1
|
Fadhil MJ, Gharghan SK, Saeed TR. Air pollution forecasting based on wireless communications: review. ENVIRONMENTAL MONITORING AND ASSESSMENT 2023; 195:1152. [PMID: 37670163 DOI: 10.1007/s10661-023-11756-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 08/19/2023] [Indexed: 09/07/2023]
Abstract
The development of contemporary artificial intelligence (AI) methods such as artificial neural networks (ANNs) has given researchers around the world new opportunities to address climate change and air quality issues. The small size, low cost, and low power consumption of sensors can facilitate obtaining the values of polluting gases in the atmosphere. However, several problems with using air pollution technique relate to various effects such as sensing accuracy, sensor drifts, and sluggish reactions to changes in pollution levels. Recently, machine learning has made it feasible to build a more intelligent, context-aware system that can anticipate events and monitor present conditions. This paper focuses on the use of environment sensors for detecting air pollution based on several types of wireless protocols, including Wi-Fi, Bluetooth, ZigBee, LoRa, Global Positioning System (GPS), and 4G/5G. Furthermore, it classifies previous published articles on the topic according to the wireless protocol and compared in terms of several performance metrics such as the adopted air pollution sensors, hardware platform, adopted algorithm, power consumption or power savings, and sensing accuracy. In addition, this work highlights the challenges and limitations facing drones during their mission for detecting air pollution. As a result, we suggest to build and implement at base station an intelligent system based on backpropagation (BP) neural networks, which provides flexibility to track and predict the true values of polluting gases in the atmosphere to overcome the above problems. Finally, this work addresses the advantages of using drones in the air pollution field.
Collapse
Affiliation(s)
- Muthna J Fadhil
- Department of Electrical Engineering, University of Technology, Baghdad, Iraq.
- Middle Technical University, Electrical Engineering Technical College, Baghdad, Iraq.
| | - Sadik Kamel Gharghan
- Middle Technical University, Electrical Engineering Technical College, Baghdad, Iraq
| | - Thamir R Saeed
- Department of Electrical Engineering, University of Technology, Baghdad, Iraq
| |
Collapse
|
2
|
Tsang TW, Mui KW, Wong LT, Law KY, Shek KW. A Novel IoT-Enabled Wireless Sensor Grid for Spatial and Temporal Evaluation of Tracer Gas Dispersion. SENSORS (BASEL, SWITZERLAND) 2023; 23:3920. [PMID: 37112265 PMCID: PMC10145748 DOI: 10.3390/s23083920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 04/07/2023] [Accepted: 04/11/2023] [Indexed: 06/19/2023]
Abstract
Current IoT applications in indoor air focus mainly on general monitoring. This study proposed a novel IoT application to evaluate airflow patterns and ventilation performance using tracer gas. The tracer gas is a surrogate for small-size particles and bioaerosols and is used in dispersion and ventilation studies. Prevalent commercial tracer-gas-measuring instruments, although highly accurate, are relatively expensive, have a long sampling cycle, and are limited in the number of sampling points. To enhance the spatial and temporal understanding of tracer gas dispersion under the influence of ventilation, a novel application of an IoT-enabled, wireless R134a sensing network using commercially available small sensors was proposed. The system has a detection range of 5-100 ppm and a sampling cycle of 10 s. Using Wi-Fi communication, the measurement data are transmitted to and stored in a cloud database for remote, real-time analysis. The novel system provides a quick response, detailed spatial and temporal profiles of the tracer gas level, and a comparable air change rate analysis. With multiple units deployed as a wireless sensing network, the system can be applied as an affordable alternative to traditional tracer gas systems to identify the dispersion pathway of the tracer gas and the general airflow direction.
Collapse
Affiliation(s)
- Tsz-Wun Tsang
- Department of Building Environment and Energy Engineering, The Hong Kong Polytechnic University, Hong Kong, China
| | - Kwok-Wai Mui
- Department of Building Environment and Energy Engineering, The Hong Kong Polytechnic University, Hong Kong, China
| | - Ling-Tim Wong
- Department of Building Environment and Energy Engineering, The Hong Kong Polytechnic University, Hong Kong, China
| | - Kwok-Yung Law
- Department of Mechanical Engineering, The Hong Kong Polytechnic University, Hong Kong, China
| | - Ka-Wing Shek
- Department of Building Environment and Energy Engineering, The Hong Kong Polytechnic University, Hong Kong, China
| |
Collapse
|
3
|
A Low-Cost Open-Source Architecture for a Digital Signage Emergency Evacuation System for Cruise Ships, Based on IoT and LTE/4G Technologies. FUTURE INTERNET 2022. [DOI: 10.3390/fi14120366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
During a ship evacuation, many people panic as they do not know the direction that leads to the emergency muster station. Moreover, sometimes passengers get crowded in corridors or stairs, so they cannot save their lives. This paper proposes an IoT-enabled architecture for digital signage systems that directs passengers to the muster stations of a cruise ship by following the less dangerous route. Thus, crews’ and passengers’ safety risks during a ship evacuation can be low, and human health hazards may be limited. The system is based on a low-cost and open-source architecture that can also be used in a variety of fields in industrial IoT applications. The proposed modular digital signage architecture utilizes Light Emitting Diode (LED) strips that are remotely managed through a private Long-Term Evolution (LTE)/Fourth Generation (4G) cellular network. Publish–subscribe communication protocols were used for the control of the digital strips and particularly through a Message Queuing Telemetry Transport (MQTT) broker who publishes/subscribes every message to specific topics of the realized IoT platform, while the overall digital signage system centralization was implemented with an appropriate dashboard supported from an open-source RESTful API.
Collapse
|
4
|
Shen J, Ghatti S, Levkov NR, Shen H, Sen T, Rheuban K, Enfield K, Facteau NR, Engel G, Dowdell K. A survey of COVID-19 detection and prediction approaches using mobile devices, AI, and telemedicine. Front Artif Intell 2022; 5:1034732. [PMID: 36530356 PMCID: PMC9755752 DOI: 10.3389/frai.2022.1034732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 11/02/2022] [Indexed: 09/19/2023] Open
Abstract
Since 2019, the COVID-19 pandemic has had an extremely high impact on all facets of the society and will potentially have an everlasting impact for years to come. In response to this, over the past years, there have been a significant number of research efforts on exploring approaches to combat COVID-19. In this paper, we present a survey of the current research efforts on using mobile Internet of Thing (IoT) devices, Artificial Intelligence (AI), and telemedicine for COVID-19 detection and prediction. We first present the background and then present current research in this field. Specifically, we present the research on COVID-19 monitoring and detection, contact tracing, machine learning based approaches, telemedicine, and security. We finally discuss the challenges and the future work that lay ahead in this field before concluding this paper.
Collapse
Affiliation(s)
- John Shen
- Department of Computer Science, University of Virginia, Charlottesville, VA, United States
| | - Siddharth Ghatti
- Department of Computer Science, University of Virginia, Charlottesville, VA, United States
| | - Nate Ryan Levkov
- Department of Computer Science, University of Virginia, Charlottesville, VA, United States
| | - Haiying Shen
- Department of Computer Science, University of Virginia, Charlottesville, VA, United States
| | - Tanmoy Sen
- Department of Computer Science, University of Virginia, Charlottesville, VA, United States
| | - Karen Rheuban
- School of Medicine, University of Virginia, Charlottesville, VA, United States
| | - Kyle Enfield
- School of Medicine, University of Virginia, Charlottesville, VA, United States
| | - Nikki Reyer Facteau
- University of Virginia (UVA) Health System, University of Virginia, Charlottesville, VA, United States
| | - Gina Engel
- School of Medicine, University of Virginia, Charlottesville, VA, United States
| | - Kim Dowdell
- School of Medicine, University of Virginia, Charlottesville, VA, United States
| |
Collapse
|
5
|
Costanzo S, Flores A. COVID-19 Contagion Risk Estimation Model for Indoor Environments. SENSORS (BASEL, SWITZERLAND) 2022; 22:7668. [PMID: 36236766 PMCID: PMC9571772 DOI: 10.3390/s22197668] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 10/05/2022] [Accepted: 10/06/2022] [Indexed: 06/16/2023]
Abstract
COVID-19 is an infectious disease mainly transmitted through aerosol particles. Physical distancing can significantly reduce airborne transmission at a short range, but it is not a sufficient measure to avoid contagion. In recent months, health authorities have identified indoor spaces as possible sources of infection, mainly due to poor ventilation, making it necessary to take measures to improve indoor air quality. In this work, an accurate model for COVID-19 contagion risk estimation based on the Wells-Riley probabilistic approach for indoor environments is proposed and implemented as an Android mobile App. The implemented algorithm takes into account all relevant parameters, such as environmental conditions, age, kind of activities, and ventilation conditions, influencing the risk of contagion to provide the real-time probability of contagion with respect to the permanence time, the maximum allowed number of people for the specified area, the expected number of COVID-19 cases, and the required number of Air Changes per Hour. Alerts are provided to the user in the case of a high probability of contagion and CO2 concentration. Additionally, the app exploits a Bluetooth signal to estimate the distance to other devices, allowing the regulation of social distance between people. The results from the application of the model are provided and discussed for different scenarios, such as offices, restaurants, classrooms, and libraries, thus proving the effectiveness of the proposed tool, helping to reduce the spread of the virus still affecting the world population.
Collapse
Affiliation(s)
- Sandra Costanzo
- DIMES, Università della Calabria, 87036 Rende, Italy
- CNR-IREA Consiglio Nazionale delle Ricerche, 80124 Naples, Italy
- ICEmB, Inter-University National Research Center on Interactions between Electromagnetic Fields and Biosystems, 16145 Genoa, Italy
- CNIT, Consorzio Nazionale Interuniversitario per le Telecomunicazioni, 43124 Parma, Italy
| | | |
Collapse
|
6
|
Al Huraimel K, Alhosani M, Gopalani H, Kunhabdulla S, Stietiya MH. Elucidating the role of environmental management of forests, air quality, solid waste and wastewater on the dissemination of SARS-CoV-2. HYGIENE AND ENVIRONMENTAL HEALTH ADVANCES 2022; 3:100006. [PMID: 37519421 PMCID: PMC9095661 DOI: 10.1016/j.heha.2022.100006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 04/13/2022] [Accepted: 04/30/2022] [Indexed: 11/29/2022]
Abstract
The increasing frequency of zoonotic diseases is amongst several catastrophic repercussions of inadequate environmental management. Emergence, prevalence, and lethality of zoonotic diseases is intrinsically linked to environmental management which are currently at a destructive level globally. The effects of these links are complicated and interdependent, creating an urgent need of elucidating the role of environmental mismanagement to improve our resilience to future pandemics. This review focused on the pertinent role of forests, outdoor air, indoor air, solid waste and wastewater management in COVID-19 dissemination to analyze the opportunities prevailing to control infectious diseases considering relevant data from previous disease outbreaks. Global forest management is currently detrimental and hotspots of forest fragmentation have demonstrated to result in zoonotic disease emergences. Deforestation is reported to increase susceptibility to COVID-19 due to wildfire induced pollution and loss of forest ecosystem services. Detection of SARS-CoV-2 like viruses in multiple animal species also point to the impacts of biodiversity loss and forest fragmentation in relation to COVID-19. Available literature on air quality and COVID-19 have provided insights into the potential of air pollutants acting as plausible virus carrier and aggravating immune responses and expression of ACE2 receptors. SARS-CoV-2 is detected in outdoor air, indoor air, solid waste, wastewater and shown to prevail on solid surfaces and aerosols for prolonged hours. Furthermore, lack of protection measures and safe disposal options in waste management are evoking concerns especially in underdeveloped countries due to high infectivity of SARS-CoV-2. Inadequate legal framework and non-adherence to environmental regulations were observed to aggravate the postulated risks and vulnerability to future waves of pandemics. Our understanding underlines the urgent need to reinforce the fragile status of global environmental management systems through the development of strict legislative frameworks and enforcement by providing institutional, financial and technical supports.
Collapse
Affiliation(s)
- Khaled Al Huraimel
- Division of Consultancy, Research & Innovation (CRI), Sharjah Environment Company - Bee'ah, Sharjah, United Arab Emirates
| | - Mohamed Alhosani
- Division of Consultancy, Research & Innovation (CRI), Sharjah Environment Company - Bee'ah, Sharjah, United Arab Emirates
| | - Hetasha Gopalani
- Division of Consultancy, Research & Innovation (CRI), Sharjah Environment Company - Bee'ah, Sharjah, United Arab Emirates
| | - Shabana Kunhabdulla
- Division of Consultancy, Research & Innovation (CRI), Sharjah Environment Company - Bee'ah, Sharjah, United Arab Emirates
| | - Mohammed Hashem Stietiya
- Division of Consultancy, Research & Innovation (CRI), Sharjah Environment Company - Bee'ah, Sharjah, United Arab Emirates
| |
Collapse
|
7
|
Winck JC, Almeida SM, Correia G, Gabriel MF, Marques G, Silva MG. A call for a national strategy for indoor air quality. Pulmonology 2022; 28:245-251. [PMID: 35351401 PMCID: PMC8957366 DOI: 10.1016/j.pulmoe.2022.02.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Revised: 02/13/2022] [Accepted: 02/14/2022] [Indexed: 12/04/2022] Open
Affiliation(s)
- J C Winck
- Faculdade de Medicina da Universidade do Porto, Porto 4200-319, Portugal.
| | - S M Almeida
- Centro de Ciências e Tecnologias Nucleares, Instituto Superior Técnico, Universidade de Lisboa, EN10, km 139.7, Bobadela LRS 2695-066, Portugal
| | - G Correia
- Institute of Microbiology, FMUC - Faculty of Medicine, University of Coimbra, Coimbra, Portugal; Medical Microbiology Research Group, CIBB -Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal
| | - M F Gabriel
- INEGI, Institute of Science and Innovation in Mechanical and Industrial Engineering, Campus da FEUP, Rua Dr. Roberto Frias 400, Porto 4200-465, Portugal
| | - G Marques
- Polytechnic of Coimbra, ESTGOH, Rua General Santos Costa, 3400-124 Oliveira do Hospital, Portugal
| | - M G Silva
- Universidade de Coimbra, Associação para o Desenvolvimento da Aerodinâmica Industrial, Departamento de Engenharia Mecânica, Rua Luís Reis Santos, Pólo II, Coimbra 3030-788, Portugal
| |
Collapse
|
8
|
Xu Q, Goh HC, Mousavi E, Nabizadeh Rafsanjani H, Varghese Z, Pandit Y, Ghahramani A. Towards Personalization of Indoor Air Quality: Review of Sensing Requirements and Field Deployments. SENSORS (BASEL, SWITZERLAND) 2022; 22:3444. [PMID: 35591133 PMCID: PMC9104953 DOI: 10.3390/s22093444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 04/20/2022] [Accepted: 04/26/2022] [Indexed: 06/15/2023]
Abstract
As humans spend more time indoors, ensuring acceptable indoor air quality (IAQ) through ubiquitous sensing systems has become a necessity. Although extensive studies have been conducted on the IAQ sensing systems, a holistic review of the performance and deployment of Ubiquitous IAQ Sensing (UIAQS) systems with associated requirements in IAQ sensing standards is still lacking. In this study, we first reviewed IAQ pollutants and other IAQ-related factors and the associated requirements in the prominent IAQ sensing standards. We found that while non-pollutant factors are influential on occupants' perception of IAQ and their satisfaction, they do not have evaluation metrics in the IAQ standards. Then, we systematically reviewed field studies on UIAQS technologies in the literature. Specific classes of information were recorded and analyzed further. We found that the majority of the UIAQS systems did not meet the requirements of the prominent IAQ sensing standards and identified four primary research gaps. We concluded that a new holistic and personalized approach that incorporates UIAQS measurements and subjective feedback is needed. This study provides valuable insights for researchers and policymakers to better improve UIAQS technologies by developing personalized IAQ sensors and sensing standards.
Collapse
Affiliation(s)
- Qian Xu
- Department of the Built Environment, College of Design and Engineering, National University of Singapore, Singapore 119077, Singapore; (Q.X.); (H.C.G.)
| | - Hui Ci Goh
- Department of the Built Environment, College of Design and Engineering, National University of Singapore, Singapore 119077, Singapore; (Q.X.); (H.C.G.)
| | - Ehsan Mousavi
- Department of Construction Science and Management, Clemson University, Clemson, SC 29634, USA;
| | | | - Zubin Varghese
- Trane Technologies PLC Engineering & Technology Centre, Bangalore 560029, India; (Z.V.); (Y.P.)
| | - Yogesh Pandit
- Trane Technologies PLC Engineering & Technology Centre, Bangalore 560029, India; (Z.V.); (Y.P.)
| | - Ali Ghahramani
- Department of the Built Environment, College of Design and Engineering, National University of Singapore, Singapore 119077, Singapore; (Q.X.); (H.C.G.)
| |
Collapse
|
9
|
Chang I, Castillo J, Montes H. Technology-Based Social Innovation: Smart City Inclusive System for Hearing Impairment and Visual Disability Citizens. SENSORS 2022; 22:s22030848. [PMID: 35161593 PMCID: PMC8839762 DOI: 10.3390/s22030848] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 01/03/2022] [Accepted: 01/15/2022] [Indexed: 11/17/2022]
Abstract
The multilayer technology integration of hardware and software will reduce the social inclusion gap and increase the support in case of an emergency for people with special needs at hearing and visual levels. This research shows a development based on Internet of Things to support people with visual disabilities (PwVD) for indoor and outdoor activities. The decision-making process is made at the operational, tactical, and strategic level, providing a safe place so people with visual and hearing special needs can make decisions, their families can make decisions, and the government authorities can make decisions in case of an emergency or even on a day-by-day basis. In the case of the authorities, the smart visualization of the data according to the information provided facilitates Comprehensive Disaster Risk Management (CDRM) and Disaster Risk Reduction (DRR). The main findings are based on the need to develop mobile applications, dashboard and web applications that are responsive to people with visual or hearing disabilities, and the need to develop an infrastructure of communication systems assisted by batteries and clean energy, and independent of the current telecommunications system, to allow greater reliability.
Collapse
Affiliation(s)
- Ignacio Chang
- Facultad de Ingeniería Eléctrica, Universidad Tecnológica de Panamá, El Dorado, Panama City 0819-07289, Panama;
| | - Juan Castillo
- Centro de Investigación, Desarrollo e Innovación en Tecnologías de la Información y las Comunicaciones (CIDITIC), Universidad Tecnológica de Panamá, El Dorado, Panama City 0819-07289, Panama;
- Centro Internacional de Desarrollo Tecnológico y Software Libre (CIDETyS AIP), Universidad Tecnológica de Panamá, El Dorado, Panama City 0819-07289, Panama
| | - Hector Montes
- Centro de Investigación e Innovación Eléctrica, Mecánica y de la Industria (CINEMI), Universidad Tecnológica de Panamá, El Dorado, Panama City 0819-07289, Panama
- Centre for Automation and Robotics CSIC-UPM, Arganda del Rey, 28500 Madrid, Spain
- Correspondence: or
| |
Collapse
|