1
|
Li KH, Chien CY, Tai SY, Chan LP, Chang NC, Wang LF, Ho KY, Lien YJ, Ho WH. Prognosis Prediction of Sudden Sensorineural Hearing Loss Using Ensemble Artificial Intelligence Learning Models. Otol Neurotol 2024; 45:759-764. [PMID: 38918073 DOI: 10.1097/mao.0000000000004241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/27/2024]
Abstract
OBJECTIVE We used simple variables to construct prognostic prediction ensemble learning models for patients with sudden sensorineural hearing loss (SSNHL). STUDY DESIGN Retrospectively study. SETTING Tertiary medical center. PATIENTS 1,572 patients with SSNHL. INTERVENTION Prognostic. MAIN OUTCOME MEASURES We selected four variables, namely, age, days after onset of hearing loss, vertigo, and type of hearing loss. We also compared the accuracy between different ensemble learning models based on the boosting, bagging, AdaBoost, and stacking algorithms. RESULTS We enrolled 1,572 patients with SSNHL; 73.5% of them showed improving and 26.5% did not. Significant between-group differences were noted in terms of age ( p = 0.011), days after onset of hearing loss ( p < 0.001), and concurrent vertigo ( p < 0.001), indicating that the patients who showed improving to treatment were younger and had fewer days after onset and fewer vertigo symptoms. Among ensemble learning models, the AdaBoost algorithm, compared with the other algorithms, achieved higher accuracy (82.89%), higher precision (86.66%), a higher F1 score (89.20), and a larger area under the receiver operating characteristics curve (0.79), as indicated by test results of a dataset with 10 independent runs. Furthermore, Gini scores indicated that age and days after onset are two key parameters of the predictive model. CONCLUSIONS The AdaBoost model is an effective model for predicting SSNHL. The use of simple parameters can increase its practicality and applicability in remote medical care. Moreover, age may be a key factor influencing prognosis.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Yu-Jui Lien
- Department of Healthcare Administration and Medical Informatics, Kaohsiung Medical University, Kaohsiung, Taiwan
| | | |
Collapse
|
2
|
Alsulimani A, Akhter N, Jameela F, Ashgar RI, Jawed A, Hassani MA, Dar SA. The Impact of Artificial Intelligence on Microbial Diagnosis. Microorganisms 2024; 12:1051. [PMID: 38930432 PMCID: PMC11205376 DOI: 10.3390/microorganisms12061051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 05/19/2024] [Accepted: 05/21/2024] [Indexed: 06/28/2024] Open
Abstract
Traditional microbial diagnostic methods face many obstacles such as sample handling, culture difficulties, misidentification, and delays in determining susceptibility. The advent of artificial intelligence (AI) has markedly transformed microbial diagnostics with rapid and precise analyses. Nonetheless, ethical considerations accompany AI adoption, necessitating measures to uphold patient privacy, mitigate biases, and ensure data integrity. This review examines conventional diagnostic hurdles, stressing the significance of standardized procedures in sample processing. It underscores AI's significant impact, particularly through machine learning (ML), in microbial diagnostics. Recent progressions in AI, particularly ML methodologies, are explored, showcasing their influence on microbial categorization, comprehension of microorganism interactions, and augmentation of microscopy capabilities. This review furnishes a comprehensive evaluation of AI's utility in microbial diagnostics, addressing both advantages and challenges. A few case studies including SARS-CoV-2, malaria, and mycobacteria serve to illustrate AI's potential for swift and precise diagnosis. Utilization of convolutional neural networks (CNNs) in digital pathology, automated bacterial classification, and colony counting further underscores AI's versatility. Additionally, AI improves antimicrobial susceptibility assessment and contributes to disease surveillance, outbreak forecasting, and real-time monitoring. Despite a few limitations, integration of AI in diagnostic microbiology presents robust solutions, user-friendly algorithms, and comprehensive training, promising paradigm-shifting advancements in healthcare.
Collapse
Affiliation(s)
- Ahmad Alsulimani
- Medical Laboratory Technology Department, College of Applied Medical Sciences, Jazan University, Jazan 45142, Saudi Arabia; (A.A.); (M.A.H.)
| | - Naseem Akhter
- Department of Biology, Arizona State University, Lake Havasu City, AZ 86403, USA;
| | - Fatima Jameela
- Modern American Dental Clinic, West Warren Avenue, Dearborn, MI 48126, USA;
| | - Rnda I. Ashgar
- College of Nursing, Jazan University, Jazan 45142, Saudi Arabia; (R.I.A.); (A.J.)
| | - Arshad Jawed
- College of Nursing, Jazan University, Jazan 45142, Saudi Arabia; (R.I.A.); (A.J.)
| | - Mohammed Ahmed Hassani
- Medical Laboratory Technology Department, College of Applied Medical Sciences, Jazan University, Jazan 45142, Saudi Arabia; (A.A.); (M.A.H.)
| | - Sajad Ahmad Dar
- College of Nursing, Jazan University, Jazan 45142, Saudi Arabia; (R.I.A.); (A.J.)
| |
Collapse
|
3
|
Chen P, Zhao N, Wang R, Chen G, Hu Y, Dou Z, Ban C. Hepatotoxicity and lipid metabolism disorders of 8:2 polyfluoroalkyl phosphate diester in zebrafish: In vivo and in silico evidence. JOURNAL OF HAZARDOUS MATERIALS 2024; 469:133807. [PMID: 38412642 DOI: 10.1016/j.jhazmat.2024.133807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Revised: 02/10/2024] [Accepted: 02/14/2024] [Indexed: 02/29/2024]
Abstract
8:2 polyfluoroalkyl phosphate diester (8:2 diPAP) has been shown to accumulate in the liver, but whether it induces hepatotoxicity and lipid metabolism disorders remains largely unknown. In this study, zebrafish embryos were exposed to 8:2 diPAP for 7 d. Hepatocellular hypertrophy and karyolysis were noted after exposure to 0.5 ng/L 8:2 diPAP, suggesting suppressed liver development. Compared to the water control, 8:2 diPAP led to significantly higher triglyceride and total cholesterol levels, but markedly lower levels of low-density lipoprotein, implying disturbed lipid homeostasis. The levels of two peroxisome proliferator activated receptor (PPAR) subtypes (pparα and pparγ) involved in hepatotoxicity and lipid metabolism were significantly upregulated by 8:2 diPAP, consistent with their overexpression as determined by immunohistochemistry. In silico results showed that 8:2 diPAP formed hydrogen bonds with PPARα and PPARγ. Among seven machine learning models, Adaptive Boosting performed the best in predicting the binding affinities of PPARα and PPARγ on the test set. The predicted binding affinity of 8:2 diPAP to PPARα (7.12) was higher than that to PPARγ (6.97) by Adaptive Boosting, which matched well with the experimental results. Our results revealed PPAR - mediated adverse effects of 8:2 diPAP on the liver and lipid metabolism of zebrafish larvae.
Collapse
Affiliation(s)
- Pengyu Chen
- Jiangsu Province Engineering Research Center for Marine Bio-resources Sustainable Utilization, College of Oceanography, Hohai University, Nanjing 210024, China; Key Laboratory of Integrated Regulation and Resources Development of Shallow Lakes of Ministry of Education, Hohai University, Nanjing 210024, China.
| | - Na Zhao
- Jiangsu Province Engineering Research Center for Marine Bio-resources Sustainable Utilization, College of Oceanography, Hohai University, Nanjing 210024, China
| | - Ruihan Wang
- Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Geng Chen
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yuxi Hu
- Jiangsu Province Engineering Research Center for Marine Bio-resources Sustainable Utilization, College of Oceanography, Hohai University, Nanjing 210024, China
| | - Zhichao Dou
- Jiangsu Province Engineering Research Center for Marine Bio-resources Sustainable Utilization, College of Oceanography, Hohai University, Nanjing 210024, China
| | - Chenglong Ban
- Jiangsu Province Engineering Research Center for Marine Bio-resources Sustainable Utilization, College of Oceanography, Hohai University, Nanjing 210024, China
| |
Collapse
|
4
|
Kosar A, Asif M, Ahmad MB, Akram W, Mahmood K, Kumari S. Towards classification and comprehensive analysis of AI-based COVID-19 diagnostic techniques: A survey. Artif Intell Med 2024; 151:102858. [PMID: 38583369 DOI: 10.1016/j.artmed.2024.102858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Revised: 01/02/2024] [Accepted: 03/25/2024] [Indexed: 04/09/2024]
Abstract
The unpredictable pandemic came to light at the end of December 2019, known as the novel coronavirus, also termed COVID-19, identified by the World Health Organization (WHO). The virus first originated in Wuhan (China) and rapidly affected most of the world's population. This outbreak's impact is experienced worldwide because it causes high mortality risk, many cases, and economic falls. Around the globe, the total number of cases and deaths reported till November 12, 2022, were >600 million and 6.6 million, respectively. During the period of COVID-19, several diverse diagnostic techniques have been proposed. This work presents a systematic review of COVID-19 diagnostic techniques in response to such acts. Initially, these techniques are classified into different categories based on their working principle and detection modalities, i.e. chest X-ray imaging, cough sound or respiratory patterns, RT-PCR, antigen testing, and antibody testing. After that, a comparative analysis is performed to evaluate these techniques' efficacy which may help to determine an optimum solution for a particular scenario. The findings of the proposed work show that Artificial Intelligence plays a vital role in developing COVID-19 diagnostic techniques which support the healthcare system. The related work can be a footprint for all the researchers, available under a single umbrella. Additionally, all the techniques are long-lasting and can be used for future pandemics.
Collapse
Affiliation(s)
- Amna Kosar
- Department of Computer Science, Lahore Garrison University, Lahore, Pakistan
| | - Muhammad Asif
- Department of Computer Science, Lahore Garrison University, Lahore, Pakistan
| | - Maaz Bin Ahmad
- College of Computing and Information Sciences, Karachi Institute of Economics and Technology (KIET), Karachi, Pakistan
| | - Waseem Akram
- Graduate School of Engineering Science and Technology, National Yunlin University of Science and Technology, Douliu, Taiwan, ROC
| | - Khalid Mahmood
- Graduate School of Intelligent Data Science, National Yunlin University of Science and Technology, Douliu, Taiwan, ROC.
| | - Saru Kumari
- Departement of Mathematics, Chaudhary Charan Singh University, Meerut, India
| |
Collapse
|
5
|
Shayegan MJ. A brief review and scientometric analysis on ensemble learning methods for handling COVID-19. Heliyon 2024; 10:e26694. [PMID: 38420425 PMCID: PMC10901105 DOI: 10.1016/j.heliyon.2024.e26694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 02/07/2024] [Accepted: 02/19/2024] [Indexed: 03/02/2024] Open
Abstract
Numerous efforts and research have been conducted worldwide to combat the coronavirus disease 2019 (COVID-19) pandemic. In this regard, some researchers have focused on deep and machine-learning approaches to discover more about this disease. There have been many articles on using ensemble learning methods for COVID-19 detection. Still, there seems to be no scientometric analysis or a brief review of these researches. Hence, a combined method of scientometric analysis and brief review was used to study the published articles that employed an ensemble learning approach to detect COVID-19. This research used both methods to overcome their limitations, leading to enhanced and reliable outcomes. The related articles were retrieved from the Scopus database. Then a two-step procedure was employed. A concise review of the collected articles was conducted. Then they underwent scientometric and bibliometric analyses. The findings revealed that convolutional neural network (CNN) is the mostly employed algorithm, while support vector machine (SVM), random forest, Resnet, DenseNet, and visual geometry group (VGG) were also frequently used. Additionally, China has had a significant presence in the numerous top-ranking categories of this field of research. Both study phases yielded valuable results and rankings.
Collapse
|
6
|
Baddal B, Taner F, Uzun Ozsahin D. Harnessing of Artificial Intelligence for the Diagnosis and Prevention of Hospital-Acquired Infections: A Systematic Review. Diagnostics (Basel) 2024; 14:484. [PMID: 38472956 DOI: 10.3390/diagnostics14050484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Revised: 01/23/2024] [Accepted: 02/19/2024] [Indexed: 03/14/2024] Open
Abstract
Healthcare-associated infections (HAIs) are the most common adverse events in healthcare and constitute a major global public health concern. Surveillance represents the foundation for the effective prevention and control of HAIs, yet conventional surveillance is costly and labor intensive. Artificial intelligence (AI) and machine learning (ML) have the potential to support the development of HAI surveillance algorithms for the understanding of HAI risk factors, the improvement of patient risk stratification as well as the prediction and timely detection and prevention of infections. AI-supported systems have so far been explored for clinical laboratory testing and imaging diagnosis, antimicrobial resistance profiling, antibiotic discovery and prediction-based clinical decision support tools in terms of HAIs. This review aims to provide a comprehensive summary of the current literature on AI applications in the field of HAIs and discuss the future potentials of this emerging technology in infection practice. Following the PRISMA guidelines, this study examined the articles in databases including PubMed and Scopus until November 2023, which were screened based on the inclusion and exclusion criteria, resulting in 162 included articles. By elucidating the advancements in the field, we aim to highlight the potential applications of AI in the field, report related issues and shortcomings and discuss the future directions.
Collapse
Affiliation(s)
- Buket Baddal
- Department of Medical Microbiology and Clinical Microbiology, Faculty of Medicine, Near East University, North Cyprus, Mersin 10, 99138 Nicosia, Turkey
- DESAM Research Institute, Near East University, North Cyprus, Mersin 10, 99138 Nicosia, Turkey
| | - Ferdiye Taner
- Department of Medical Microbiology and Clinical Microbiology, Faculty of Medicine, Near East University, North Cyprus, Mersin 10, 99138 Nicosia, Turkey
- DESAM Research Institute, Near East University, North Cyprus, Mersin 10, 99138 Nicosia, Turkey
| | - Dilber Uzun Ozsahin
- Department of Medical Diagnostic Imaging, College of Health Science, University of Sharjah, Sharjah 27272, United Arab Emirates
- Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah 27272, United Arab Emirates
- Operational Research Centre in Healthcare, Near East University, North Cyprus, Mersin 10, 99138 Nicosia, Turkey
| |
Collapse
|
7
|
Wang W, Harrou F, Dairi A, Sun Y. Stacked deep learning approach for efficient SARS-CoV-2 detection in blood samples. Artif Intell Med 2024; 148:102767. [PMID: 38325923 DOI: 10.1016/j.artmed.2024.102767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 01/02/2024] [Accepted: 01/05/2024] [Indexed: 02/09/2024]
Abstract
Identifying COVID-19 through blood sample analysis is crucial in managing the disease and improving patient outcomes. Despite its advantages, the current test demands certified laboratories, expensive equipment, trained personnel, and 3-4 h for results, with a notable false-negative rate of 15%-20%. This study proposes a stacked deep-learning approach for detecting COVID-19 in blood samples to distinguish uninfected individuals from those infected with the virus. Three stacked deep learning architectures, namely the StackMean, StackMax, and StackRF algorithms, are introduced to improve the detection quality of single deep learning models. To counter the class imbalance phenomenon in the training data, the Synthetic Minority Oversampling Technique (SMOTE) algorithm is also implemented, resulting in increased specificity and sensitivity. The efficacy of the methods is assessed by utilizing blood samples obtained from hospitals in Brazil and Italy. Results revealed that the StackMax method greatly boosted the deep learning and traditional machine learning methods' capability to distinguish COVID-19-positive cases from normal cases, while SMOTE increased the specificity and sensitivity of the stacked models. Hypothesis testing is performed to determine if there is a significant statistical difference in the performance between the compared detection methods. Additionally, the significance of blood sample features in identifying COVID-19 is analyzed using the XGBoost (eXtreme Gradient Boosting) technique for feature importance identification. Overall, this methodology could potentially enhance the timely and precise identification of COVID-19 in blood samples.
Collapse
Affiliation(s)
- Wu Wang
- Center for Applied Statistics and School of Statistics, Renmin University of China, Beijing 100872, China.
| | - Fouzi Harrou
- King Abdullah University of Science and Technology (KAUST), Computer, Electrical and Mathematical Sciences and Engineering (CEMSE) Division, Thuwal 23955-6900, Saudi Arabia.
| | - Abdelkader Dairi
- Computer Science Department, University of Science and Technology of Oran-Mohamed Boudiaf (USTO-MB), El Mnaouar, BP 1505, 31000, Bir El Djir, Algeria.
| | - Ying Sun
- King Abdullah University of Science and Technology (KAUST), Computer, Electrical and Mathematical Sciences and Engineering (CEMSE) Division, Thuwal 23955-6900, Saudi Arabia
| |
Collapse
|
8
|
Chadaga K, Prabhu S, Bhat V, Sampathila N, Umakanth S, Upadya P S. COVID-19 diagnosis using clinical markers and multiple explainable artificial intelligence approaches: A case study from Ecuador. SLAS Technol 2023; 28:393-410. [PMID: 37689365 DOI: 10.1016/j.slast.2023.09.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Revised: 08/16/2023] [Accepted: 09/06/2023] [Indexed: 09/11/2023]
Abstract
The COVID-19 pandemic erupted at the beginning of 2020 and proved fatal, causing many casualties worldwide. Immediate and precise screening of affected patients is critical for disease control. COVID-19 is often confused with various other respiratory disorders since the symptoms are similar. As of today, the reverse transcription-polymerase chain reaction (RT-PCR) test is utilized for diagnosing COVID-19. However, this approach is sometimes prone to producing erroneous and false negative results. Hence, finding a reliable diagnostic method that can validate the RT-PCR test results is crucial. Artificial intelligence (AI) and machine learning (ML) applications in COVID-19 diagnosis has proven to be beneficial. Hence, clinical markers have been utilized for COVID-19 diagnosis with the help of several classifiers in this study. Further, five different explainable artificial intelligence techniques have been utilized to interpret the predictions. Among all the algorithms, the k-nearest neighbor obtained the best performance with an accuracy, precision, recall and f1-score of 84%, 85%, 84% and 84%. According to this study, the combination of clinical markers such as eosinophils, lymphocytes, red blood cells and leukocytes was significant in differentiating COVID-19. The classifiers can be utilized synchronously with the standard RT-PCR procedure making diagnosis more reliable and efficient.
Collapse
Affiliation(s)
- Krishnaraj Chadaga
- Department of Computer Science and Engineering, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, India
| | - Srikanth Prabhu
- Department of Computer Science and Engineering, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, India.
| | - Vivekananda Bhat
- Department of Computer Science and Engineering, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, India
| | - Niranjana Sampathila
- Department of Biomedical Engineering, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, India.
| | - Shashikiran Umakanth
- Department of Medicine, Dr. TMA Hospital, Manipal Academy of Higher Education, Manipal, India
| | - Sudhakara Upadya P
- Manipal School of Information Sciences, Manipal Academy of Higher Education, Manipal, India
| |
Collapse
|
9
|
Erol Doğan G, Uzbaş B. Diagnosis of COVID-19 from blood parameters using convolutional neural network. Soft comput 2023; 27:1-16. [PMID: 37362276 PMCID: PMC10225057 DOI: 10.1007/s00500-023-08508-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/10/2023] [Indexed: 06/28/2023]
Abstract
Asymptomatically presenting COVID-19 complicates the detection of infected individuals. Additionally, the virus changes too many genomic variants, which increases the virus's ability to spread. Because there isn't a specific treatment for COVID-19 in a short time, the essential goal is to reduce the virulence of the disease. Blood parameters, which contain essential clinical information about infectious diseases and are easy to access, have an important place in COVID-19 detection. The convolutional neural network (CNN) architecture, which is popular in image processing, produces highly successful results for COVID-19 detection models. When the literature is examined, it is seen that COVID-19 studies with CNN are generally done using lung images. In this study, one-dimensional (1D) blood parameters data were converted into two-dimensional (2D) image data after preprocessing, and COVID-19 detection was made with CNN. The t-distributed stochastic neighbor embedding method was applied to transfer the feature vectors to the 2D plane. All data were framed with convex hull and minimum bounding rectangle algorithms to obtain image data. The image data obtained by pixel mapping was presented to the developed 3-line CNN architecture. This study proposes an effective and successful model by providing a combination of low-cost and rapidly-accessible blood parameters and CNN architecture making image data processing highly successful for COVID-19 detection. Ultimately, COVID-19 detection was made with a success rate of 94.85%. This study has brought a new perspective to COVID-19 detection studies by obtaining 2D image data from 1D COVID-19 blood parameters and using CNN.
Collapse
Affiliation(s)
| | - Betül Uzbaş
- Computer Engineering Department, Konya Technical University, Konya, Turkey
| |
Collapse
|
10
|
Abbasi Habashi S, Koyuncu M, Alizadehsani R. A Survey of COVID-19 Diagnosis Using Routine Blood Tests with the Aid of Artificial Intelligence Techniques. Diagnostics (Basel) 2023; 13:1749. [PMID: 37238232 PMCID: PMC10217633 DOI: 10.3390/diagnostics13101749] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 04/19/2023] [Accepted: 04/29/2023] [Indexed: 05/28/2023] Open
Abstract
Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2), causing a disease called COVID-19, is a class of acute respiratory syndrome that has considerably affected the global economy and healthcare system. This virus is diagnosed using a traditional technique known as the Reverse Transcription Polymerase Chain Reaction (RT-PCR) test. However, RT-PCR customarily outputs a lot of false-negative and incorrect results. Current works indicate that COVID-19 can also be diagnosed using imaging resolutions, including CT scans, X-rays, and blood tests. Nevertheless, X-rays and CT scans cannot always be used for patient screening because of high costs, radiation doses, and an insufficient number of devices. Therefore, there is a requirement for a less expensive and faster diagnostic model to recognize the positive and negative cases of COVID-19. Blood tests are easily performed and cost less than RT-PCR and imaging tests. Since biochemical parameters in routine blood tests vary during the COVID-19 infection, they may supply physicians with exact information about the diagnosis of COVID-19. This study reviewed some newly emerging artificial intelligence (AI)-based methods to diagnose COVID-19 using routine blood tests. We gathered information about research resources and inspected 92 articles that were carefully chosen from a variety of publishers, such as IEEE, Springer, Elsevier, and MDPI. Then, these 92 studies are classified into two tables which contain articles that use machine Learning and deep Learning models to diagnose COVID-19 while using routine blood test datasets. In these studies, for diagnosing COVID-19, Random Forest and logistic regression are the most widely used machine learning methods and the most widely used performance metrics are accuracy, sensitivity, specificity, and AUC. Finally, we conclude by discussing and analyzing these studies which use machine learning and deep learning models and routine blood test datasets for COVID-19 detection. This survey can be the starting point for a novice-/beginner-level researcher to perform on COVID-19 classification.
Collapse
Affiliation(s)
| | - Murat Koyuncu
- Department of Information Systems Engineering, Atilim University, 06830 Ankara, Turkey;
| | - Roohallah Alizadehsani
- Institute for Intelligent Systems Research and Innovation (IISRI), Deakin University, Waurn Ponds, Geelong, VIC 3216, Australia
| |
Collapse
|
11
|
Alam Suha S, Islam MN. Exploring the Dominant Features and Data-driven Detection of Polycystic Ovary Syndrome through Modified Stacking Ensemble Machine Learning Technique. Heliyon 2023; 9:e14518. [PMID: 36994397 PMCID: PMC10040521 DOI: 10.1016/j.heliyon.2023.e14518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 01/09/2023] [Accepted: 03/09/2023] [Indexed: 03/18/2023] Open
Abstract
Polycystic ovary syndrome (PCOS) is the most frequent endocrinological anomaly in reproductive women that causes persistent hormonal secretion disruption, leading to the formation of numerous cysts within the ovaries and serious health complications. But the real-world clinical detection technique for PCOS is very critical since the accuracy of interpretations being substantially dependent on the physician's expertise. Thus, an artificially intelligent PCOS prediction model might be a feasible additional technique to the error prone and time-consuming diagnostic technique. In this study, a modified ensemble machine learning (ML) classification approach is proposed utilizing state-of-the-art stacking technique for PCOS identification with patients' symptom data; employing five traditional ML models as base learners and then one bagging or boosting ensemble ML model as the meta-learner of the stacked model. Furthermore, three distinct types of feature selection strategies are applied to pick different sets of features with varied numbers and combinations of attributes. To evaluate and explore the dominant features necessary for predicting PCOS, the proposed technique with five variety of models and other ten types of classifiers is trained, tested and assessed utilizing different feature sets. As outcomes, the proposed stacking ensemble technique significantly enhances the accuracy in comparison to the other existing ML based techniques in case of all varieties of feature sets. However, among various models investigated to categorize PCOS and non-PCOS patients, the stacking ensemble model with 'Gradient Boosting' classifier as meta learner outperforms others with 95.7% accuracy while utilizing the top 25 features selected using Principal Component Analysis (PCA) feature selection technique.
Collapse
|
12
|
Cardiovascular and Renal Comorbidities Included into Neural Networks Predict the Outcome in COVID-19 Patients Admitted to an Intensive Care Unit: Three-Center, Cross-Validation, Age- and Sex-Matched Study. J Cardiovasc Dev Dis 2023; 10:jcdd10020039. [PMID: 36826535 PMCID: PMC9967447 DOI: 10.3390/jcdd10020039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 01/16/2023] [Accepted: 01/19/2023] [Indexed: 01/25/2023] Open
Abstract
Here, we performed a multicenter, age- and sex-matched study to compare the efficiency of various machine learning algorithms in the prediction of COVID-19 fatal outcomes and to develop sensitive, specific, and robust artificial intelligence tools for the prompt triage of patients with severe COVID-19 in the intensive care unit setting. In a challenge against other established machine learning algorithms (decision trees, random forests, extra trees, neural networks, k-nearest neighbors, and gradient boosting: XGBoost, LightGBM, and CatBoost) and multivariate logistic regression as a reference, neural networks demonstrated the highest sensitivity, sufficient specificity, and excellent robustness. Further, neural networks based on coronary artery disease/chronic heart failure, stage 3-5 chronic kidney disease, blood urea nitrogen, and C-reactive protein as the predictors exceeded 90% sensitivity and 80% specificity, reaching AUROC of 0.866 at primary cross-validation and 0.849 at secondary cross-validation on virtual samples generated by the bootstrapping procedure. These results underscore the impact of cardiovascular and renal comorbidities in the context of thrombotic complications characteristic of severe COVID-19. As aforementioned predictors can be obtained from the case histories or are inexpensive to be measured at admission to the intensive care unit, we suggest this predictor composition is useful for the triage of critically ill COVID-19 patients.
Collapse
|
13
|
Alsaaidah B, Al-Hadidi MR, Al-Nsour H, Masadeh R, AlZubi N. Comprehensive Survey of Machine Learning Systems for COVID-19 Detection. J Imaging 2022; 8:267. [PMID: 36286361 PMCID: PMC9604704 DOI: 10.3390/jimaging8100267] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 09/11/2022] [Accepted: 09/20/2022] [Indexed: 01/14/2023] Open
Abstract
The last two years are considered the most crucial and critical period of the COVID-19 pandemic affecting most life aspects worldwide. This virus spreads quickly within a short period, increasing the fatality rate associated with the virus. From a clinical perspective, several diagnosis methods are carried out for early detection to avoid virus propagation. However, the capabilities of these methods are limited and have various associated challenges. Consequently, many studies have been performed for COVID-19 automated detection without involving manual intervention and allowing an accurate and fast decision. As is the case with other diseases and medical issues, Artificial Intelligence (AI) provides the medical community with potential technical solutions that help doctors and radiologists diagnose based on chest images. In this paper, a comprehensive review of the mentioned AI-based detection solution proposals is conducted. More than 200 papers are reviewed and analyzed, and 145 articles have been extensively examined to specify the proposed AI mechanisms with chest medical images. A comprehensive examination of the associated advantages and shortcomings is illustrated and summarized. Several findings are concluded as a result of a deep analysis of all the previous works using machine learning for COVID-19 detection, segmentation, and classification.
Collapse
Affiliation(s)
- Bayan Alsaaidah
- Department of Computer Science, Prince Abdullah bin Ghazi Faculty of Information Technology and Communications, Al-Balqa Applied University, Salt 19117, Jordan
| | - Moh’d Rasoul Al-Hadidi
- Department of Electrical Engineering, Electrical Power Engineering and Computer Engineering, Faculty of Engineering, Al-Balqa Applied University, Salt 19117, Jordan
| | - Heba Al-Nsour
- Department of Computer Science, Prince Abdullah bin Ghazi Faculty of Information Technology and Communications, Al-Balqa Applied University, Salt 19117, Jordan
| | - Raja Masadeh
- Computer Science Department, The World Islamic Sciences and Education University, Amman 11947, Jordan
| | - Nael AlZubi
- Department of Electrical Engineering, Electrical Power Engineering and Computer Engineering, Faculty of Engineering, Al-Balqa Applied University, Salt 19117, Jordan
| |
Collapse
|
14
|
Bassi MDJ, Araujo Todo Bom M, Terribile Budel ML, Maltempi de Souza E, Müller dos Santos M, Roman LS. Optical Biosensor for the Detection of Infectious Diseases Using the Copolymer F8T2 with Application to COVID-19. SENSORS (BASEL, SWITZERLAND) 2022; 22:5673. [PMID: 35957230 PMCID: PMC9370833 DOI: 10.3390/s22155673] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 07/22/2022] [Accepted: 07/26/2022] [Indexed: 02/07/2023]
Abstract
The coronavirus pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has accelerated the development of biosensors based on new materials and techniques. Here, we present our effort to develop a fast and affordable optical biosensor using photoluminescence spectroscopy for anti-SARS-CoV-2 antibody detection. The biosensor was fabricated with a thin layer of the semiconductor polymer Poly[(9,9-di-n-octylfluorenyl-2,7-diyl)-alt-2,2'-bithiophene-5,5'-diyl)] (F8T2) as a signal transducer material. We mounted the biosensors by depositing a layer of F8T2 and an engineered version of RBD from the SARS-CoV-2 spike protein with a tag to promote hydrophobic interaction between the protein and the polymeric surface. We validated the biosensor sensitivity with decreasing anti-RBD polyclonal IgG concentrations and challenged the biosensor specificity with human serum samples from both COVID-19 negative and positive individuals. The antibody binding to the immobilized antigen shifted the F8T2 photoluminescence spectrum even at the low concentration of 0.0125 µg/mL. A volume as small as one drop of serum (100 µL) was sufficient to distinguish a positive from a negative sample without requiring multiple washing steps and secondary antibody reactions.
Collapse
Affiliation(s)
| | - Maritza Araujo Todo Bom
- Biochemistry Department, Federal University of Paraná, Curitiba 81531-980, Brazil; (M.A.T.B.); (M.L.T.B.); (E.M.d.S.); (M.M.d.S.)
| | - Maria Luisa Terribile Budel
- Biochemistry Department, Federal University of Paraná, Curitiba 81531-980, Brazil; (M.A.T.B.); (M.L.T.B.); (E.M.d.S.); (M.M.d.S.)
| | - Emanuel Maltempi de Souza
- Biochemistry Department, Federal University of Paraná, Curitiba 81531-980, Brazil; (M.A.T.B.); (M.L.T.B.); (E.M.d.S.); (M.M.d.S.)
| | - Marcelo Müller dos Santos
- Biochemistry Department, Federal University of Paraná, Curitiba 81531-980, Brazil; (M.A.T.B.); (M.L.T.B.); (E.M.d.S.); (M.M.d.S.)
| | | |
Collapse
|
15
|
An Optimized Decision Support Model for COVID-19 Diagnostics Based on Complex Fuzzy Hypersoft Mapping. MATHEMATICS 2022. [DOI: 10.3390/math10142472] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
COVID-19 has shaken the entire world economy and affected millions of people in a brief period. COVID-19 has numerous overlapping symptoms with other upper respiratory conditions, making it hard for diagnosticians to diagnose correctly. Several mathematical models have been presented for its diagnosis and treatment. This article delivers a mathematical framework based on a novel agile fuzzy-like arrangement, namely, the complex fuzzy hypersoft (CFHS) set, which is a formation of the complex fuzzy (CF) set and the hypersoft set (an extension of soft set). First, the elementary theory of CFHS is developed, which considers the amplitude term (A-term) and the phase term (P-term) of the complex numbers simultaneously to tackle uncertainty, ambivalence, and mediocrity of data. In two components, this new fuzzy-like hybrid theory is versatile. First, it provides access to a broad spectrum of membership function values by broadening them to the unit circle on an Argand plane and incorporating an additional term, the P-term, to accommodate the data’s periodic nature. Second, it categorizes the distinct attribute into corresponding sub-valued sets for better understanding. The CFHS set and CFHS-mapping with its inverse mapping (INM) can manage such issues. Our proposed framework is validated by a study establishing a link between COVID-19 symptoms and medicines. For the COVID-19 types, a table is constructed relying on the fuzzy interval of [0,1]. The computation is based on CFHS-mapping, which identifies the disease and selects the optimum medication correctly. Furthermore, a generalized CFHS-mapping is provided, which can help a specialist extract the patient’s health record and predict how long it will take to overcome the infection.
Collapse
|
16
|
Predicting Divorce Prospect Using Ensemble Learning: Support Vector Machine, Linear Model, and Neural Network. COMPUTATIONAL INTELLIGENCE AND NEUROSCIENCE 2022; 2022:3687598. [PMID: 35860635 PMCID: PMC9293523 DOI: 10.1155/2022/3687598] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 04/20/2022] [Accepted: 05/23/2022] [Indexed: 01/27/2023]
Abstract
A divorce is a legal step taken by married people to end their marriage. It occurs after a couple decides to no longer live together as husband and wife. Globally, the divorce rate has more than doubled from 1970 until 2008, with divorces per 1,000 married people rising from 2.6 to 5.5. Divorce occurs at a rate of 16.9 per 1,000 married women. According to the experts, over half of all marriages ends in divorce or separation in the United States. A novel ensemble learning technique based on advanced machine learning algorithms is proposed in this study. The support vector machine (SVM), passive aggressive classifier, and neural network (MLP) are applied in the context of divorce prediction. A question-based dataset is created by the field specialist. The responses to the questions provide important information about whether a marriage is likely to turn into divorce in the future. The cross-validation is applied in 5 folds, and the performance results of the evaluation metrics are examined. The accuracy score is 100%, and Receiver Operating Characteristic (ROC) curve accuracy score, recall score, the precision score, and the F1 accuracy score are close to 97% confidently. Our findings examined the key indicators for divorce and the factors that are most significant when predicting the divorce.
Collapse
|