1
|
Rathod S, Snowdon M, Tino MP, Peng P. Laser writing of metal-oxide doped graphene films for tunable sensor applications. NANOSCALE ADVANCES 2025; 7:766-783. [PMID: 39669520 PMCID: PMC11632522 DOI: 10.1039/d4na00463a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Accepted: 12/04/2024] [Indexed: 12/14/2024]
Abstract
Flexible and wearable devices play a pivotal role in the realm of smart portable electronics due to their diverse applications in healthcare monitoring, soft robotics, human-machine interfaces, and artificial intelligence. Nonetheless, the extensive integration of intelligent wearable sensors into mass production faces challenges within a resource-limited environment, necessitating low-cost manufacturing, high reliability, stability, and multi-functionality. In this study, a cost-effective fiber laser direct writing method (fLDW) was illustrated to create highly responsive and robust flexible sensors. These sensors integrate laser-induced graphene (LiG) with mixed metal oxides on a flexible polyimide film. fLDW simplifies the synthesis of graphene, functionalization of carbon structures into graphene oxides and reduced graphene oxides, and deposition of metal-oxide nanoparticles within a single experimental laser writing setup. The preparation and surface modification of dense oxygenated graphene networks and semiconducting metal oxide nanoparticles (CuO x , ZnO x , FeO x ) enables rapid fabrication of LiG/MO x composite sensors with the ability to detect and differentiate various stimuli, including visible light, UV light, temperature, humidity, and magnetic fluxes. Further, this in situ customizability of fLDW-produced sensors allows for tunable sensitivity, response time, recovery time, and selectivity. The normalized current gain of resistive LiG/MO x sensors can be controlled between -2.7 to 3.5, with response times ranging from 0.02 to 15 s, and recovery times from 0.04 to 6 s. Furthermore, the programmable properties showed great endurance after 200 days in air and extended bend cycles. Collectively, these LiG/MO x sensors stand as a testament to the effectiveness of fLDW in economically mass-producing flexible and wearable electronic devices to meet the explicit demands of the Internet of Things.
Collapse
Affiliation(s)
- Shasvat Rathod
- Centre for Advanced Materials Joining, Department of Mechanical and Mechatronics Engineering, University of Waterloo 200 University Avenue West Waterloo Ontario N2L 3G1 Canada
| | - Monika Snowdon
- Centre for Advanced Materials Joining, Department of Mechanical and Mechatronics Engineering, University of Waterloo 200 University Avenue West Waterloo Ontario N2L 3G1 Canada
| | - Matthew Peres Tino
- Centre for Advanced Materials Joining, Department of Mechanical and Mechatronics Engineering, University of Waterloo 200 University Avenue West Waterloo Ontario N2L 3G1 Canada
| | - Peng Peng
- Centre for Advanced Materials Joining, Department of Mechanical and Mechatronics Engineering, University of Waterloo 200 University Avenue West Waterloo Ontario N2L 3G1 Canada
| |
Collapse
|
2
|
Basumatary P, Das K, Kakoty P. Nano-interface enhanced electrochemical sensing of hazardous organochlorine pesticides and prospects with ZnO based nanomaterials. Talanta 2025; 287:127598. [PMID: 39824056 DOI: 10.1016/j.talanta.2025.127598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 01/08/2025] [Accepted: 01/12/2025] [Indexed: 01/20/2025]
Abstract
Detection and analysis of organochlorine pesticides (OCP) residue is getting significant research importance because of their extensive use despite their hazardous effects on the health of people and the ecosystem. Despite the implementation of regulations and bans to safeguard human health and the environment, reports frequently reveal the continued use of these harmful chemicals in quantities exceeding the recommended limits set by regulatory boards. Data on the use of OCP from India, the most populous country, and African countries is not very encouraging. Conventional methods used for pesticide identification rely on high-cost and bulky instruments, which are also time-consuming and resource-intensive. Therefore, a low-cost, simple, easy-to-handle, and portable pesticide detection device is the need of the hour to enhance the convenience of routine detection and analysis. Nanomaterial-based sensors, composed of metal oxides, polymers, metals, enzyme-functionalized nanostructures, and nanocomposites, hold significant potential for monitoring pesticides, even at extremely low levels, and offer a unique alternative to traditional detection methods. This study examines the potential health risks associated with OCP residues and commonly used analytical techniques for pesticide detection. It also thoroughly examines the latest developments in nanomaterial-based electrochemical sensors, specifically focusing on ZnO-based nanomaterials for OCP detection. Researchers have successfully experimented with ZnO nanomaterials for pesticide degradation, in addition to their use in detection. This review provides a summary of the detection limits, linear ranges, and various fabrication methods of these developed sensors. It also addresses the practicality issues and detection strategies, thereby providing a comprehensive overview of the state of the art in OCP detection using nanomaterials. Furthermore, this review provides insights on potential future perspectives in the area from the authors' standpoint.
Collapse
Affiliation(s)
- Pritymala Basumatary
- Department of Electronics and Communication Engineering, Tezpur University, Tezpur, 784028, India
| | - Karen Das
- Department of Electronics and Communication Engineering, Assam Don Bosco University, Azara, Guwahati, 781017, India
| | - Priyanka Kakoty
- Department of Electronics and Communication Engineering, Tezpur University, Tezpur, 784028, India.
| |
Collapse
|
3
|
Deng K, Liu Z, Liu H, Chen Y, Li S, Guo S, Xiu B, Dong X, Cao H. Temperature Dependence on Microstructure, Crystallization Orientation, and Piezoelectric Properties of ZnO Films. SENSORS (BASEL, SWITZERLAND) 2025; 25:242. [PMID: 39797033 PMCID: PMC11723457 DOI: 10.3390/s25010242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Revised: 12/29/2024] [Accepted: 12/31/2024] [Indexed: 01/13/2025]
Abstract
This study has investigated the effects of different annealing temperatures on the microstructure, chemical composition, phase structure, and piezoelectric properties of ZnO films. The analysis focuses on how annealing temperature influences the oxygen content and the preferred c-axis (002) orientation of the films. It was found that annealing significantly increases the grain size and optimizes the columnar crystal structure, though excessive high-temperature annealing leads to structural degradation. This behavior is likely related to changes in oxygen content at different annealing temperatures. High resolution transmission electron microscopy (HR-TEM) reveals that the films exhibit high-resolution lattice stripes, confirming their high crystallinity. Although the films exhibit growth in multiple orientations, the c-axis (002) orientation remains the predominant crystallographic growth. Further piezoelectric property analysis demonstrates that the ZnO films annealed at 400 °C exhibit enhanced piezoelectric performance and stable linear piezoelectric behavior. These findings offer valuable support for optimizing the piezoelectric properties of ZnO films and their applications in piezoelectric sensors.
Collapse
Affiliation(s)
- Ke Deng
- Zhuzhou Hanjie Aviation Science & Technology Co., Ltd., Zhuzhou 412002, China; (K.D.); (Y.C.)
| | - Zhonghao Liu
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China; (H.L.); (S.L.); (S.G.); (X.D.)
| | - Hulin Liu
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China; (H.L.); (S.L.); (S.G.); (X.D.)
| | - Yanxiang Chen
- Zhuzhou Hanjie Aviation Science & Technology Co., Ltd., Zhuzhou 412002, China; (K.D.); (Y.C.)
| | - Shang Li
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China; (H.L.); (S.L.); (S.G.); (X.D.)
| | - Shuren Guo
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China; (H.L.); (S.L.); (S.G.); (X.D.)
| | - Boyu Xiu
- Shanghai Research Institute of Materials Co., Ltd., Shanghai 200437, China;
| | - Xuanpu Dong
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China; (H.L.); (S.L.); (S.G.); (X.D.)
| | - Huatang Cao
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China; (H.L.); (S.L.); (S.G.); (X.D.)
| |
Collapse
|
4
|
Esrafili MD. Low-temperature oxidation of methane mediated by Al-doped ZnO cluster and nanowire: a first-principles investigation. J Mol Model 2024; 30:370. [PMID: 39377948 DOI: 10.1007/s00894-024-06168-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 10/01/2024] [Indexed: 10/09/2024]
Abstract
CONTEXT First-principles calculations are performed to investigate the catalytic oxidation of methane by using N2O as an oxidizing agent over aluminum (Al)-doped Zn12O12 cluster and (Zn12O12)2 nanowire. The impact of Al impurity on the geometry, electronic structure, and surface reactivity of Zn12O12 and (Zn12O12)2 is thoroughly studied. Our study demonstrates that Al-doped ZnO systems have a better adsorption ability than the corresponding pristine counterparts. It is found that N2O molecule is initially decomposed on the Al site to provide the N2 molecule, and an Al-O intermediate which is an active species for the CH4 oxidation. The conversion of CH4 into CH3OH over AlZn11O12 and (AlZn11O12)2 requires an activation energy of 0.45 and 0.29 eV, respectively, indicating it can be easily performed at normal temperatures. Besides, the overoxidation of methanol into formaldehyde cannot take place over the AlZn11O12 and (AlZn11O12)2, due to the high energy barrier needed to dissociate C-H bond of the CH3O intermediate. METHOD Dispersion-corrected density functional theory calculations were performed through GGA-PBE exchange-correlation functional combined with a numerical double-ζ plus polarization (DNP) basis set as implemented in DMol3. To include the relativistic effects of core electrons of Zn atoms, DFT-semicore pseudopotentials were adopted. The DFT + D scheme proposed by Grimme was used to involve weak dispersion interactions within the DFT calculations. The reaction energy paths were generated by the minimum energy path calculations using the NEB method.
Collapse
Affiliation(s)
- Mehdi D Esrafili
- Laboratory of Theoretical Chemistry, Department of Chemistry, University of Maragheh, Maragheh, Iran.
| |
Collapse
|
5
|
Huang A, Dong X, Shen G, He L, Cai C, Liu Q, Niu Q, Xu C. Target Recognition-Triggered Interfacial Electron Transfer Model: Toward Signal-On Photoelectrochemical Aptasensing for Efficient Detection of Staphylococcus aureus Using Ti 3C 2T x-Au NBPs/ZnO NR Composites. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:20526-20536. [PMID: 39302020 DOI: 10.1021/acs.langmuir.4c02104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/22/2024]
Abstract
Staphylococcus aureus (S. aureus) is one of the most common foodborne pathogens worldwide, which poses a great threat to public health. It is of utmost importance to develop rapid, simple, and sensitive methods for the determination of S. aureus. A signal-on photoelectrochemical (PEC) aptasensor is constructed herein based on titanium carbide (Ti3C2Tx)-Au nanobipyramids (NBPs)/ZnO nanoarrays (NRs). The reliability and capability of the PEC aptasensor make it suitable for the sensitive and selective determination of S. aureus. First, the electrostatically self-assembled Ti3C2Tx-Au NBP nanomaterial was coated on the ZnO NR surface by a spin-coating method. On the one hand, Ti3C2Tx-Au NBPs can broaden the spectral absorption of ZnO NRs, resulting in Ti3C2Tx-Au NBPs/ZnO NR composites that exhibit a wide range of absorption from the ultraviolet to the infrared region. On the other hand, Ti3C2Tx can reduce the agglomeration of nanoparticles, while Au NBPs can effectively fix the aptamer through the Au-S bond. Specifically, the experimental results show that when S. aureus is present, the Au NBPs-aptamer-S. aureus complex is shed from the electrode surface, altering the interfacial electron transfer model and reducing the steric hindrance. Consequently, an amplified photocurrent signal for the quantitative determination of S. aureus is obtained. Under optimal experimental conditions, a linear correlation is observed between the current response of the aptasensor and the logarithm of the S. aureus concentration (ranging from 1.0 to 1.0 × 106 CFU/mL), with an impressive detection limit as low as 0.5 CFU/mL. Furthermore, the aptasensor has been successfully employed for the detection of S. aureus in milk, with the recovery of 93.0%-99.0%. Hence, this research offers a novel approach for the detection of foodborne pathogens and other noxious substances.
Collapse
Affiliation(s)
- Ao Huang
- Key Laboratory of Modern Agricultural Equipment and Technology (Jiangsu University), Ministry of Education, School of Agricultural Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Xiuxiu Dong
- Key Laboratory of Modern Agricultural Equipment and Technology (Jiangsu University), Ministry of Education, School of Agricultural Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Guanghui Shen
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology/Key Laboratory for Agro-product Safety Risk Evaluation (Nanjing), Ministry of Agriculture and Rural Affairs/Collaborative Innovation Center for Modern Grain Circulation and Safety/Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing, Jiangsu 210014, China
| | - Lilong He
- Key Laboratory of Modern Agricultural Equipment and Technology (Jiangsu University), Ministry of Education, School of Agricultural Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Chaoyang Cai
- Key Laboratory of Modern Agricultural Equipment and Technology (Jiangsu University), Ministry of Education, School of Agricultural Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Qian Liu
- Key Laboratory of Modern Agricultural Equipment and Technology (Jiangsu University), Ministry of Education, School of Agricultural Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Qijian Niu
- Key Laboratory of Modern Agricultural Equipment and Technology (Jiangsu University), Ministry of Education, School of Agricultural Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Chunxiang Xu
- School of Electronic Science & Engineering, Southeast University, Nanjing, Jiangsu 210096, China
| |
Collapse
|
6
|
Xu Z, Wang Z, Jianping D, Muhsen S, Almujibah H, Abdullah N, Elattar S, Khadimallah MA, Marzouki R, Assilzadeh H. Utilizing nanotechnology to boost the reliability and determine the vertical load capacity of pile assemblies. ENVIRONMENTAL RESEARCH 2024; 251:118457. [PMID: 38382666 DOI: 10.1016/j.envres.2024.118457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Revised: 01/24/2024] [Accepted: 02/08/2024] [Indexed: 02/23/2024]
Abstract
Because of their high electrocatalytic activity, sensitivity, selectivity, and long-term stability in electrochemical sensors and biosensors, numerous nanomaterials are being used as suitable electrode materials thanks to developments in nanotechnology. Electrochemical sensors and biosensors are two areas where two-dimensional layered materials (2DLMs) are finding increasing utility due to their unusual structure and physicochemical features. Nanosensors, by their unprecedented sensitivity and minute scale, can probe deeper into the structural integrity of piles, capturing intricacies that traditional tools overlook. These advanced devices detect anomalies, voids, and minute defects in the pile structure with unparalleled granularity. Their effectiveness lies in detection and their capacity to provide real-time feedback on pile health, heralding a shift from reactive to proactive maintenance methodologies. Harvesting data from these nanosensors, data was incorporated into a probabilistic model, executing the reliability index calculations through Monte Carlo simulations. Preliminary outcomes show a commendable enhancement in the predictability of vertical bearing capacity, with the coefficient of variation dwindling by up to 12%. The introduction of nanosensors facilitates instantaneous monitoring and fortifies the long-term stability of pile foundations. This study accentuates the transformative potential of nanosensors in geotechnical engineering.
Collapse
Affiliation(s)
- Zhijun Xu
- School of Civil Engineering, Henan University of Technology, Zhengzhou, China.
| | - Zhengquan Wang
- School of Civil Engineering, Henan University of Technology, Zhengzhou, China
| | - Du Jianping
- School of Civil Engineering, Henan University of Technology, Zhengzhou, China
| | - Sami Muhsen
- Air conditioning and Refrigeration Techniques Engineering Department, College of Engineering and technologies, Al-Mustaqbal University, 51001, Hillah, Babylon, Iraq.
| | - Hamad Almujibah
- Department of Civil Engineering, College of Engineering, Taif University, P.O. Box 11099, Taif City, 21974, Saudi Arabia
| | - Nermeen Abdullah
- Department of Industrial & Systems Engineering, College of Engineering, Princess Nourah bint Abdulrahman University, P.O.Box 84428, Riyadh, 11671, Saudi Arabia
| | - Samia Elattar
- Department of Industrial & Systems Engineering, College of Engineering, Princess Nourah bint Abdulrahman University, P.O.Box 84428, Riyadh, 11671, Saudi Arabia
| | - Mohamed Amine Khadimallah
- Department of Civil Engineering, College of Engineering in Al-Kharj, Prince Sattam Bin Abdulaziz University, Al-Kharj, 11942, Saudi Arabia
| | - Riadh Marzouki
- Department of Chemistry, College of Science, King Khalid University, P.O. Box 9004, 61413, Abha, Saudi Arabia
| | - Hamid Assilzadeh
- Faculty of Architecture and Urbanism, UTE University, Calle Rumipamba S/N and Bourgeois, Quito, Ecuador; Institute of Research and Development, Duy Tan University, Da Nang, Viet Nam; School of Engineering & Technology, Duy Tan University, Da Nang, Viet Nam; Department of Biomaterials, Saveetha Dental College and Hospital, Saveetha Institute of Medical and Technical Sciences, Chennai 600077, India.
| |
Collapse
|
7
|
Ansar N, Shahid W, Irshad MA, Shahid S, Nawaz R, Irfan A, Khan MI, Al-Mutairi AA, Khizar M, Al-Hussain SA, Ullah S, Zaki MEA. Aloe-inspired eco-friendly synthesis of Ag/ZnO heterostructures: boosting photocatalytic potential. Sci Rep 2024; 14:12711. [PMID: 38830908 PMCID: PMC11148178 DOI: 10.1038/s41598-024-61466-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 05/06/2024] [Indexed: 06/05/2024] Open
Abstract
The current research focuses on the development of Ag-ZnO heterostructures through a "bottom-up" approach involving the assembly and extraction of Aloe barbadensis Miller gel. These heterostructures composed of metals/semiconductor oxide display distinct and notable optical, electrical, magnetic, and chemical properties that are not found in single constituents and also exhibit photocatalytic applications. These synthesized heterostructures were characterized by XRD, FTIR, SEM, and UV-visible spectroscopy. The high peak intensity of the Ag/ZnO composite shows the high crystallinity. The presence of Ag-O, Zn-O, and O-H bonding is verified using FTIR analysis. SEM analysis indicated the formation of spherical shapes of Ag/ZnO heterostructures. The Zn, O, and Ag elements are further confirmed by EDX analysis. Ag-ZnO heterostructures exhibited excellent photocatalytic activity and stability against the degradation of tubantin red 8BL dye under visible light irradiation.
Collapse
Affiliation(s)
- Nawal Ansar
- Department of Physics, The University of Lahore, Lahore, 54000, Pakistan
| | - Wajeehah Shahid
- Department of Physics, The University of Lahore, Lahore, 54000, Pakistan.
| | - Muhammad Atif Irshad
- Department of Environmental Sciences, The University of Lahore, Lahore, 54000, Pakistan
| | - Samiah Shahid
- Institute of Molecular and Biology and Biotechnology, The University of Lahore, Lahore, 54000, Pakistan
| | - Rab Nawaz
- Department of Environmental Sciences, The University of Lahore, Lahore, 54000, Pakistan
- Faculty of Engineering and Quantity Surveying, INTI International University, 71800, Nilai, Negeri Sembilan, Malaysia
| | - Ali Irfan
- Department of Chemistry, Government College University Faisalabada, Faisalabad, Pakistan.
| | | | - Aamal A Al-Mutairi
- Department of Chemistry, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), 11623, Riyadh, Saudi Arabia
| | - Maria Khizar
- Department of Physics, The University of Lahore, Lahore, 54000, Pakistan
| | - Sami A Al-Hussain
- Department of Chemistry, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), 11623, Riyadh, Saudi Arabia
| | - Sana Ullah
- Department of Physics, The University of Lahore, Lahore, 54000, Pakistan
| | - Magdi E A Zaki
- Department of Chemistry, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), 11623, Riyadh, Saudi Arabia.
| |
Collapse
|
8
|
Zheng B, Xie Y, Xu S, Meng AC, Wang S, Wu Y, Yang S, Wan C, Huang G, Tour JM, Lin J. Programmed multimaterial assembly by synergized 3D printing and freeform laser induction. Nat Commun 2024; 15:4541. [PMID: 38806541 PMCID: PMC11133382 DOI: 10.1038/s41467-024-48919-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 05/14/2024] [Indexed: 05/30/2024] Open
Abstract
In nature, structural and functional materials often form programmed three-dimensional (3D) assembly to perform daily functions, inspiring researchers to engineer multifunctional 3D structures. Despite much progress, a general method to fabricate and assemble a broad range of materials into functional 3D objects remains limited. Herein, to bridge the gap, we demonstrate a freeform multimaterial assembly process (FMAP) by integrating 3D printing (fused filament fabrication (FFF), direct ink writing (DIW)) with freeform laser induction (FLI). 3D printing performs the 3D structural material assembly, while FLI fabricates the functional materials in predesigned 3D space by synergistic, programmed control. This paper showcases the versatility of FMAP in spatially fabricating various types of functional materials (metals, semiconductors) within 3D structures for applications in crossbar circuits for LED display, a strain sensor for multifunctional springs and haptic manipulators, a UV sensor, a 3D electromagnet as a magnetic encoder, capacitive sensors for human machine interface, and an integrated microfluidic reactor with a built-in Joule heater for nanomaterial synthesis. This success underscores the potential of FMAP to redefine 3D printing and FLI for programmed multimaterial assembly.
Collapse
Affiliation(s)
- Bujingda Zheng
- Department of Mechanical and Aerospace Engineering, University of Missouri, Columbia, MO, 65201, USA
| | - Yunchao Xie
- Department of Mechanical and Aerospace Engineering, University of Missouri, Columbia, MO, 65201, USA
| | - Shichen Xu
- Department of Chemistry, Rice University, Houston, 77005, TX, USA
| | - Andrew C Meng
- Department of Physics and Astronomy, University of Missouri, Columbia, MO, 65201, USA
| | - Shaoyun Wang
- Department of Mechanical and Aerospace Engineering, University of Missouri, Columbia, MO, 65201, USA
| | - Yuchao Wu
- Department of Mechanical and Aerospace Engineering, University of Missouri, Columbia, MO, 65201, USA
| | - Shuhong Yang
- Department of Chemical and Biomedical Engineering, University of Missouri, Columbia, MO, 65201, USA
| | - Caixia Wan
- Department of Chemical and Biomedical Engineering, University of Missouri, Columbia, MO, 65201, USA
| | - Guoliang Huang
- Department of Mechanical and Aerospace Engineering, University of Missouri, Columbia, MO, 65201, USA
| | - James M Tour
- Department of Chemistry, Rice University, Houston, 77005, TX, USA
- Department of Materials Science and Nano Engineering, Rice University, 6100 Main Street, Houston, 77005, TX, USA
- Smalley-Curl Institute, Rice University, 6100 Main Street, Houston, 77005, TX, USA
| | - Jian Lin
- Department of Mechanical and Aerospace Engineering, University of Missouri, Columbia, MO, 65201, USA.
| |
Collapse
|
9
|
Evstafieva M, Redkin A, Roshchupkin D, Rudneva T, Yakimov EE. Influence of Exposure to a Wet Atmosphere on the UV-Sensing Characteristics of ZnO Nanorod Arrays. MATERIALS (BASEL, SWITZERLAND) 2024; 17:1053. [PMID: 38473527 DOI: 10.3390/ma17051053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 02/19/2024] [Accepted: 02/22/2024] [Indexed: 03/14/2024]
Abstract
Zinc oxide is a promising material for the creation of various types of sensors, in particular UV detectors. In this work, arrays of ordered nanorods were grown by chemical vapor deposition. The effect of environmental humidity on the sensing properties of zinc oxide nanorod arrays was investigated, and a prototype UV sensor using indium as an ohmic contact was developed. UV photoresponses were measured for the samples stored in dry and wet atmospheres. The increase in sensitivity and response of the ZnO nanorod arrays was observed after prolonged exposure to a wet atmosphere. A model was proposed to explain this effect. This is due to the formation of hydroxyl groups on the surface of zinc oxide nanorods, which is confirmed by FTIR spectroscopy data. For the first time, it has been shown that after storage in a wet atmosphere, the sensory properties of the structure remain stable regardless of the ambient humidity.
Collapse
Affiliation(s)
- Maria Evstafieva
- Institute of Microelectronics Technology RAS, 6 Academician Ossipyan Str., 142432 Chernogolovka, Russia
| | - Arcady Redkin
- Institute of Microelectronics Technology RAS, 6 Academician Ossipyan Str., 142432 Chernogolovka, Russia
| | - Dmitry Roshchupkin
- Institute of Microelectronics Technology RAS, 6 Academician Ossipyan Str., 142432 Chernogolovka, Russia
| | - Tatyana Rudneva
- Institute of Microelectronics Technology RAS, 6 Academician Ossipyan Str., 142432 Chernogolovka, Russia
| | - Eugene E Yakimov
- Institute of Microelectronics Technology RAS, 6 Academician Ossipyan Str., 142432 Chernogolovka, Russia
| |
Collapse
|
10
|
Liu Y, Li Y, Hang Y, Wang L, Wang J, Bao N, Kim Y, Jang HW. Rapid assays of SARS-CoV-2 virus and noble biosensors by nanomaterials. NANO CONVERGENCE 2024; 11:2. [PMID: 38190075 PMCID: PMC10774473 DOI: 10.1186/s40580-023-00408-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 12/07/2023] [Indexed: 01/09/2024]
Abstract
The COVID-19 outbreak caused by SARS-CoV-2 in late 2019 has spread rapidly across the world to form a global epidemic of respiratory infectious diseases. Increased investigations on diagnostic tools are currently implemented to assist rapid identification of the virus because mass and rapid diagnosis might be the best way to prevent the outbreak of the virus. This critical review discusses the detection principles, fabrication techniques, and applications on the rapid detection of SARS-CoV-2 with three categories: rapid nuclear acid augmentation test, rapid immunoassay test and biosensors. Special efforts were put on enhancement of nanomaterials on biosensors for rapid, sensitive, and low-cost diagnostics of SARS-CoV-2 virus. Future developments are suggested regarding potential candidates in hospitals, clinics and laboratories for control and prevention of large-scale epidemic.
Collapse
Affiliation(s)
- Yang Liu
- School of Public Health, Nantong University, Nantong, 226019, Jiangsu, People's Republic of China
- Department of Materials Science and Engineering, Research Institute of Advanced Materials, Seoul National University, Seoul, 08826, Republic of Korea
- NantongEgens Biotechnology Co., LTD, Nantong, 226019, Jiangsu, People's Republic of China
| | - Yilong Li
- School of Public Health, Nantong University, Nantong, 226019, Jiangsu, People's Republic of China
| | - Yuteng Hang
- School of Public Health, Nantong University, Nantong, 226019, Jiangsu, People's Republic of China
| | - Lei Wang
- NantongEgens Biotechnology Co., LTD, Nantong, 226019, Jiangsu, People's Republic of China
| | - Jinghan Wang
- Department of Materials Science and Engineering, Research Institute of Advanced Materials, Seoul National University, Seoul, 08826, Republic of Korea
| | - Ning Bao
- School of Public Health, Nantong University, Nantong, 226019, Jiangsu, People's Republic of China
| | - Youngeun Kim
- Department of Materials Science and Engineering, Research Institute of Advanced Materials, Seoul National University, Seoul, 08826, Republic of Korea.
| | - Ho Won Jang
- Department of Materials Science and Engineering, Research Institute of Advanced Materials, Seoul National University, Seoul, 08826, Republic of Korea.
| |
Collapse
|
11
|
Saeed M, Marwani HM, Shahzad U, Asiri AM, Rahman MM. Recent Advances, Challenges, and Future Perspectives of ZnO Nanostructure Materials Towards Energy Applications. CHEM REC 2024; 24:e202300106. [PMID: 37249417 DOI: 10.1002/tcr.202300106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Revised: 05/17/2023] [Indexed: 05/31/2023]
Abstract
In this approach, zinc oxide (ZnO) is a multipurpose substance with remarkable characteristics such as high sensitivity, a large specific area, non-toxicity, excellent compatibility, and a high isoelectric point, which make it attractive for discussion with some limitations. It is the most favorable possible option for the collection of nanostructures in terms of structure and their characteristics. The development of numerous ZnO nanostructure-based electrochemical sensors and biosensors used in health diagnosis, pharmaceutical evaluation, food hygiene, and contamination of the environment monitoring is described, as well as the production of ZnO nanostructures. Nanostructured ZnO has good chemical and temperature durability as an n-type semiconducting material, making it useful in a wide range of uses, from luminous materials to supercapacitors, batteries, solar cells, photocatalysis, biosensors, medicinal devices, and more. When compared to the bulk materials, the nanosized materials have both a higher rate of disintegration and a higher solubility. Furthermore, ZnO nanoparticles are regarded as top contenders for electrochemical sensors due to their strong electrochemical behaviors and electron transmission characteristics. The impact of many factors, including selectivity, sensitivity, detection limit, strength, and structures, arrangements, and their respective functioning processes, has been investigated. This study concentrated a substantial amount of its attention on the recent advancements that have been made in ZnO-based nanoparticles, composites, and modified materials for use in the application areas of energy storage and conversion devices as well as biological applications. Supercapacitors, Li-ion batteries, dye-sensitized solar cells, photocatalysis, biosensors, medicinal, and biological systems have been studied. ZnO-based materials are constantly analyzed for their advantages in energy and life science applications.
Collapse
Affiliation(s)
- Mohsin Saeed
- Chemistry department, Faculty of Science, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| | - Hadi M Marwani
- Chemistry department, Faculty of Science, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
- Center of Excellence for Advanced Materials Research (CEAMR), King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| | - Umer Shahzad
- Chemistry department, Faculty of Science, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| | - Abdullah M Asiri
- Chemistry department, Faculty of Science, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
- Center of Excellence for Advanced Materials Research (CEAMR), King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| | - Mohammed M Rahman
- Chemistry department, Faculty of Science, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
- Center of Excellence for Advanced Materials Research (CEAMR), King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| |
Collapse
|
12
|
Ramalingam M, Jaisankar A, Cheng L, Krishnan S, Lan L, Hassan A, Sasmazel HT, Kaji H, Deigner HP, Pedraz JL, Kim HW, Shi Z, Marrazza G. Impact of nanotechnology on conventional and artificial intelligence-based biosensing strategies for the detection of viruses. DISCOVER NANO 2023; 18:58. [PMID: 37032711 PMCID: PMC10066940 DOI: 10.1186/s11671-023-03842-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Accepted: 03/28/2023] [Indexed: 04/05/2023]
Abstract
Recent years have witnessed the emergence of several viruses and other pathogens. Some of these infectious diseases have spread globally, resulting in pandemics. Although biosensors of various types have been utilized for virus detection, their limited sensitivity remains an issue. Therefore, the development of better diagnostic tools that facilitate the more efficient detection of viruses and other pathogens has become important. Nanotechnology has been recognized as a powerful tool for the detection of viruses, and it is expected to change the landscape of virus detection and analysis. Recently, nanomaterials have gained enormous attention for their value in improving biosensor performance owing to their high surface-to-volume ratio and quantum size effects. This article reviews the impact of nanotechnology on the design, development, and performance of sensors for the detection of viruses. Special attention has been paid to nanoscale materials, various types of nanobiosensors, the internet of medical things, and artificial intelligence-based viral diagnostic techniques.
Collapse
Affiliation(s)
- Murugan Ramalingam
- School of Basic Medical Sciences, Clinical Medical College & Affiliated Hospital, Chengdu University, Chengdu, 610106 China
- Institute of Tissue Regeneration Engineering, Dankook University, Cheonan, 31116 Republic of Korea
- Department of Nanobiomedical Science, Dankook University, Cheonan, 31116 Republic of Korea
- BK21 NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan, 31116 Republic of Korea
- Mechanobiology Dental Medicine Research Center, Dankook University, Cheonan, 31116 Republic of Korea
- UCL Eastman-Korea Dental Medicine Innovation Centre, Dankook University, Cheonan, 31116 South Korea
- Department of Metallurgical and Materials Engineering, Faculty of Engineering, Atilim University, 06836 Ankara, Turkey
| | - Abinaya Jaisankar
- Centre for Biomaterials, Cellular and Molecular Theranostics, School of Mechanical Engineering, Vellore Institute of Technology, Vellore, 632014 India
| | - Lijia Cheng
- School of Basic Medical Sciences, Clinical Medical College & Affiliated Hospital, Chengdu University, Chengdu, 610106 China
| | - Sasirekha Krishnan
- Centre for Biomaterials, Cellular and Molecular Theranostics, School of Mechanical Engineering, Vellore Institute of Technology, Vellore, 632014 India
| | - Liang Lan
- School of Basic Medical Sciences, Clinical Medical College & Affiliated Hospital, Chengdu University, Chengdu, 610106 China
| | - Anwarul Hassan
- Department of Mechanical and Industrial Engineering, Biomedical Research Center, Qatar University, 2713, Doha, Qatar
| | - Hilal Turkoglu Sasmazel
- Department of Metallurgical and Materials Engineering, Faculty of Engineering, Atilim University, 06836 Ankara, Turkey
| | - Hirokazu Kaji
- Department of Biomechanics, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, Tokyo, 101-0062 Japan
| | - Hans-Peter Deigner
- Institute of Precision Medicine, Medical and Life Sciences Faculty, Furtwangen University, 78054 Villingen-Schwenningen, Germany
| | - Jose Luis Pedraz
- NanoBioCel Group, Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country, 01006 Vitoria-Gasteiz, Spain
- Biomedical Research Networking Centre in Bioengineering, Biomaterials and Nanomedicine, 28029 Madrid, Spain
| | - Hae-Won Kim
- Institute of Tissue Regeneration Engineering, Dankook University, Cheonan, 31116 Republic of Korea
- Department of Nanobiomedical Science, Dankook University, Cheonan, 31116 Republic of Korea
- BK21 NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan, 31116 Republic of Korea
- Mechanobiology Dental Medicine Research Center, Dankook University, Cheonan, 31116 Republic of Korea
- UCL Eastman-Korea Dental Medicine Innovation Centre, Dankook University, Cheonan, 31116 South Korea
| | - Zheng Shi
- School of Basic Medical Sciences, Clinical Medical College & Affiliated Hospital, Chengdu University, Chengdu, 610106 China
| | - Giovanna Marrazza
- Department of Chemistry “Ugo Schiff”, University of Florence, 50019 Sesto Fiorentino, Florence, Italy
| |
Collapse
|
13
|
Wu L, Gao H, Han Q, Guan W, Sun S, Zheng T, Liu Y, Wang X, Huang R, Li G. Piezoelectric materials for neuroregeneration: a review. Biomater Sci 2023; 11:7296-7310. [PMID: 37812084 DOI: 10.1039/d3bm01111a] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/10/2023]
Abstract
The purpose of nerve regeneration via tissue engineering strategies is to create a microenvironment that mimics natural nerve growth for achieving functional recovery. Biomaterial scaffolds offer a promising option for the clinical treatment of large nerve gaps due to the rapid advancement of materials science and regenerative medicine. The design of biomimetic scaffolds should take into account the inherent properties of the nerve and its growth environment, such as stiffness, topography, adhesion, conductivity, and chemical functionality. Various advanced techniques have been employed to develop suitable scaffolds for nerve repair. Since neuronal cells have electrical activity, the transmission of bioelectrical signals is crucial for the functional recovery of nerves. Therefore, an ideal peripheral nerve scaffold should have electrical activity properties similar to those of natural nerves, in addition to a delicate structure. Piezoelectric materials can convert stress changes into electrical signals that can activate different intracellular signaling pathways critical for cell activity and function, which makes them potentially useful for nerve tissue regeneration. However, a comprehensive review of piezoelectric materials for neuroregeneration is still lacking. Thus, this review systematically summarizes the development of piezoelectric materials and their application in the field of nerve regeneration. First, the electrical signals and natural piezoelectricity phenomenon in various organisms are briefly introduced. Second, the most commonly used piezoelectric materials in neural tissue engineering, including biocompatible piezoelectric polymers, inorganic piezoelectric materials, and natural piezoelectric materials, are classified and discussed. Finally, the challenges and future research directions of piezoelectric materials for application in nerve regeneration are proposed.
Collapse
Affiliation(s)
- Linliang Wu
- Co-innovation Center of Neuroregeneration, Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Nantong University, 226001, Nantong, P. R. China.
- The People's Hospital of Rugao, Affiliated Hospital of Nantong University, 226599, Nantong, P. R. China
| | - Hongxia Gao
- Co-innovation Center of Neuroregeneration, Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Nantong University, 226001, Nantong, P. R. China.
| | - Qi Han
- Department of Science and Technology, Affiliated Hospital of Nantong University, 226001, Nantong, P. R. China
| | - Wenchao Guan
- Co-innovation Center of Neuroregeneration, Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Nantong University, 226001, Nantong, P. R. China.
| | - Shaolan Sun
- Co-innovation Center of Neuroregeneration, Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Nantong University, 226001, Nantong, P. R. China.
| | - Tiantian Zheng
- Co-innovation Center of Neuroregeneration, Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Nantong University, 226001, Nantong, P. R. China.
| | - Yaqiong Liu
- Co-innovation Center of Neuroregeneration, Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Nantong University, 226001, Nantong, P. R. China.
| | - Xiaolu Wang
- Suzhou SIMATECH Co. Ltd, 215168, Suzhou, P.R. China
| | - Ran Huang
- Zhejiang Cathaya International Co., Ltd, 310006, Hangzhou, P.R. China
| | - Guicai Li
- Co-innovation Center of Neuroregeneration, Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Nantong University, 226001, Nantong, P. R. China.
- National Engineering Laboratory for Modern Silk, Soochow University, Suzhou 215123, China
| |
Collapse
|
14
|
Li J, Guo Q, Tao Y, Li D, Yang Y, Zhou D, Pan J, Liu X, Tao Z. A Fast-Response Ultraviolet Phototransistor with a PVK QDs/ZnO Nanowire Heterostructure and Its Application in Pharmaceutical Solute Detection. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:1364. [PMID: 37110949 PMCID: PMC10142717 DOI: 10.3390/nano13081364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 04/06/2023] [Accepted: 04/11/2023] [Indexed: 06/19/2023]
Abstract
The sensitivity and photoelectric noise of UV photodetectors are challenges that need to be overcome in pharmaceutical solute detection applications. This paper presents a new device concept for a CsPbBr3 QDs/ZnO nanowire heterojunction structure for phototransistors. The lattice match of the CsPbBr3 QDs and ZnO nanowire reduces the generation of trap centers and avoids carrier absorption by the composite center, which greatly improves the carrier mobility and high detectivity (8.13 × 1014 Jones). It is worth noting that by using high-efficiency PVK quantum dots as the intrinsic sensing core, the device has a high responsivity (6381 A/W) and responsivity frequency (300 Hz). Thus, a UV detection system for pharmaceutical solute detection is demonstrated, and the type of solute in the chemical solution is estimated by the waveform and the size of the output 2f signals.
Collapse
Affiliation(s)
- Jiajun Li
- School of Electronics & Information Engineering, Nanjing University of Information Science & Technology, Nanjing 210044, China
| | - Qihua Guo
- School of Electronics & Information Engineering, Nanjing University of Information Science & Technology, Nanjing 210044, China
| | - Ye Tao
- School of Electronics & Information Engineering, Nanjing University of Information Science & Technology, Nanjing 210044, China
| | - Dalin Li
- School of Electronics & Information Engineering, Nanjing University of Information Science & Technology, Nanjing 210044, China
| | - Yiting Yang
- School of Electronics & Information Engineering, Nanjing University of Information Science & Technology, Nanjing 210044, China
| | - Dandan Zhou
- College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Jiangyong Pan
- School of Electronics & Information Engineering, Nanjing University of Information Science & Technology, Nanjing 210044, China
| | - Xiang Liu
- School of Electronics & Information Engineering, Nanjing University of Information Science & Technology, Nanjing 210044, China
| | - Zhi Tao
- School of Electronics & Information Engineering, Nanjing University of Information Science & Technology, Nanjing 210044, China
| |
Collapse
|
15
|
Karimi F, Altuner EE, Gulbagca F, Tiri RNE, Sen F, Javadi A, Dragoi EN. Facile bio-fabrication of ZnO@AC nanoparticles from chitosan: Characterization, hydrogen generation, and photocatalytic properties. ENVIRONMENTAL RESEARCH 2023; 216:114668. [PMID: 36397611 DOI: 10.1016/j.envres.2022.114668] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 10/10/2022] [Accepted: 10/24/2022] [Indexed: 06/16/2023]
Abstract
In this work, activated carbon-supported zinc oxide nanoparticles (ZnO@AC NPs) were studied using the thermal synthesis method. The activated carbon-supported zinc oxide catalyst was characterized by UV-Vis spectrometry techniques, Fourier Transform Infrared Spectrophotometer (FTIR), Transmissive electron microscopy (TEM), and X-ray diffraction (XRD) methods. XRD characterization measurements showed that the average size of the crystal NPs was 6.89 nm. According to the TEM analysis results, the nanoparticles' average size was 11.411 nm, and the particles had a spherical structure. The catalytic properties of the synthesized material were determined using the sodium borohydride methanolysis reaction. A kinetic study was performed regarding the effects of temperature, catalyst, and substrate concentration on the methanolysis reaction. Reusability experiments showed that the catalyst had excellent catalytic activity (85%), stability, and selectivity. As a result of the kinetic study, activation energy, enthalpy (ΔH), entropy (ΔS), and hydrogen production rate activation parameters were found to be 42.52 kJ/mol, 39.98 kJ/mol, -181.42 J/mol.K, 1257.69 mL/min. g, respectively. Also, the photocatalytic activity of ZnO@AC NPs was analyzed against Rhodamine B (RhB) dye, and the maximum degradation percentage was observed to be 76% at 120 min. This study aimed to develop the ZnO@AC NPs into an efficient photocatalyst to prevent industrial wastewater pollution and as a catalyst for hydrogen synthesis as an alternative energy source.
Collapse
Affiliation(s)
- Fatemeh Karimi
- Department of Chemical Engineering, Quchan University of Technology, Quchan, Iran.
| | - Elif Esra Altuner
- Sen Research Group, Department of Biochemistry, University of Dumlupinar, 43000, Kutahya, Turkey
| | - Fulya Gulbagca
- Sen Research Group, Department of Biochemistry, University of Dumlupinar, 43000, Kutahya, Turkey
| | - Rima Nour Elhouda Tiri
- Sen Research Group, Department of Biochemistry, University of Dumlupinar, 43000, Kutahya, Turkey
| | - Fatih Sen
- Sen Research Group, Department of Biochemistry, University of Dumlupinar, 43000, Kutahya, Turkey
| | - Alireza Javadi
- Department of Mining Engineering, Faculty of Engineering, University of Kashan, Kashan, Iran
| | - Elena Niculina Dragoi
- Cristofor Simionescu" Faculty of Chemical Engineering and Environmental Protection, "Gheorghe Asachi" Technical University, Iasi, 700050, Romania.
| |
Collapse
|
16
|
Kim KN, Ko WS, Byun JH, Lee DY, Jeong JK, Lee HD, Lee GW. Bottom-Gated ZnO TFT Pressure Sensor with 1D Nanorods. SENSORS (BASEL, SWITZERLAND) 2022; 22:8907. [PMID: 36433504 PMCID: PMC9698253 DOI: 10.3390/s22228907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 11/11/2022] [Accepted: 11/15/2022] [Indexed: 06/16/2023]
Abstract
In this study, a bottom-gated ZnO thin film transistor (TFT) pressure sensor with nanorods (NRs) is suggested. The NRs are formed on a planar channel of the TFT by hydrothermal synthesis for the mediators of pressure amplification. The fabricated devices show enhanced sensitivity by 16~20 times better than that of the thin film structure because NRs have a small pressure transmission area and causes more strain in the underlayered piezoelectric channel material. When making a sensor with a three-terminal structure, the leakage current in stand-by mode and optimal conductance state for pressure sensor is expected to be controlled by the gate voltage. A scanning electron microscope (SEM) was used to identify the nanorods grown by hydrothermal synthesis. X-ray diffraction (XRD) was used to compare ZnO crystallinity according to device structure and process conditions. To investigate the effect of NRs, channel mobility is also extracted experimentally and the lateral flow of current density is analyzed with simulation (COMSOL) showing that when the piezopotential due to polarization is formed vertically in the channel, the effective mobility is degraded.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Ga-Won Lee
- Correspondence: ; Tel.: +82-42-821-5666; Fax: +82-42-823-9544
| |
Collapse
|
17
|
Enhancement of Piezoelectric Properties of Flexible Nanofibrous Membranes by Hierarchical Structures and Nanoparticles. Polymers (Basel) 2022; 14:polym14204268. [DOI: 10.3390/polym14204268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Revised: 10/06/2022] [Accepted: 10/09/2022] [Indexed: 11/16/2022] Open
Abstract
Piezoelectric nanogenerators (PENGs) show superiority in self-powered energy converters and wearable electronics. However, the low power output and ineffective transformation of mechanical energy into electric energy l limit the role of PENGs in energy conversion and storage devices, especially in fiber-based wearable electronics. Here, a PAN-PVDF/ZnO PENG with a hierarchical structure was designed through electrospinning and a hydrothermal reaction. Compared with other polymer nanofibers, the PAN-PVDF/ZnO nanocomposites not only showed two distinctive diameter distributions of uniform nanofibers, but also the complete coverage and embedment of ZnO nanorods, which brought about major improvements in both mechanical and piezoelectric properties. Additionally, a simple but effective method to integrate the inorganic nanoparticles into different polymers and regulate the hierarchical structure by altering the types of polymers, concentrations of spinning solutions, and growth conditions of nanoparticles is presented. Further, the designed P-PVDF/ZnO PENG was demonstrated as an energy generator to successfully power nine commercial LEDs. Thus, this approach reveals the critical role of hierarchical structures and processing technology in the development of high-performance piezoelectric nanomaterials.
Collapse
|
18
|
El Fidha G, Bitri N, Mahjoubi S, Chaabouni F, Llobet E, Casanova-Chafer J. Dysprosium Doped Zinc Oxide for NO 2 Gas Sensing. SENSORS (BASEL, SWITZERLAND) 2022; 22:5173. [PMID: 35890853 PMCID: PMC9317177 DOI: 10.3390/s22145173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 07/06/2022] [Accepted: 07/07/2022] [Indexed: 06/15/2023]
Abstract
Pure and dysprosium-loaded ZnO films were grown by radio-frequency magnetron sputtering. The films were characterized using a wide variety of morphological, compositional, optical, and electrical techniques. The crystalline structure, surface homogeneity, and bandgap energies were studied in detail for the developed nanocomposites. The properties of pure and dysprosium-doped ZnO thin films were investigated to detect nitrogen dioxide (NO2) at the ppb range. In particular, ZnO sensors doped with rare-earth materials have been demonstrated as a feasible strategy to improve the sensitivity in comparison to their pure ZnO counterparts. In addition, the sensing performance was studied and discussed under dry and humid environments, revealing noteworthy stability and reliability under different experimental conditions. In this perspective, additional gaseous compounds such as ammonia and ethanol were measured, resulting in extremely low sensing responses. Therefore, the gas-sensing mechanisms were discussed in detail to better understand the NO2 selectivity given by the Dy-doped ZnO layer.
Collapse
Affiliation(s)
- Ghada El Fidha
- École Nationale Supérieure d’Ingénieurs de Tunis, Université de Tunis, Avenue Taha Hussein Montfleury, Tunis 1008, Tunisia;
- Laboratoire de Photovoltaïque et Matériaux Semi-Conducteurs, École Nationale d’Ingénieurs de Tunis, Université de Tunis, Tunis 1002, Tunisia; (N.B.); (S.M.); (F.C.)
| | - Nabila Bitri
- Laboratoire de Photovoltaïque et Matériaux Semi-Conducteurs, École Nationale d’Ingénieurs de Tunis, Université de Tunis, Tunis 1002, Tunisia; (N.B.); (S.M.); (F.C.)
| | - Sarra Mahjoubi
- Laboratoire de Photovoltaïque et Matériaux Semi-Conducteurs, École Nationale d’Ingénieurs de Tunis, Université de Tunis, Tunis 1002, Tunisia; (N.B.); (S.M.); (F.C.)
| | - Fatma Chaabouni
- Laboratoire de Photovoltaïque et Matériaux Semi-Conducteurs, École Nationale d’Ingénieurs de Tunis, Université de Tunis, Tunis 1002, Tunisia; (N.B.); (S.M.); (F.C.)
| | - Eduard Llobet
- Microsystems Nanotechnologies for Chemical Analysis (MINOS), Universitat Rovira i Virgili, Avda. Països Catalans, 26, 43007 Tarragona, Spain;
| | - Juan Casanova-Chafer
- Microsystems Nanotechnologies for Chemical Analysis (MINOS), Universitat Rovira i Virgili, Avda. Països Catalans, 26, 43007 Tarragona, Spain;
| |
Collapse
|
19
|
Sebastian N, Yu WC, Balram D. Ultrasensitive Electrochemical Detection and Plasmon-Enhanced Photocatalytic Degradation of Rhodamine B Based on Dual-Functional, 3D, Hierarchical Ag/ZnO Nanoflowers. SENSORS 2022; 22:s22135049. [PMID: 35808543 PMCID: PMC9269782 DOI: 10.3390/s22135049] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 06/29/2022] [Accepted: 06/30/2022] [Indexed: 01/25/2023]
Abstract
The sensitive detection and degradation of synthetic dyes are pivotal to maintain safety owing to the adverse side effects they impart on living beings. In this work, we developed a sensitive electrochemical sensor for the nanomolar-level detection of rhodamine B (RhB) using a dual-functional, silver-decorated zinc oxide (Ag/ZnO) composite-modified, screen-printed carbon electrode. The plasmon-enhanced photocatalytic degradation of organic pollutant RhB was also performed using this nanocomposite prepared by embedding different weight percentages (1, 3, and 5 wt%) of Ag nanoparticles on the surface of a three-dimensional (3D), hierarchical ZnO nanostructure based on the photoreduction approach. The structure and morphology of an Ag/ZnO nanocomposite were characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), elemental mapping, ultraviolet-visible (UV-vis) spectroscopy, and X-ray diffraction (XRD). The electrochemical sensor exhibited a very high sensitivity of 151.44 µAµM-1cm-2 and low detection limit of 0.8 nM towards RhB detection. The selectivity, stability, repeatability, reproducibility, and practical feasibility were also analyzed to prove their reliability. Furthermore, the photocatalysis results revealed that 3 wt% of the Ag/ZnO hybrid nanostructure acquired immense photostability, reusability, and 90.5% degradation efficiency under visible light. Additionally, the pseudo-first-order rate constant of Ag-3/ZnO is 2.186 min-1 suggested promising activity in visible light photocatalysis.
Collapse
Affiliation(s)
- Neethu Sebastian
- Institute of Organic and Polymeric Materials, National Taipei University of Technology, No. 1, Section 3, Zhongxiao East Road, Taipei 106, Taiwan;
| | - Wan-Chin Yu
- Institute of Organic and Polymeric Materials, National Taipei University of Technology, No. 1, Section 3, Zhongxiao East Road, Taipei 106, Taiwan;
- Correspondence:
| | - Deepak Balram
- Department of Electrical Engineering, National Taipei University of Technology, No. 1, Section 3, Zhongxiao East Road, Taipei 106, Taiwan;
| |
Collapse
|
20
|
Adam T, Gopinath SC. Nanosensors: Recent Perspectives on Attainments and Future Promise of Downstream Applications. Process Biochem 2022. [DOI: 10.1016/j.procbio.2022.03.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
21
|
Mo G, Cui Y, Yin J, Gao P. Development and Characterization of ZnO Piezoelectric Thin Film Sensors on GH4169 Superalloy Steel Substrate by Magnetron Sputtering. MICROMACHINES 2022; 13:390. [PMID: 35334685 PMCID: PMC8950897 DOI: 10.3390/mi13030390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 02/24/2022] [Accepted: 02/25/2022] [Indexed: 02/01/2023]
Abstract
At present, piezoelectric sensors are primarily applied in health monitoring areas. They may fall off owing to the adhesive's durability, and even damage the monitored equipment. In this paper, a piezoelectric film sensor (PFS) based on a positive piezoelectric effect (PPE) is presented and a ZnO film is deposited on a GH4169 superalloy steel (GSS) substrate using magnetron sputtering. The microstructure and micrograph of ZnO piezoelectric thin films were analyzed by an X-ray diffractometer (XRD), energy dispersive spectrometer (EDS), scanning electron microscope (SEM), and atomic force microscope (AFM). The results showed that the surface morphology was dense and uniform and had a good c-axis-preferred orientation. According to the test results of five piezoelectric sensors, the average value of the longitudinal piezoelectric coefficient was 1.36 pC/N, and the average value of the static calibration sensitivity was 19.77 mV/N. We selected the sensor whose parameters are closest to the average value for the dynamic test experiment and we drew the output voltage response curve of the piezoelectric film sensor under different loads. The measurement error was 4.03% when repeating the experiment six times. The research achievements reveal the excellent performance of the piezoelectric film sensor directly deposited on a GH4169 superalloy steel substrate. This method can reduce measurement error caused by the adhesive and reduce the risk of falling off caused by the aging of the adhesive, which provides a basis for the research of smart bolts and guarantees a better application in structural health monitoring (SHM).
Collapse
Affiliation(s)
- Guowei Mo
- Mechanical and Electronic Engineering, College of Mechanical Engineering, Dalian Jiaotong University, Dalian 116024, China
| | - Yunxian Cui
- Mechanical and Electronic Engineering, College of Mechanical Engineering, Dalian Jiaotong University, Dalian 116024, China
| | - Junwei Yin
- Mechanical and Electronic Engineering, College of Mechanical Engineering, Dalian Jiaotong University, Dalian 116024, China
| | - Pengfei Gao
- Mechanical and Electronic Engineering, College of Mechanical Engineering, Dalian Jiaotong University, Dalian 116024, China
| |
Collapse
|
22
|
Effects of Ambience on Thermal-Diffusion Type Ga-doping Process for ZnO Nanoparticles. COATINGS 2022. [DOI: 10.3390/coatings12010057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Various annealing atmospheres were employed during our unique thermal-diffusion type Ga-doping process to investigate the surface, structural, optical, and electrical properties of Ga-doped zinc oxide (ZnO) nanoparticle (NP) layers. ZnO NPs were synthesized using an arc-discharge-mediated gas evaporation method, followed by Ga-doping under open-air, N2, O2, wet, and dry air atmospheric conditions at 800 °C to obtain the low resistive spray-coated NP layers. The I–V results revealed that the Ga-doped ZnO NP layer successfully reduced the sheet resistance in the open air (8.0 × 102 Ω/sq) and wet air atmosphere (8.8 × 102 Ω/sq) compared with un-doped ZnO (4.6 × 106 Ω/sq). Humidity plays a key role in the successful improvement of sheet resistance during Ga-doping. X-ray diffraction patterns demonstrated hexagonal wurtzite structures with increased crystallite sizes of 103 nm and 88 nm after doping in open air and wet air atmospheres, respectively. The red-shift of UV intensity indicates successful Ga-doping, and the atmospheric effects were confirmed through the analysis of the defect spectrum. Improved electrical conductivity was also confirmed using the thin-film-transistor-based structure. The current controllability by applying the gate electric-field was also confirmed, indicating the possibility of transistor channel application using the obtained ZnO NP layers.
Collapse
|
23
|
Abstract
In this work, the main objective is to enhance the gas sensing capability through investigating the effect of Al and Mg doping on ZnO based sensors. ZnO, Mg1% doped ZnO, Al5% doped ZnO and (Al5%, Mg1%) co-doped ZnO nanoparticles (NPs) were synthesized by a modified sol-gel method. The structural characterization showed the hexagonal crystalline structure of the prepared samples. Morphological characterizations confirmed the nanometric sizes of the NPs (27–57 nm) and elemental composition investigation proved the existence of Al and Mg with low concentrations. The optical characterization showed the high absorbance of the synthesized samples in the UV range. The gas sensing performances of the synthesized samples, prepared in the form of thick films, were investigated. Sensing tests demonstrated the high influence of the Al and Mg on the sensing performances towards H2 and CO gas, respectively. The 5A1MZO-based sensor exhibits high sensitivity and low detection limits to H2 (<2 ppm) and CO (<1 ppm). It showed a response around 70 (at 250 °C) towards 2000 ppm H2 and 2 (at 250 °C) towards CO.
Collapse
|