1
|
Liu P, Wang C, Yang H, Li Y, Zhang X, Liu X, Li Y, Lou C. Perovskite photodetector-based laser absorption spectroscopy for gas detection. OPTICS EXPRESS 2024; 32:21855-21865. [PMID: 38859529 DOI: 10.1364/oe.527380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 05/21/2024] [Indexed: 06/12/2024]
Abstract
A gas detection method based on CH3NH3PbI3 (MAPbI3) and poly (3,4-ethylenedioxythiophene): poly (4-styrene sulfonate) (PEDOT:PSS) composite photodetectors (PDs) is proposed. The operation of the PD primarily relies on the photoelectric effect within the visible light band. Our study involves constructing a gas detection system based on tunable diode laser spectroscopy (TDLAS) and MAPbI3/PEDOT:PSS PD, and O2 was selected as the target analyte. The system has achieved a minimum detection limit (MDL) of 0.12% and a normalized noise equivalent absorption coefficient (NNEA) of 8.83 × 10-11 cm-1⋅W⋅Hz-1/2. Furthermore, the Allan deviation analysis results indicate that the system can obtain sensitivity levels as low as 0.058% over an averaging time of 328 seconds. This marks the first use of MAPbI3/PEDOT:PSS PD in gas detection based on TDLAS. Despite the detector's performance leaves much to be desired, this innovation offers a new approach to developing spectral based gas detection system.
Collapse
|
2
|
Armani Khatibi E, Farshbaf Moghimi N, Rahimpour E. COVID-19: An overview on possible transmission ways, sampling matrices and diagnosis. BIOIMPACTS : BI 2024; 14:29968. [PMID: 39493896 PMCID: PMC11530968 DOI: 10.34172/bi.2024.29968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 09/17/2023] [Accepted: 10/25/2023] [Indexed: 11/05/2024]
Abstract
COVID-19 is an RNA virus belonging to the SARS family of viruses and includes a wide range of symptoms along with effects on other body organs in addition to the respiratory system. The high speed of transmission, severe complications, and high death rate caused scientists to focus on this disease. Today, many different investigation types are performed on COVID-19 from various points of view in the literature. This review summarizes most of them to provide a useful guideline for researchers in this field. After a general introduction, this review is divided into three parts. In the first one, various transmission ways COVID-19 are classified and explained in detail. The second part reviews the used biological samples for the detection of virus and the final section describes the various methods reported for the diagnosis of COVID-19 in various biological matrices.
Collapse
Affiliation(s)
- Elina Armani Khatibi
- Department of Pharmaceutics, School of Pharmacy, Ardabil University of Medical Science, Ardabil, Iran
| | - Nastaran Farshbaf Moghimi
- Department of Pharmaceutics, School of Pharmacy, Ardabil University of Medical Science, Ardabil, Iran
| | - Elaheh Rahimpour
- Pharmaceutical Analysis Research Center and Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
3
|
Li M, Gao J, Wu Y, Zhu R, Gao Q, Zhang Y. Study on temperature effects of broadband absorption spectroscopy based on Doppler broadening combined with a multilinear shape superposition. OPTICS LETTERS 2023; 48:5923-5926. [PMID: 37966753 DOI: 10.1364/ol.503855] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 10/19/2023] [Indexed: 11/16/2023]
Abstract
In this study, we determine the relationship between the broadband absorption spectroscopy and temperature using Doppler broadening combined with a multilinear shape superposition. First, a method for temperature effects on broadband absorption spectroscopy is proposed, utilizing the principle of a multiple Gaussian line shape superposition. A theoretical expression of the temperature effect on broadband spectroscopy is then presented for the first time to the best of our knowledge, and the variation law of broadband absorption spectroscopy with temperature is explained. Furthermore, the effectiveness of the expression is demonstrated by comparing experimental and theoretical data of the SO2 broadband absorption spectroscopy. The results demonstrate that the correlation coefficient (r) between the experimental and theoretical spectra of SO2 within the temperature range of 298.15-923.15 K is greater than 0.93. The method and expression presented in this Letter can effectively explain the data of previous research.
Collapse
|
4
|
Liu X, Ma Y. New temperature measurement method based on light-induced thermoelastic spectroscopy. OPTICS LETTERS 2023; 48:5687-5690. [PMID: 37910734 DOI: 10.1364/ol.503287] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 10/04/2023] [Indexed: 11/03/2023]
Abstract
A new temperature measurement method based on light-induced thermoelastic spectroscopy (LITES) was demonstrated for the first time, to the best of our knowledge, in this manuscript. According to the thermoelastic effect of quartz tuning fork (QTF), this technique retrieves the temperature on the basis of the resonance signal of QTF. Wavelength modulation spectroscopy (WMS) combined with the dual-line method was used to achieve temperature measurement. A QTF with high-frequency selectivity and high-quality factor (Δf0 = 2.5 Hz, Q-factor = 13104.9) was used as the detection element to suppress noise and improve the signal level. Two absorption lines of water vapor (H2O) located at 7153.749 cm-1 and 7154.354 cm-1 were selected as the target line. A single distributed feedback (DFB) diode laser was used to cover the two selected absorption lines simultaneously to reduce the complexity of the sensor system. A tube furnace capable of covering a temperature range from 400°C to 1000°C was adopted to verify the performance of this method. The relative error of the measured temperature was less than 5%, which indicated that the LITES temperature sensor has excellent detection accuracy. Compared to the widely used TDLAS temperature measuring method, this LITES-based technique has the merits of low cost, has no wavelength limitation, and is expected to be applied on more occasions.
Collapse
|
5
|
Li H, Feng Y, Li F, Wang H, Hu X, He W, Wu K. A new Einstein coefficient method for mesopause-lower thermosphere atmosphere temperature retrieval under a non-local thermal equilibrium situation. OPTICS EXPRESS 2023; 31:30413-30434. [PMID: 37710583 DOI: 10.1364/oe.498765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 08/15/2023] [Indexed: 09/16/2023]
Abstract
The mesopause-lower thermosphere (MLT) region is an important spatial region in the Earth's atmosphere, making it a valuable area to investigate the temperature variations. Kirchhoff's law fails with the altitude increase due to the non-local thermal equilibrium effect, resulting in an increase in the error of the method to retrieve the atmospheric temperature in the MLT region using the A-band spectral line intensity. In the non-LTE state, the temperature retrieval method based on the Einstein coefficients is proposed to retrieve atmospheric temperature in the 92-140 km height range using the airglow radiation intensity images obtained from the Michelson Interferometer for global high-resolution thermospheric imaging (MIGHTI) measurements. Results show that the temperature deviation of the two-channel combinations does not exceed 15 K in the altitude range of 92-120 km. This deviation increases up to 45 K when the altitude is in the range of 120-140 km due to the influence of the N2 airglow spectrum. The two-channel combinations self-consistency is increased by 85 K compared with the temperature obtained using the spectral line intensity retrieval. Additionally, the comparison of the retrieval results with the spectral line intensity method and the comparison with the atmospheric chemistry experiment Fourier transform spectrometer (ACE-FTS) temperature measurement data shows that the Einstein coefficient method is significantly more rational and accurate than the spectral line intensity method.
Collapse
|
6
|
Bayrakli I, Akman H, Sari F. Sensor using a photo-acoustic absorption cell with two perpendicular acoustic resonators to analyze multiple molecules. APPLIED OPTICS 2023; 62:6689-6696. [PMID: 37706801 DOI: 10.1364/ao.495411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 08/14/2023] [Indexed: 09/15/2023]
Abstract
An ultra-high sensitivity multi-molecule sensor based on a photo-acoustic cell with two perpendicular acoustic resonators and a common microphone has been reported. In this work, a 4.5 µm distributed-feedback quantum cascade laser and a 1.5 µm external cavity diode laser (EC-DL) were used as optical excitation sources. Considering the spectral ranges of the lasers used, it is possible to analyze eight molecules (Q C L:N 2 O and C O 2, EC-DL: H 2 O, H 2 S, N H 3, CO, C H 4, and C 2 H 2). The N 2 O molecule was used to evaluate the performance of the photo-acoustic spectroscopy (PAS)-based sensor. A sensitivity of 0.073 V/ppm and a linearity of 0.99 were found by analyzing the PAS signal as a function of N 2 O concentration at 2237.656c m -1. The long-term performance of the sensor was determined by performing an Allan deviation analysis. A minimum detection limit of 9.8 ppb for 90 s integration time was achieved. The simultaneous multi-trace gas detection capability was verified by measurement of N 2 O, C O 2, and H 2 O. Depending on the coarse/fine-tuning ranges of the lasers used, the number of molecules analyzed can be further increased. Such a sensor could provide simultaneous diagnosis of many diseases through an analysis of breath air and simultaneous monitoring of the most important greenhouse gases.
Collapse
|
7
|
Witt F, Bohlius H, Ebert V. Evaluation of Spatial Gas Temperature and Water Vapor Inhomogeneities in TDLAS in Circular Multipass Absorption Cells Used for the Analysis of Dynamic Tube Flows. SENSORS (BASEL, SWITZERLAND) 2023; 23:4345. [PMID: 37177547 PMCID: PMC10181621 DOI: 10.3390/s23094345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 04/20/2023] [Accepted: 04/21/2023] [Indexed: 05/15/2023]
Abstract
The use of optical circular multipass absorption cells (CMPAC) in an open-path configuration enables the sampling free analysis of cylindrical gas flows with high temporal resolution and only minimal disturbances to the sample gas in the pipe. Combined with their robust unibody design, CMPACs are a good option for many applications in atmospheric research and industrial process monitoring. When deployed in an open-path configuration, the effects of inhomogeneities in the gas temperature and composition have to be evaluated to ensure that the resulting measurement error is acceptable for a given application. Such an evaluation needs to consider the deviations caused by spectroscopic effects, e.g., nonlinear effects of temperature variations on the intensity of the spectral line, as well as the interaction of the temperature and concentration field with the characteristic laser beam pattern of the CMPAC. In this work we demonstrate this novel combined evaluation approach for the CMPAC used as part of the tunable diode laser absorption spectroscopy (TDLAS) reference hygrometer in PTB's dynH2O setup for the characterization of the dynamic response behavior of hygrometers. For this, we measured spatially resolved, 2D temperature and H2O concentration distributions, and combined them with spatially resolved simulated spectra to evaluate the inhomogeneity effects on the line area of the used H2O spectral line at 7299.43 cm-1. Our results indicate that for dynH2O, the deviations caused by the interaction between large concentration heterogeneities and the characteristic sampling of the beam pattern of the CMPAC are three orders of magnitude larger than deviations caused by small temperature heterogeneity induced spectroscopic effects. We also deduce that the assumption that the "path-integrated" H2O concentration derived with the open-path CMPAC setup represents an accurate H2O area average in the flow section covered by the CMPAC in fact shows significant differences of up to 16% and hence does not hold true when large H2O concentration gradients are present.
Collapse
Affiliation(s)
| | | | - Volker Ebert
- Physikalisch-Technische Bundesanstalt, Bundesallee 100, 38116 Braunschweig, Germany; (F.W.); (H.B.)
| |
Collapse
|
8
|
Sun J, Chang J, Zhang Y, Wei Y, Zhang Q, Wang F, Lin S, Wang Z, Mao M. CH 4/C 2H 6 dual gas sensing system using a single mid-infrared laser. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 291:122368. [PMID: 36657290 DOI: 10.1016/j.saa.2023.122368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 01/06/2023] [Accepted: 01/10/2023] [Indexed: 06/17/2023]
Abstract
Methane (CH4) and ethane (C2H6) dual gas sensor with low system complexity and strong stability is proposed. The correction method based on absorbance spectrum is applied, and the cross-interference of C2H6 to CH4 is eliminated. In the single gas concentration measurement, linear fitting is performed between the absorbance and concentration of CH4 and C2H6, and the correlation coefficients of R2 = 0.99959 and R2 = 0.99994 are obtained respectively, which proves that the accuracy of the dual gas sensor is robust. In the dual gas concentration measurement, we carry out continuous measurement of five mixed gases and a long-term measurement of a mixture of gases, which verifies that our sensor has the fast response speed and strong stability. The minimum detectable column densities of 0.62 ppm·m for CH4 and 0.1 ppm·m for C2H6 are achieved, respectively. The CH4/C2H6 dual gas sensor assisted by the correction method has high sensitivity and strong robustness to cross-interference, and has great potential for application in various scenarios.
Collapse
Affiliation(s)
- Jiachen Sun
- School of Information Science and Engineering, and Shandong Provincial Key Laboratory of Laser Technology and Application, Shandong University, 72 Binhai Road, Qingdao 266237, China
| | - Jun Chang
- School of Information Science and Engineering, and Shandong Provincial Key Laboratory of Laser Technology and Application, Shandong University, 72 Binhai Road, Qingdao 266237, China.
| | - Yu Zhang
- Laser Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250102 China
| | - Yubin Wei
- Laser Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250102 China
| | - Qinduan Zhang
- Laser Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250102 China
| | - Fupeng Wang
- College of Information Science and Engineering, Ocean University of China, Qingdao 266100, China
| | - Shan Lin
- Key Laboratory of Education Ministry for Laser and Infrared System Integration Technology, Shandong University, 72 Binhai Road, Qingdao 266237, China
| | - Zihan Wang
- School of Information Science and Engineering, and Shandong Provincial Key Laboratory of Laser Technology and Application, Shandong University, 72 Binhai Road, Qingdao 266237, China
| | - Minghui Mao
- Key Laboratory of Education Ministry for Laser and Infrared System Integration Technology, Shandong University, 72 Binhai Road, Qingdao 266237, China
| |
Collapse
|
9
|
Zhang C, Qiao S, Ma Y. Highly sensitive photoacoustic acetylene detection based on differential photoacoustic cell with retro-reflection-cavity. PHOTOACOUSTICS 2023; 30:100467. [PMID: 36874591 PMCID: PMC9982609 DOI: 10.1016/j.pacs.2023.100467] [Citation(s) in RCA: 27] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 02/18/2023] [Accepted: 02/22/2023] [Indexed: 05/25/2023]
Abstract
In this paper, a highly sensitive photoacoustic spectroscopy (PAS) sensor based on retro-reflection-cavity-enhanced differential photoacoustic cell (DPAC) is demonstrated for the first time. Acetylene (C2H2) was selected as the analyte. The DPAC was designed to effectively suppress noise and increase signal level. The retro-reflection-cavity consisted of two right-angle prisms was designed to reflect the incident light to realize four passes. The photoacoustic response of the DPAC was simulated and investigated based on the finite element method. Wavelength modulation and second harmonic demodulation technologies were applied for sensitive trace gas detection. The first-order resonant frequency of the DPAC was found to be 1310 Hz. The differential characteristics were investigated and the 2f signal amplitude for this C2H2-PAS sensor based on retro-reflection-cavity-enhanced DPAC had a 3.55 times improvement compared to the system without the retro-reflection-cavity. An Allan deviation analysis was performed to investigate the long-term stability of the system. The minimum detection limit (MDL) was measured to be 15.81 ppb with an integration time of 100 s.
Collapse
Affiliation(s)
- Chu Zhang
- National Key Laboratory of Science and Technology on Tunable Laser, Harbin Institute of Technology, Harbin 150001, China
| | - Shunda Qiao
- National Key Laboratory of Science and Technology on Tunable Laser, Harbin Institute of Technology, Harbin 150001, China
| | - Yufei Ma
- National Key Laboratory of Science and Technology on Tunable Laser, Harbin Institute of Technology, Harbin 150001, China
| |
Collapse
|
10
|
Lou C, Dai J, Wang Y, Zhang Y, Li Y, Liu X, Li R, Ma Y. Quartz tuning fork-based high sensitive photodetector by co-coupling photoelectric and the thermoelastic effect of perovskite. OPTICS EXPRESS 2023; 31:10027-10037. [PMID: 37157554 DOI: 10.1364/oe.485411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
This paper reports a new strategy for enhancing the photoresponse of a quartz tuning fork (QTF). A deposited light absorbing layer on the surface of QTF could improve the performance only to a certain extent. Herein, a novel strategy is proposed to construct a Schottky junction on the QTF. The Schottky junction presented here consists of a silver-perovskite, which has extremely high light absorption coefficient and dramatically high power conversion efficiency. The co-coupling of the perovskite's photoelectric effect and its related QTF thermoelastic effect leads to a dramatic improvement in the radiation detection performance. Experimental results indicate that the CH3NH3PbI3-QTF obtains two orders of magnitude enhancement in sensitivity and SNR, and the 1σ detection limit was calculated to be 1.9 µW. It was the first time that the QTF resonance detection and perovskite Schottky junction was combined for optical detection. The presented design could be used in photoacoustic spectroscopy and thermoelastic spectroscopy for trace gas sensing.
Collapse
|
11
|
Chen X, Sun H, Huang W, Jin J, Su M, Yang H. The Development of a Novel Headspace O 2 Concentration Measurement Sensor for Vials. SENSORS (BASEL, SWITZERLAND) 2023; 23:2438. [PMID: 36904640 PMCID: PMC10007330 DOI: 10.3390/s23052438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 02/12/2023] [Accepted: 02/21/2023] [Indexed: 06/18/2023]
Abstract
In the process of manufacture and transportation, vials are prone to breakage and cracks. Oxygen (O2) in the air entering vials can lead to the deterioration of medicine and a reduction in pesticide effects, threatening the life of patients. Therefore, accurate measurement of the headspace O2 concentration for vials is crucial to ensure pharmaceutical quality. In this invited paper, a novel headspace oxygen concentration measurement (HOCM) sensor for vials was developed based on tunable diode laser absorption spectroscopy (TDLAS). First, a long-optical-path multi-pass cell was designed by optimizing the original system. Moreover, vials with different O2 concentrations (0%, 5%, 10%, 15%, 20%, and 25%) were measured with this optimized system in order to study the relationship between the leakage coefficient and O2 concentration; the root mean square error of the fitting was 0.13. Moreover, the measurement accuracy indicates that the novel HOCM sensor achieved an average percentage error of 1.9%. Sealed vials with different leakage holes (4, 6, 8, and 10 mm) were prepared to investigate the variation in the headspace O2 concentration with time. The results show that the novel HOCM sensor is non-invasive and has a fast response and high accuracy, with prospects in applications for online quality supervision and management of production lines.
Collapse
|
12
|
He Q, Zhu W, Lv H, Wen X, Zheng Z, Wang J, Li M. Multi-MEMS-microphone schemes in a miniature photoacoustic cell for acetylene trace gas measurement. APPLIED OPTICS 2023; 62:1647-1653. [PMID: 36821330 DOI: 10.1364/ao.481824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 01/14/2023] [Indexed: 06/18/2023]
Abstract
Dissolved gas analysis is a strong tool for online health monitoring of electrical power equipment. The industry's large-scale deployment of photoacoustic (PA) sensors is still constrained by cost and sensitivity, despite the great accuracy achieved with a mid-infrared light source or optical sensors. We provide a low-cost PA sensor for ppb-level trace gas sensing based on a near-infrared distributed feedback laser source, miniature gas cell, and multiple microelectromechanical system (MEMS) microphones. Five multi-MEMS-microphones schemes are modeled. The simulation indicates that the sensor, including two MEMS microphones in the center of the resonator, is the most cost-efficient option. The experiments that present this scheme can be realized easily by modifying a traditional single microphone PA cell and with ppb-level sensitivity.
Collapse
|
13
|
Qiao S, Ma P, Tsepelin V, Han G, Liang J, Ren W, Zheng H, Ma Y. Super tiny quartz-tuning-fork-based light-induced thermoelastic spectroscopy sensing. OPTICS LETTERS 2023; 48:419-422. [PMID: 36638472 DOI: 10.1364/ol.482351] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 12/17/2022] [Indexed: 06/17/2023]
Abstract
In this Letter, a sensitive light-induced thermoelastic spectroscopy (LITES)-based trace gas sensor by exploiting a super tiny quartz tuning fork (QTF) was demonstrated. The prong length and width of this QTF are 3500 µm and 90 µm, respectively, which determines a resonant frequency of 6.5 kHz. The low resonant frequency is beneficial to increase the energy accumulation time in a LITES sensor. The geometric dimension of QTF on the micrometer scale is advantageous to obtain a great thermal expansion and thus can produce a strong piezoelectric signal. The temperature gradient distribution of the super tiny QTF was simulated based on the finite element analysis and is higher than that of the commercial QTF with 32.768 kHz. Acetylene (C2H2) was used as the analyte. Under the same conditions, the use of the super tiny QTF achieved a 1.64-times signal improvement compared with the commercial QTF. The system shows excellent long-term stability according to the Allan deviation analysis, and a minimum detection limit (MDL) would reach 190 ppb with an integration time of 220 s.
Collapse
|
14
|
Zhang S, Yu X, Peng J, Cao Z. Pre-Shaped Burst-Mode Hybrid MOPA Laser System at 10 kHz Pulse Frequency. SENSORS (BASEL, SWITZERLAND) 2023; 23:834. [PMID: 36679630 PMCID: PMC9860662 DOI: 10.3390/s23020834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Revised: 12/21/2022] [Accepted: 01/07/2023] [Indexed: 06/17/2023]
Abstract
A temporal pre-shaped burst-mode hybrid fiber-bulk laser system was illustrated at a 10 kHz rate with a narrow spectral linewidth. A theoretical model was proposed to counteract the temporal profile distortion and compensate for the desired one, based on reverse process of amplification. For uniformly modulated injection, amplified shapes were recorded and investigated in series for their varied pulse duration, envelope width and amplification delay, respectively. The pre-shaped output effectively realized a uniform distribution on a time scale for both the burst envelope and pulse shape under the action of the established theoretical method. Compared with previous amplification delay methods, this model possesses the capacity to extend itself for applications in burst-mode shaping with variable parameters and characteristics. The maximum pulse energy was enlarged up to 9.68 mJ, 8.94 mJ and 6.57 mJ with a 300 ns pulse duration over envelope widths of 2 ms to 4 ms. Moreover, the time-averaged spectral bandwidths were measured and characterized with Lonrentz fits of 68.3 MHz, 67.2 MHz and 67.7 MHz when the pulse duration varied from 100 ns to 300 ns.
Collapse
|
15
|
Liu X, Qiao S, Han G, Liang J, Ma Y. Highly sensitive HF detection based on absorption enhanced light-induced thermoelastic spectroscopy with a quartz tuning fork of receive and shallow neural network fitting. PHOTOACOUSTICS 2022; 28:100422. [PMID: 36386294 PMCID: PMC9643573 DOI: 10.1016/j.pacs.2022.100422] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Revised: 10/26/2022] [Accepted: 10/28/2022] [Indexed: 05/24/2023]
Abstract
Due to its advantages of non-contact measurement and high sensitivity, light-induced thermoelastic spectroscopy (LITES) is one of the most promising methods for corrosive gas detection. In this manuscript, a highly sensitive hydrogen fluoride (HF) sensor based on LITES technique is reported for the first time. With simple structure and strong robustness, a shallow neural network (SNN) fitting algorithm is introduced into the field of spectroscopy data processing to achieve denoising. This algorithm provides an end-to-end approach that takes in the raw input data without any pre-processing and extracts features automatically. A continuous wave (CW) distributed feedback diode (DFB) laser with an emission wavelength of 1.27 µm was used as the excitation source. A Herriott multi-pass cell (MPC) with an optical length of 10.1 m was selected to enhance the laser absorption. A quartz tuning fork (QTF) with resonance frequency of 32,767.52 Hz was adopted as the thermoelastic detector. An Allan variance analysis was performed to demonstrate the system stability. When the integration time was 110 s, the minimum detection limit (MDL) was found to be 71 ppb. After the SNN fitting algorithm was used, the signal-to-noise ratio (SNR) of the HF-LITES sensor was improved by a factor of 2.0, which verified the effectiveness of this fitting algorithm for spectroscopy data processing.
Collapse
Affiliation(s)
- Xiaonan Liu
- National Key Laboratory of Science and Technology on Tunable Laser, Harbin Institute of Technology, Harbin 150001, China
| | - Shunda Qiao
- National Key Laboratory of Science and Technology on Tunable Laser, Harbin Institute of Technology, Harbin 150001, China
| | - Guowei Han
- Engineering Research Center for Semiconductor Integrated Technology, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China
| | - Jinxing Liang
- Key Laboratory of Micro-Inertial Instrument and Advanced Navigation Technology, Ministry of Education, School of Instrument Science and Engineering, Southeast University, Nanjing 210096, China
| | - Yufei Ma
- National Key Laboratory of Science and Technology on Tunable Laser, Harbin Institute of Technology, Harbin 150001, China
| |
Collapse
|