74, respectively. In an external validation set, ResNet50 attained an F1-score of 64.1%, recall of 68.9%, precision of 60.0%, accuracy of 63.4%, and AUC of 0.68. CONCLUSION The deep learning model using single-lead mobile ECG during NSR effectively identified AF at risk in future. However, further research is needed to enhance the performance of deep learning models for clinical application.
Collapse
Affiliation(s)
- Jiwoong Kim
- Department of Mathematics and Statistics, Chonnam National University, Gwangju, Korea
- Department of Cardiovascular Medicine, Chonnam National University Hospital, Gwangju, Korea
| | | | - Bonggyun Ko
- Department of Mathematics and Statistics, Chonnam National University, Gwangju, Korea
- XRAI, Gwangju, Korea
| | - Myungeun Lee
- Department of Cardiovascular Medicine, Chonnam National University Hospital, Gwangju, Korea
- Department of Internal Medicine, Chonnam National University Medical School, Gwangju, Korea
| | | | - Ki Hong Lee
- Department of Cardiovascular Medicine, Chonnam National University Hospital, Gwangju, Korea
- Department of Internal Medicine, Chonnam National University Medical School, Gwangju, Korea.
| |
Collapse
|
6
|
Cheon SI, Choi H, Kang H, Suh JH, Park S, Kweon SJ, Je M, Ha S. Impedance-Readout Integrated Circuits for Electrical Impedance Spectroscopy: Methodological Review. IEEE TRANSACTIONS ON BIOMEDICAL CIRCUITS AND SYSTEMS 2024; 18:215-232. [PMID: 37751341 DOI: 10.1109/tbcas.2023.3319212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/28/2023]
Abstract
This review article provides a comprehensive overview of impedance-readout integrated circuits (ICs) for electrical impedance spectroscopy (EIS) applications. The readout IC, a crucial component of on-chip EIS systems, significantly affects key performance metrics of the entire system, such as frequency range, power consumption, accuracy, detection range, and throughput. With the growing demand for portable, wearable, and implantable EIS systems in the Internet-of-Things (IoT) era, achieving high energy efficiency while maintaining a wide frequency range, high accuracy, wide dynamic range, and high throughput has become a focus of research. Furthermore, to enhance the miniaturization and convenience of EIS systems, many emerging systems utilize two-electrode or dry electrode configurations instead of the conventional four-electrode configuration with wet electrodes for impedance measurement. In response to these trends, various technologies have been developed to ensure reliable operations even at two- or dry-electrode interfaces. This article reviews the principles, advantages, and disadvantages of techniques employed in state-of-the-art impedance-readout ICs, aiming to achieve high energy efficiency, wide frequency range, high accuracy, wide dynamic range, low noise, high throughput, and/or high input impedance. The thorough review of these advancements will provide valuable insights into the future development of impedance-readout ICs and systems for IoT and biomedical applications.
Collapse
|
7
|
Webber M, Joy G, Bennett J, Chan F, Falconer D, Shiwani H, Davies RH, Krausz G, Tanackovic S, Guger C, Gonzalez P, Martin E, Wong A, Rapala A, Direk K, Kellman P, Pierce I, Rudy Y, Vijayakumar R, Chaturvedi N, Hughes AD, Moon JC, Lambiase PD, Tao X, Koncar V, Orini M, Captur G. Technical development and feasibility of a reusable vest to integrate cardiovascular magnetic resonance with electrocardiographic imaging. J Cardiovasc Magn Reson 2023; 25:73. [PMID: 38044439 PMCID: PMC10694972 DOI: 10.1186/s12968-023-00980-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 11/12/2023] [Indexed: 12/05/2023] Open
Abstract
BACKGROUND Electrocardiographic imaging (ECGI) generates electrophysiological (EP) biomarkers while cardiovascular magnetic resonance (CMR) imaging provides data about myocardial structure, function and tissue substrate. Combining this information in one examination is desirable but requires an affordable, reusable, and high-throughput solution. We therefore developed the CMR-ECGI vest and carried out this technical development study to assess its feasibility and repeatability in vivo. METHODS CMR was prospectively performed at 3T on participants after collecting surface potentials using the locally designed and fabricated 256-lead ECGI vest. Epicardial maps were reconstructed to generate local EP parameters such as activation time (AT), repolarization time (RT) and activation recovery intervals (ARI). 20 intra- and inter-observer and 8 scan re-scan repeatability tests. RESULTS 77 participants were recruited: 27 young healthy volunteers (HV, 38.9 ± 8.5 years, 35% male) and 50 older persons (77.0 ± 0.1 years, 52% male). CMR-ECGI was achieved in all participants using the same reusable, washable vest without complications. Intra- and inter-observer variability was low (correlation coefficients [rs] across unipolar electrograms = 0.99 and 0.98 respectively) and scan re-scan repeatability was high (rs between 0.81 and 0.93). Compared to young HV, older persons had significantly longer RT (296.8 vs 289.3 ms, p = 0.002), ARI (249.8 vs 235.1 ms, p = 0.002) and local gradients of AT, RT and ARI (0.40 vs 0.34 ms/mm, p = 0,01; 0.92 vs 0.77 ms/mm, p = 0.03; and 1.12 vs 0.92 ms/mm, p = 0.01 respectively). CONCLUSION Our high-throughput CMR-ECGI solution is feasible and shows good reproducibility in younger and older participants. This new technology is now scalable for high throughput research to provide novel insights into arrhythmogenesis and potentially pave the way for more personalised risk stratification. CLINICAL TRIAL REGISTRATION Title: Multimorbidity Life-Course Approach to Myocardial Health-A Cardiac Sub-Study of the MRC National Survey of Health and Development (NSHD) (MyoFit46). National Clinical Trials (NCT) number: NCT05455125. URL: https://clinicaltrials.gov/ct2/show/NCT05455125?term=MyoFit&draw=2&rank=1.
Collapse
Affiliation(s)
- Matthew Webber
- Barts Heart Centre, Barts Health NHS Trust, West Smithfield, London, ECIA 7BE, UK
- Institute of Cardiovascular Science, University College London, Huntley Street, London, WC1E 6DD, UK
- Centre for Inherited Heart Muscle Conditions, Department of Cardiology, Royal Free London NHS Foundation Trust, Pond Street, London, NW3 2QG, UK
- Medical Research Council Unit for Lifelong Health and Ageing at UCL, University College London, 1-19 Torrington Place, London, WC1E 7HB, UK
| | - George Joy
- Barts Heart Centre, Barts Health NHS Trust, West Smithfield, London, ECIA 7BE, UK
- Institute of Cardiovascular Science, University College London, Huntley Street, London, WC1E 6DD, UK
| | - Jonathan Bennett
- Barts Heart Centre, Barts Health NHS Trust, West Smithfield, London, ECIA 7BE, UK
- Institute of Cardiovascular Science, University College London, Huntley Street, London, WC1E 6DD, UK
| | - Fiona Chan
- Barts Heart Centre, Barts Health NHS Trust, West Smithfield, London, ECIA 7BE, UK
- Institute of Cardiovascular Science, University College London, Huntley Street, London, WC1E 6DD, UK
| | - Debbie Falconer
- Centre for Inherited Heart Muscle Conditions, Department of Cardiology, Royal Free London NHS Foundation Trust, Pond Street, London, NW3 2QG, UK
| | - Hunain Shiwani
- Barts Heart Centre, Barts Health NHS Trust, West Smithfield, London, ECIA 7BE, UK
- Institute of Cardiovascular Science, University College London, Huntley Street, London, WC1E 6DD, UK
| | - Rhodri H Davies
- Barts Heart Centre, Barts Health NHS Trust, West Smithfield, London, ECIA 7BE, UK
- Institute of Cardiovascular Science, University College London, Huntley Street, London, WC1E 6DD, UK
| | - Gunther Krausz
- g.Tec Medical Engineering GmbH, Siernigtrabe 14, 4521, Schiedlberg, Austria
| | | | - Christoph Guger
- g.Tec Medical Engineering GmbH, Siernigtrabe 14, 4521, Schiedlberg, Austria
| | - Pablo Gonzalez
- ELEM Biotech, S.L, Barcelona, Spain
- Department of Computer Applications in Science and Engineering, Barcelona Supercomputing Center (BSC), 08034, Barcelona, Spain
- Department of Information and Communication Technologies, Physense, Universitat Pempeu Fabra, Barcrlona, Spain
| | - Emma Martin
- Medical Research Council Unit for Lifelong Health and Ageing at UCL, University College London, 1-19 Torrington Place, London, WC1E 7HB, UK
| | - Andrew Wong
- Medical Research Council Unit for Lifelong Health and Ageing at UCL, University College London, 1-19 Torrington Place, London, WC1E 7HB, UK
| | - Alicja Rapala
- Medical Research Council Unit for Lifelong Health and Ageing at UCL, University College London, 1-19 Torrington Place, London, WC1E 7HB, UK
| | - Kenan Direk
- Medical Research Council Unit for Lifelong Health and Ageing at UCL, University College London, 1-19 Torrington Place, London, WC1E 7HB, UK
| | - Peter Kellman
- National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Iain Pierce
- Barts Heart Centre, Barts Health NHS Trust, West Smithfield, London, ECIA 7BE, UK
- Institute of Cardiovascular Science, University College London, Huntley Street, London, WC1E 6DD, UK
- Medical Research Council Unit for Lifelong Health and Ageing at UCL, University College London, 1-19 Torrington Place, London, WC1E 7HB, UK
| | - Yoram Rudy
- Cardiac Bioelectricity and Arrhythmia Center, Washington University, St. Louis, MO, 63130, USA
- Department of Biomedical Engineering, Washington University, St. Louis, MO, 63130, USA
| | - Ramya Vijayakumar
- Cardiac Bioelectricity and Arrhythmia Center, Washington University, St. Louis, MO, 63130, USA
- Department of Biomedical Engineering, Washington University, St. Louis, MO, 63130, USA
| | - Nishi Chaturvedi
- Institute of Cardiovascular Science, University College London, Huntley Street, London, WC1E 6DD, UK
- Medical Research Council Unit for Lifelong Health and Ageing at UCL, University College London, 1-19 Torrington Place, London, WC1E 7HB, UK
| | - Alun D Hughes
- Institute of Cardiovascular Science, University College London, Huntley Street, London, WC1E 6DD, UK
- Medical Research Council Unit for Lifelong Health and Ageing at UCL, University College London, 1-19 Torrington Place, London, WC1E 7HB, UK
| | - James C Moon
- Barts Heart Centre, Barts Health NHS Trust, West Smithfield, London, ECIA 7BE, UK
- Institute of Cardiovascular Science, University College London, Huntley Street, London, WC1E 6DD, UK
| | - Pier D Lambiase
- Barts Heart Centre, Barts Health NHS Trust, West Smithfield, London, ECIA 7BE, UK
- Institute of Cardiovascular Science, University College London, Huntley Street, London, WC1E 6DD, UK
| | - Xuyuan Tao
- École Nationale Supérieure des Arts et Industries Textiles, 2 allée Louise et Victor Champier, 59056, Roubaix CEDEX 1, France
| | - Vladan Koncar
- École Nationale Supérieure des Arts et Industries Textiles, 2 allée Louise et Victor Champier, 59056, Roubaix CEDEX 1, France
| | - Michele Orini
- Institute of Cardiovascular Science, University College London, Huntley Street, London, WC1E 6DD, UK
- Medical Research Council Unit for Lifelong Health and Ageing at UCL, University College London, 1-19 Torrington Place, London, WC1E 7HB, UK
| | - Gabriella Captur
- Institute of Cardiovascular Science, University College London, Huntley Street, London, WC1E 6DD, UK.
- Centre for Inherited Heart Muscle Conditions, Department of Cardiology, Royal Free London NHS Foundation Trust, Pond Street, London, NW3 2QG, UK.
- Medical Research Council Unit for Lifelong Health and Ageing at UCL, University College London, 1-19 Torrington Place, London, WC1E 7HB, UK.
| |
Collapse
|
8
|
Hafid A, Gunnarsson E, Ramos A, Rödby K, Abtahi F, Bamidis PD, Billis A, Papachristou P, Seoane F. Sensorized T-Shirt with Intarsia-Knitted Conductive Textile Integrated Interconnections: Performance Assessment of Cardiac Measurements during Daily Living Activities. SENSORS (BASEL, SWITZERLAND) 2023; 23:9208. [PMID: 38005593 PMCID: PMC10675781 DOI: 10.3390/s23229208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Revised: 11/09/2023] [Accepted: 11/14/2023] [Indexed: 11/26/2023]
Abstract
The development of smart wearable solutions for monitoring daily life health status is increasingly popular, with chest straps and wristbands being predominant. This study introduces a novel sensorized T-shirt design with textile electrodes connected via a knitting technique to a Movesense device. We aimed to investigate the impact of stationary and movement actions on electrocardiography (ECG) and heart rate (HR) measurements using our sensorized T-shirt. Various activities of daily living (ADLs), including sitting, standing, walking, and mopping, were evaluated by comparing our T-shirt with a commercial chest strap. Our findings demonstrate measurement equivalence across ADLs, regardless of the sensing approach. By comparing ECG and HR measurements, we gained valuable insights into the influence of physical activity on sensorized T-shirt development for monitoring. Notably, the ECG signals exhibited remarkable similarity between our sensorized T-shirt and the chest strap, with closely aligned HR distributions during both stationary and movement actions. The average mean absolute percentage error was below 3%, affirming the agreement between the two solutions. These findings underscore the robustness and accuracy of our sensorized T-shirt in monitoring ECG and HR during diverse ADLs, emphasizing the significance of considering physical activity in cardiovascular monitoring research and the development of personal health applications.
Collapse
Affiliation(s)
- Abdelakram Hafid
- Textile Materials Technology, Department of Textile Technology, Faculty of Textiles, Engineering and Business Swedish School of Textiles, University of Borås, 503 32 Borås, Sweden; (E.G.); (A.R.); (K.R.); (F.S.)
- School of Innovation, Design and Engineering, Mälardalen University, 722 20 Västerås, Sweden
| | - Emanuel Gunnarsson
- Textile Materials Technology, Department of Textile Technology, Faculty of Textiles, Engineering and Business Swedish School of Textiles, University of Borås, 503 32 Borås, Sweden; (E.G.); (A.R.); (K.R.); (F.S.)
| | - Alberto Ramos
- Textile Materials Technology, Department of Textile Technology, Faculty of Textiles, Engineering and Business Swedish School of Textiles, University of Borås, 503 32 Borås, Sweden; (E.G.); (A.R.); (K.R.); (F.S.)
- UDIT—University of Design, Innovation and Technology, 28016 Madrid, Spain
| | - Kristian Rödby
- Textile Materials Technology, Department of Textile Technology, Faculty of Textiles, Engineering and Business Swedish School of Textiles, University of Borås, 503 32 Borås, Sweden; (E.G.); (A.R.); (K.R.); (F.S.)
| | - Farhad Abtahi
- Institute for Clinical Science, Intervention and Technology, Karolinska Institutet, 141 83 Stockholm, Sweden;
- Department of Medical Care Technology, Karolinska University Hospital, 141 57 Huddinge, Sweden
- Department of Clinical Physiology, Karolinska University Hospital, 141 57 Huddinge, Sweden
| | - Panagiotis D. Bamidis
- Lab of Medical Physics and Digital Innovation, School of Medicine, Aristotle University of Thessaloniki, 541 24 Thessaloniki, Greece; (P.D.B.); (A.B.)
| | - Antonis Billis
- Lab of Medical Physics and Digital Innovation, School of Medicine, Aristotle University of Thessaloniki, 541 24 Thessaloniki, Greece; (P.D.B.); (A.B.)
| | - Panagiotis Papachristou
- Academic Primary Health Care Center, Region Stockholm, 104 31 Stockholm, Sweden;
- Division of Family Medicine and Primary Care, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, 141 83 Stockholm, Sweden
| | - Fernando Seoane
- Textile Materials Technology, Department of Textile Technology, Faculty of Textiles, Engineering and Business Swedish School of Textiles, University of Borås, 503 32 Borås, Sweden; (E.G.); (A.R.); (K.R.); (F.S.)
- Institute for Clinical Science, Intervention and Technology, Karolinska Institutet, 141 83 Stockholm, Sweden;
- Department of Medical Care Technology, Karolinska University Hospital, 141 57 Huddinge, Sweden
- Department of Clinical Physiology, Karolinska University Hospital, 141 57 Huddinge, Sweden
| |
Collapse
|
9
|
Tu H, Li X, Lin X, Lang C, Gao Y. Washable and Flexible Screen-Printed Ag/AgCl Electrode on Textiles for ECG Monitoring. Polymers (Basel) 2023; 15:3665. [PMID: 37765519 PMCID: PMC10538005 DOI: 10.3390/polym15183665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 08/26/2023] [Accepted: 09/01/2023] [Indexed: 09/29/2023] Open
Abstract
Electrocardiogram (ECG) electrodes are important sensors for detecting heart disease whose performance determines the validity and accuracy of the collected original ECG signals. Due to the large drawbacks (e.g., allergy, shelf life) of traditional commercial gel electrodes, textile electrodes receive widespread attention for their excellent comfortability and breathability. This work demonstrated a dry electrode for ECG monitoring fabricated by screen printing silver/silver chloride (Ag/AgCl) conductive ink on ordinary polyester fabric. The results show that the screen-printed textile electrodes have good and stable electrical and electrochemical properties and excellent ECG signal acquisition performance. Furthermore, the resistance of the screen-printed textile electrode is maintained within 0.5 Ω/cm after 5000 bending cycles or 20 washing and drying cycles, exhibiting excellent flexibility and durability. This research provides favorable support for the design and preparation of flexible and wearable electrophysiological sensing platforms.
Collapse
Affiliation(s)
- Huating Tu
- College of Medical Instruments, Shanghai University of Medicine & Health Sciences, Shanghai 201318, China; (H.T.); (X.L.); (X.L.)
- Key Laboratory of Intelligent Textile and Flexible Interconnection of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Xiaoou Li
- College of Medical Instruments, Shanghai University of Medicine & Health Sciences, Shanghai 201318, China; (H.T.); (X.L.); (X.L.)
| | - Xiangde Lin
- College of Medical Instruments, Shanghai University of Medicine & Health Sciences, Shanghai 201318, China; (H.T.); (X.L.); (X.L.)
| | - Chenhong Lang
- Key Laboratory of Intelligent Textile and Flexible Interconnection of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Yang Gao
- School of Mechanical and Power Engineering, East China University of Science and Technology, Shanghai 200237, China
- State Key Laboratory of New Textile Materials and Advanced Processing Technologies, Wuhan Textile University, Wuhan 430200, China
| |
Collapse
|
10
|
Chiang SL, Shen CL, Lee MS, Lin CH, Lin CH. Effectiveness of a 12-week tele-exercise training program on cardiorespiratory fitness and heart rate recovery in patients with cardiometabolic multimorbidity. Worldviews Evid Based Nurs 2023; 20:339-350. [PMID: 36193903 DOI: 10.1111/wvn.12607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 06/24/2022] [Accepted: 07/25/2022] [Indexed: 11/28/2022]
Abstract
BACKGROUND Exercise has positive impacts on cardiometabolic health. However, evidence regarding the effectiveness of tele-exercise training on cardiorespiratory fitness and heart rate recovery in patients with cardiometabolic multimorbidity remains limited. AIMS The aim of this study was to assess whether an assumed increase in physical activity (PA) after a 12-week tele-exercise training program improved cardiorespiratory fitness and heart rate recovery of patients with cardiometabolic multimorbidity. METHODS A parallel-group randomized controlled trial was conducted. Eligible patients with cardiometabolic multimorbidity (n = 83) were randomized 1:1 to either an experimental group (EG, received a 12-week tele-exercise training program with 3 sessions/week and 30 min/session and weekly remote monitoring for maintenance of exercise) or a control group (CG, usual care only). PA, cardiorespiratory fitness, and heart rate recovery were assessed at baseline and 12 weeks. Generalized estimating equations were used to examine the intervention effects via the interaction of time and group. RESULTS Sixty-eight participants (81.9%) completed the study, and 83 were included in the intention-to-treat analysis. The EG with higher vigorous-intensity PA (β = 714, p = .037), walking behavior (β = 750, p = .0007), and total amount of PA (β = 1748, p = .001) after the intervention had significantly elevated cardiorespiratory fitness, including VO2peak (β = 3.9, p = .042), workload (β = 17.9, p = .034), and anaerobic threshold (β = 2.1, p = .041), and increased one-min heart rate recovery (β = 5.3, p = .025), compared with the CG. LINKING EVIDENCE TO ACTION A 12-week tele-exercise training program was effective for increased PA, elevated cardiorespiratory fitness, and improved heart rate recovery for patients with cardiometabolic multimorbidity. These findings highlight the feasibility of better delivering lifestyle interventions for cardiometabolic health management.
Collapse
Affiliation(s)
- Shang-Lin Chiang
- Department of Physical Medicine and Rehabilitation, Tri-Service General Hospital, School of Medicine, National Defense Medical Center, Taipei, Taiwan
| | | | - Meei-Shyuan Lee
- School of Public Health, Graduated Institute of Medical Science, National Defense Medical Center, Taipei, Taiwan
| | - Chueh-Ho Lin
- College of Nursing, Taipei Medical University, Taipei, Taiwan
| | - Chia-Huei Lin
- School of Nursing, National Defense Medical Center, Taipei, Taiwan
- Department of Nursing, Tri-Service General Hospital, Taipei, Taiwan
| |
Collapse
|
11
|
Garg R, Patra NR, Samal S, Babbar S, Parida K. A review on accelerated development of skin-like MXene electrodes: from experimental to machine learning. NANOSCALE 2023; 15:8110-8133. [PMID: 37096943 DOI: 10.1039/d2nr05969j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Foreshadowing future needs has catapulted the progress of skin-like electronic devices for human-machine interactions. These devices possess human skin-like properties such as stretchability, self-healability, transparency, biocompatibility, and wearability. This review highlights the recent progress in a promising material, MXenes, to realize soft, deformable, skin-like electrodes. Various structural designs, fabrication strategies, and rational guidelines adopted to realize MXene-based skin-like electrodes are outlined. We explicitly discussed machine learning-based material informatics to understand and predict the properties of MXenes. Finally, an outlook on the existing challenges and the future roadmap to realize soft skin-like MXene electrodes to facilitate technological advances in the next-generation human-machine interactions has been described.
Collapse
Affiliation(s)
- Romy Garg
- Institute of Nano Science and Technology, Mohali, Punjab, India
| | | | | | - Shubham Babbar
- Institute of Nano Science and Technology, Mohali, Punjab, India
| | | |
Collapse
|
12
|
Zou S, Li D, He C, Wang X, Cheng D, Cai G. Scalable Fabrication of an MXene/Cotton/Spandex Yarn for Intelligent Wearable Applications. ACS APPLIED MATERIALS & INTERFACES 2023; 15:10994-11003. [PMID: 36789744 DOI: 10.1021/acsami.2c18425] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Wearable sensors based on MXene have attracted attention, but the large-scale production of MXene-based textile materials is still a huge challenge. Hereby, we report a facile way of incorporating MXene into the traditional yarn manufacturing process by dipping and drying MXene into cotton rovings followed by fabricating an MXene/cotton/spandex yarn (MCSY) using friction spinning. The MXene in the MCSY brings electrical conductivity to the MCSY with well-preserved mechanical properties. Due to its wide sensing range from 408 Pa to 10.2 kPa, the MCSY can be used to monitor human motions in real time, such as writing, walking, and wrist bending. In addition, the MCSY exhibits a stable compression sensing performance even under different strains. Furthermore, the MCSY can be sewn into clothing or onto a mask as an embroidery pattern to develop sensing device prototypes capable of detecting touching or breathing. The reported manufacturing technology of the MCSY will lead to an industrial-scale development of MXene-based e-textiles for wearable applications.
Collapse
Affiliation(s)
- Sizhuo Zou
- State Key Laboratory of New Textile Materials and Advanced Processing Technologies, Wuhan Textile University, Wuhan 430200, P.R. China
| | - Daiqi Li
- State Key Laboratory of New Textile Materials and Advanced Processing Technologies, Wuhan Textile University, Wuhan 430200, P.R. China
| | - Chengen He
- State Key Laboratory of New Textile Materials and Advanced Processing Technologies, Wuhan Textile University, Wuhan 430200, P.R. China
| | - Xin Wang
- Centre for Materials Innovation and Future Fashion, School of Fashion and Textiles, RMIT University, Brunswick 3056, Australia
| | - Deshan Cheng
- State Key Laboratory of New Textile Materials and Advanced Processing Technologies, Wuhan Textile University, Wuhan 430200, P.R. China
| | - Guangming Cai
- State Key Laboratory of New Textile Materials and Advanced Processing Technologies, Wuhan Textile University, Wuhan 430200, P.R. China
| |
Collapse
|
13
|
Zhang J, Chen M, Peng Y, Li S, Han D, Ren S, Qin K, Li S, Han T, Wang Y, Gao Z. Wearable biosensors for human fatigue diagnosis: A review. Bioeng Transl Med 2023; 8:e10318. [PMID: 36684114 PMCID: PMC9842037 DOI: 10.1002/btm2.10318] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Revised: 03/11/2022] [Accepted: 03/13/2022] [Indexed: 02/01/2023] Open
Abstract
Fatigue causes deleterious effects to physical and mental health of human being and may cause loss of lives. Therefore, the adverse effects of fatigue on individuals and the society are massive. With the ever-increasing frequency of overtraining among modern military and sports personnel, timely, portable and accurate fatigue diagnosis is essential to avoid fatigue-induced accidents. However, traditional detection methods require complex sample preparation and blood sampling processes, which cannot meet the timeliness and portability of fatigue diagnosis. With the development of flexible materials and biosensing technology, wearable biosensors have attracted increased attention to the researchers. Wearable biosensors collect biomarkers from noninvasive biofluids, such as sweat, saliva, and tears, followed by biosensing with the help of biosensing modules continuously and quantitatively. The detection signal can then be transmitted through wireless communication modules that constitute a method for real-time understanding of abnormality. Recent developments of wearable biosensors are focused on miniaturized wearable electrochemistry and optical biosensors for metabolites detection, of which, few have exhibited satisfactory results in medical diagnosis. However, detection performance limits the wide-range applicability of wearable fatigue diagnosis. In this article, the application of wearable biosensors in fatigue diagnosis has been discussed. In fact, exploration of the composition of different biofluids and their potential toward fatigue diagnosis have been discussed here for the very first time. Moreover, discussions regarding the current bottlenecks in wearable fatigue biosensors and the latest advancements in biochemical reaction and data communication modules have been incorporated herein. Finally, the main challenges and opportunities were discussed for wearable fatigue diagnosis in the future.
Collapse
Affiliation(s)
- Jingyang Zhang
- Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety Institute of Environmental and Operational Medicine Tianjin P.R. China
| | - Mengmeng Chen
- Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety Institute of Environmental and Operational Medicine Tianjin P.R. China
| | - Yuan Peng
- Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety Institute of Environmental and Operational Medicine Tianjin P.R. China
| | - Shuang Li
- Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety Institute of Environmental and Operational Medicine Tianjin P.R. China
| | - Dianpeng Han
- Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety Institute of Environmental and Operational Medicine Tianjin P.R. China
| | - Shuyue Ren
- Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety Institute of Environmental and Operational Medicine Tianjin P.R. China
| | - Kang Qin
- Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety Institute of Environmental and Operational Medicine Tianjin P.R. China
| | - Sen Li
- Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety Institute of Environmental and Operational Medicine Tianjin P.R. China
| | - Tie Han
- Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety Institute of Environmental and Operational Medicine Tianjin P.R. China
| | - Yu Wang
- Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety Institute of Environmental and Operational Medicine Tianjin P.R. China
| | - Zhixian Gao
- Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety Institute of Environmental and Operational Medicine Tianjin P.R. China
| |
Collapse
|
14
|
Boncel S, Jędrysiak RG, Czerw M, Kolanowska A, Blacha AW, Imielski M, Jóźwiak B, Dzida MH, Greer HF, Sobotnicki A. Paintable Carbon Nanotube Coating-Based Textronics for Sustained Holter-Type Electrocardiography. ACS APPLIED NANO MATERIALS 2022; 5:15762-15774. [PMID: 36338322 PMCID: PMC9623549 DOI: 10.1021/acsanm.2c03904] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Accepted: 09/26/2022] [Indexed: 06/16/2023]
Abstract
A growing population suffering from or at high risk of developing cardiovascular diseases can benefit from rapid, precise, and readily available diagnostics. Textronics is an interdisciplinary approach for designing and manufacturing high-performance flexible electronics integrated with textiles for various applications, with electrocardiography (ECG) being the most convenient and most frequently used diagnostic technique for textronic solutions. The key challenges that still exist for textronics include expedient manufacturing, adaptation to human subjects, sustained operational stability for Holter-type data acquisition, reproducibility, and compatibility with existing solutions. The present study demonstrates conveniently paintable ECG electroconductive coatings on T-shirts woven from polyester or 70% polyamide and 30% polyester. The up to 600-μm-thick coatings encompass working electrodes of low resistivity 60 Ω sq-1 sheathed in the insulated pathways-conjugable with a wireless, multichannel ECG recorder. Long (800 μm) multiwalled carbon nanotubes, with scalable reproducibility and purity (18 g per round of synthesis), constituted the electroactive components and were embedded into a commercially available screen-printing acrylic base. The resulting paint had a viscosity of 0.75 Pa·s at 56 s-1 and 25 °C and was conveniently applied using a paintbrush, making this technique accessible to manufacturers. The amplified and nondigitally processed ECG signals were recorded under dry-skin conditions using a certified ECG recorder. The system enabled the collection of ECG signals from two channels, allowing the acquisition of cardiac electrical activity on six ECG leads with quality at par with medical diagnostics. Importantly, the Holter-type ECG allowed ambulatory recording for >24 h under various activities (sitting, sleeping, walking, and running) in three male participants. The ECG signal was stable for >5 cycles of washing, a level of stability not reported yet previously. The developed ECG-textronic application possesses acceptable and reproducible characteristics, making this technology a suitable candidate for further testing in clinical trials.
Collapse
Affiliation(s)
- Sławomir Boncel
- Faculty
of Chemistry, Department of Organic Chemistry, Bioorganic Chemistry
and Biotechnology, NanoCarbonGroup, Silesian
University of Technology, Krzywoustego 4, 44-100 Gliwice, Poland
- Centre
for Organic and Nanohybrid Electronics, Silesian University of Technology, Konarskiego 22B, 44-100 Gliwice, Poland
| | - Rafał G. Jędrysiak
- Faculty
of Chemistry, Department of Organic Chemistry, Bioorganic Chemistry
and Biotechnology, NanoCarbonGroup, Silesian
University of Technology, Krzywoustego 4, 44-100 Gliwice, Poland
- Centre
for Organic and Nanohybrid Electronics, Silesian University of Technology, Konarskiego 22B, 44-100 Gliwice, Poland
| | - Marek Czerw
- Łukasiewicz
Research Network Institute of Medical Technology and Equipment, Roosevelta 118, 41-800 Zabrze, Poland
- Department
of Biosensors and Processing of Biomedical Signals, Silesian University of Technology, Roosevelta 40, 41-800 Zabrze, Poland
| | - Anna Kolanowska
- Faculty
of Chemistry, Department of Organic Chemistry, Bioorganic Chemistry
and Biotechnology, NanoCarbonGroup, Silesian
University of Technology, Krzywoustego 4, 44-100 Gliwice, Poland
- Centre
for Organic and Nanohybrid Electronics, Silesian University of Technology, Konarskiego 22B, 44-100 Gliwice, Poland
- Department
of Physical Chemistry and Technology of Polymers, Silesian University of Technology, Marcina Strzody 9, 44-100 Gliwice, Poland
- Biotechnology
Centre, Silesian University of Technology, Krzywoustego 8, 44-100 Gliwice, Poland
| | - Anna W. Blacha
- Faculty
of Chemistry, Department of Organic Chemistry, Bioorganic Chemistry
and Biotechnology, NanoCarbonGroup, Silesian
University of Technology, Krzywoustego 4, 44-100 Gliwice, Poland
- Centre
for Organic and Nanohybrid Electronics, Silesian University of Technology, Konarskiego 22B, 44-100 Gliwice, Poland
| | - Maciej Imielski
- Faculty
of Chemistry, Department of Organic Chemistry, Bioorganic Chemistry
and Biotechnology, NanoCarbonGroup, Silesian
University of Technology, Krzywoustego 4, 44-100 Gliwice, Poland
- Centre
for Organic and Nanohybrid Electronics, Silesian University of Technology, Konarskiego 22B, 44-100 Gliwice, Poland
| | - Bertrand Jóźwiak
- Faculty
of Chemistry, Department of Organic Chemistry, Bioorganic Chemistry
and Biotechnology, NanoCarbonGroup, Silesian
University of Technology, Krzywoustego 4, 44-100 Gliwice, Poland
- Centre
for Organic and Nanohybrid Electronics, Silesian University of Technology, Konarskiego 22B, 44-100 Gliwice, Poland
- Department
of Chemical Engineering and Process Design, Silesian University of Technology, Marcina Strzody 7, 44-100 Gliwice, Poland
| | - Marzena H. Dzida
- Institute
of Chemistry, University of Silesia in Katowice, Szkolna 9, 40-006 Katowice, Poland
| | - Heather F. Greer
- Department
of Chemistry, University of Cambridge, Cambridge CB2 1EW, U.K.
| | - Aleksander Sobotnicki
- Łukasiewicz
Research Network Institute of Medical Technology and Equipment, Roosevelta 118, 41-800 Zabrze, Poland
| |
Collapse
|
15
|
Zhang M, Guo N, Gao Q, Li H, Wang Z. Design, Characterization, and Performance of Woven Fabric Electrodes for Electrocardiogram Signal Monitoring. SENSORS 2022; 22:s22155472. [PMID: 35897976 PMCID: PMC9331634 DOI: 10.3390/s22155472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 07/16/2022] [Accepted: 07/18/2022] [Indexed: 11/20/2022]
Abstract
Conductive gel needs to be applied between the skin and standard medical electrodes when monitoring electrocardiogram (ECG) signals, but this can cause skin irritation, particularly during long-term monitoring. Fabric electrodes are flexible, breathable, and capable of sensing ECG signals without conductive gel. The objective of this study was to design and fabricate a circular fabric electrode using weaving technology. To optimize the woven fabric electrode, electrodes of different diameter, fabric weave, and weft density were devised, and the AC impedance, open-circuit voltage, and static ECG signal were measured and comprehensively evaluated. Diameter of 4 cm, 12/5 sateen, and weft density of 46 picks/cm were concluded as the appropriate parameters of the fabric electrode. ECG signals in swinging, squatting, and rotating states were compared between the woven fabric electrode and the standard medical electrode. The results showed that the characteristic waveform of the woven fabric electrode with 86.7% improved data was more obvious than that of the standard medical electrode. This work provides reference data that will be helpful for commercializing the integration of fabric electrodes into smart textiles.
Collapse
Affiliation(s)
- Meiling Zhang
- School of Textile Science and Engineering, Tiangong University, Tianjin 300387, China; (M.Z.); (N.G.); (Q.G.)
| | - Ningting Guo
- School of Textile Science and Engineering, Tiangong University, Tianjin 300387, China; (M.Z.); (N.G.); (Q.G.)
| | - Qian Gao
- School of Textile Science and Engineering, Tiangong University, Tianjin 300387, China; (M.Z.); (N.G.); (Q.G.)
| | - Hongqiang Li
- School of Electronic and Information Engineering, Tiangong University, Tianjin 300387, China;
| | - Zhangang Wang
- School of Software, Tiangong University, Tianjin 300387, China
- Correspondence:
| |
Collapse
|
16
|
Santos Rodrigues A, Augustauskas R, Lukoševičius M, Laguna P, Marozas V. Deep-Learning-Based Estimation of the Spatial QRS-T Angle from Reduced-Lead ECGs. SENSORS (BASEL, SWITZERLAND) 2022; 22:5414. [PMID: 35891094 PMCID: PMC9328169 DOI: 10.3390/s22145414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 07/16/2022] [Accepted: 07/18/2022] [Indexed: 06/15/2023]
Abstract
The spatial QRS-T angle is a promising health indicator for risk stratification of sudden cardiac death (SCD). Thus far, the angle is estimated solely from 12-lead electrocardiogram (ECG) systems uncomfortable for ambulatory monitoring. Methods to estimate QRS-T angles from reduced-lead ECGs registered with consumer healthcare devices would, therefore, facilitate ambulatory monitoring. (1) Objective: Develop a method to estimate spatial QRS-T angles from reduced-lead ECGs. (2) Approach: We designed a deep learning model to locate the QRS and T wave vectors necessary for computing the QRS-T angle. We implemented an original loss function to guide the model in the 3D space to search for each vector's coordinates. A gradual reduction of ECG leads from the largest publicly available dataset of clinical 12-lead ECG recordings (PTB-XL) is used for training and validation. (3) Results: The spatial QRS-T angle can be estimated from leads {I, II, aVF, V2} with sufficient accuracy (absolute mean and median errors of 11.4° and 7.3°) for detecting abnormal angles without sacrificing patient comfortability. (4) Significance: Our model could enable ambulatory monitoring of spatial QRS-T angles using patch- or textile-based ECG devices. Populations at risk of SCD, like chronic cardiac and kidney disease patients, might benefit from this technology.
Collapse
Affiliation(s)
- Ana Santos Rodrigues
- Biomedical Engineering Institute, Kaunas University of Technology, 51423 Kaunas, Lithuania;
| | - Rytis Augustauskas
- Department of Automation, Kaunas University of Technology, 51367 Kaunas, Lithuania;
| | - Mantas Lukoševičius
- Faculty of Informatics, Kaunas University of Technology, 51368 Kaunas, Lithuania;
| | - Pablo Laguna
- Biomedical Signal Interpretation and Computational Simulation (BSICoS) Group, Aragón Institute of Engineering Research (I3A), IIS Aragón, University of Zaragoza, 50018 Zaragoza, Spain;
- Biomedical Research Networking Center (CIBER), 50018 Zaragoza, Spain
| | - Vaidotas Marozas
- Biomedical Engineering Institute, Kaunas University of Technology, 51423 Kaunas, Lithuania;
- Faculty of Electrical and Electronics Engineering, Kaunas University of Technology, 51367 Kaunas, Lithuania
| |
Collapse
|
17
|
Bezgin Carbas B, Ergun EGC. A classified and comparative review of Poly(2,5-dithienyl-N-substituted-pyrrole) derivatives for electrochromic applications. Eur Polym J 2022. [DOI: 10.1016/j.eurpolymj.2022.111363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
18
|
Qian L, He D, Cao X, Huang J, Li J. Robust conductive polyester fabric with enhanced multi-layer silver deposition for textile electrodes. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.128857] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
19
|
Kim H, Kim S, Lim D, Jeong W. Development and Characterization of Embroidery-Based Textile Electrodes for Surface EMG Detection. SENSORS (BASEL, SWITZERLAND) 2022; 22:4746. [PMID: 35808240 PMCID: PMC9268917 DOI: 10.3390/s22134746] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 06/15/2022] [Accepted: 06/21/2022] [Indexed: 06/15/2023]
Abstract
The interest in wearable devices has expanded to measurement devices for building IoT-based mobile healthcare systems and sensing bio-signal data through clothing. Surface electromyography, called sEMG, is one of the most popular bio-signals that can be applied to health monitoring systems. In general, gel-based (Ag/AgCl) electrodes are mainly used, but there are problems, such as skin irritation due to long-time wearing, deterioration of adhesion to the skin due to moisture or sweat, and low applicability to clothes. Hence, research on dry electrodes as a replacement is increasing. Accordingly, in this study, a textile-based electrode was produced with a range of electrode shapes, and areas were embroidered with conductive yarn using an embroidery technique in the clothing manufacturing process. The electrode was applied to EMG smart clothing for fitness, and the EMG signal detection performance was analyzed. The electrode shape was manufactured using the circle and wave type. The wave-type electrode was more morphologically stable than the circle-type electrode by up to 30% strain, and the electrode shape was maintained as the embroidered area increased. Skin-electrode impedance analysis confirmed that the embroidered area with conductive yarn affected the skin contact area, and the impedance decreased with increasing area. For sEMG performance analysis, the rectus femoris was selected as a target muscle, and the sEMG parameters were analyzed. The wave-type sample showed higher EMG signal strength than the circle-type. In particular, the electrode with three lines showed better performance than the fill-type electrode. These performances operated without noise, even with a commercial device. Therefore, it is expected to be applicable to the manufacture of electromyography smart clothing based on embroidered electrodes in the future.
Collapse
Affiliation(s)
- Hyelim Kim
- Material and Component Convergence R&D Department, Korea Institute of Industrial Technology (KITECH), Ansan 15588, Korea; (H.K.); (D.L.)
| | - Siyeon Kim
- Reliability Assesment Center, FITI Testing and Research Institute, Seoul 07791, Korea;
| | - Daeyoung Lim
- Material and Component Convergence R&D Department, Korea Institute of Industrial Technology (KITECH), Ansan 15588, Korea; (H.K.); (D.L.)
| | - Wonyoung Jeong
- Material and Component Convergence R&D Department, Korea Institute of Industrial Technology (KITECH), Ansan 15588, Korea; (H.K.); (D.L.)
| |
Collapse
|
20
|
Galli A, Montree RJH, Que S, Peri E, Vullings R. An Overview of the Sensors for Heart Rate Monitoring Used in Extramural Applications. SENSORS (BASEL, SWITZERLAND) 2022; 22:4035. [PMID: 35684656 PMCID: PMC9185322 DOI: 10.3390/s22114035] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 05/23/2022] [Accepted: 05/24/2022] [Indexed: 06/02/2023]
Abstract
This work presents an overview of the main strategies that have been proposed for non-invasive monitoring of heart rate (HR) in extramural and home settings. We discuss three categories of sensing according to what physiological effect is used to measure the pulsatile activity of the heart, and we focus on an illustrative sensing modality for each of them. Therefore, electrocardiography, photoplethysmography, and mechanocardiography are presented as illustrative modalities to sense electrical activity, mechanical activity, and the peripheral effect of heart activity. In this paper, we describe the physical principles underlying the three categories and the characteristics of the different types of sensors that belong to each class, and we touch upon the most used software strategies that are currently adopted to effectively and reliably extract HR. In addition, we investigate the strengths and weaknesses of each category linked to the different applications in order to provide the reader with guidelines for selecting the most suitable solution according to the requirements and constraints of the application.
Collapse
Affiliation(s)
- Alessandra Galli
- Department of Information Engineering, University of Padova, I-35131 Padova, Italy;
| | - Roel J. H. Montree
- Department of Electrical Engineering, Eindhoven University of Technology, 5600 MB Eindhoven, The Netherlands; (R.J.H.M.); (S.Q.); (E.P.)
| | - Shuhao Que
- Department of Electrical Engineering, Eindhoven University of Technology, 5600 MB Eindhoven, The Netherlands; (R.J.H.M.); (S.Q.); (E.P.)
| | - Elisabetta Peri
- Department of Electrical Engineering, Eindhoven University of Technology, 5600 MB Eindhoven, The Netherlands; (R.J.H.M.); (S.Q.); (E.P.)
| | - Rik Vullings
- Department of Electrical Engineering, Eindhoven University of Technology, 5600 MB Eindhoven, The Netherlands; (R.J.H.M.); (S.Q.); (E.P.)
| |
Collapse
|
21
|
Graphene-Based Flexible Electrode for Electrocardiogram Signal Monitoring. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12094526] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
With the rapidly aging society and increased concern for personal cardiovascular health, novel, flexible electrodes suitable for electrocardiogram (ECG) signal monitoring are in demand. Based on the excellent electrical and mechanical properties of graphene and the rapid development of graphene device fabrication technologies, graphene-based ECG electrodes have recently attracted much attention, and many flexible graphene electrodes with excellent performance have been developed. To understand the current research progress of graphene-based ECG electrodes and help researchers clarify current development conditions and directions, we systematically review the recent advances in graphene-based flexible ECG electrodes. Graphene electrodes are classified as bionic, fabric-based, biodegradable, laser-induced/scribed, modified-graphene, sponge-like, invasive, etc., based on their design concept, structural characteristics, preparation methods, and material properties. Moreover, some categories are further divided into dry or wet electrodes. Then, their performance, including electrode–skin impedance, signal-to-noise ratio, skin compatibility, and stability, is analyzed. Finally, we discuss possible development directions of graphene ECG electrodes and share our views.
Collapse
|
22
|
Cho S, Chang T, Yu T, Lee CH. Smart Electronic Textiles for Wearable Sensing and Display. BIOSENSORS 2022; 12:bios12040222. [PMID: 35448282 PMCID: PMC9029731 DOI: 10.3390/bios12040222] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 04/04/2022] [Accepted: 04/06/2022] [Indexed: 05/13/2023]
Abstract
Increasing demand of using everyday clothing in wearable sensing and display has synergistically advanced the field of electronic textiles, or e-textiles. A variety of types of e-textiles have been formed into stretchy fabrics in a manner that can maintain their intrinsic properties of stretchability, breathability, and wearability to fit comfortably across different sizes and shapes of the human body. These unique features have been leveraged to ensure accuracy in capturing physical, chemical, and electrophysiological signals from the skin under ambulatory conditions, while also displaying the sensing data or other immediate information in daily life. Here, we review the emerging trends and recent advances in e-textiles in wearable sensing and display, with a focus on their materials, constructions, and implementations. We also describe perspectives on the remaining challenges of e-textiles to guide future research directions toward wider adoption in practice.
Collapse
Affiliation(s)
- Seungse Cho
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN 47907, USA;
| | - Taehoo Chang
- School of Materials Engineering, Purdue University, West Lafayette, IN 47907, USA;
| | - Tianhao Yu
- School of Mechanical Engineering, Purdue University, West Lafayette, IN 47907, USA;
| | - Chi Hwan Lee
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN 47907, USA;
- School of Materials Engineering, Purdue University, West Lafayette, IN 47907, USA;
- School of Mechanical Engineering, Purdue University, West Lafayette, IN 47907, USA;
- Center for Implantable Devices, Purdue University, West Lafayette, IN 47907, USA
- Correspondence:
| |
Collapse
|