1
|
Hoffman J, Hattingh L, Shinners L, Angus RL, Richards B, Hughes I, Wenke R. Allied Health Professionals' Perceptions of Artificial Intelligence in the Clinical Setting: Cross-Sectional Survey. JMIR Form Res 2024; 8:e57204. [PMID: 39753215 PMCID: PMC11730220 DOI: 10.2196/57204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 06/26/2024] [Accepted: 09/19/2024] [Indexed: 01/18/2025] Open
Abstract
BACKGROUND Artificial intelligence (AI) has the potential to address growing logistical and economic pressures on the health care system by reducing risk, increasing productivity, and improving patient safety; however, implementing digital health technologies can be disruptive. Workforce perception is a powerful indicator of technology use and acceptance, however, there is little research available on the perceptions of allied health professionals (AHPs) toward AI in health care. OBJECTIVE This study aimed to explore AHP perceptions of AI and the opportunities and challenges for its use in health care delivery. METHODS A cross-sectional survey was conducted at a health service in, Queensland, Australia, using the Shinners Artificial Intelligence Perception tool. RESULTS A total of 231 (22.1%) participants from 11 AHPs responded to the survey. Participants were mostly younger than 40 years (157/231, 67.9%), female (189/231, 81.8%), working in a clinical role (196/231, 84.8%) with a median of 10 years' experience in their profession. Most participants had not used AI (185/231, 80.1%), had little to no knowledge about AI (201/231, 87%), and reported workforce knowledge and skill as the greatest challenges to incorporating AI in health care (178/231, 77.1%). Age (P=.01), profession (P=.009), and AI knowledge (P=.02) were strong predictors of the perceived professional impact of AI. AHPs generally felt unprepared for the implementation of AI in health care, with concerns about a lack of workforce knowledge on AI and losing valued tasks to AI. Prior use of AI (P=.02) and years of experience as a health care professional (P=.02) were significant predictors of perceived preparedness for AI. Most participants had not received education on AI (190/231, 82.3%) and desired training (170/231, 73.6%) and believed AI would improve health care. Ideas and opportunities suggested for the use of AI within the allied health setting were predominantly nonclinical, administrative, and to support patient assessment tasks, with a view to improving efficiencies and increasing clinical time for direct patient care. CONCLUSIONS Education and experience with AI are needed in health care to support its implementation across allied health, the second largest workforce in health. Industry and academic partnerships with clinicians should not be limited to AHPs with high AI literacy as clinicians across all knowledge levels can identify many opportunities for AI in health care.
Collapse
Affiliation(s)
- Jane Hoffman
- Pharmacy Department, Gold Coast Hospital and Health Service, Southport, Australia
- School of Pharmacy and Medical Sciences, Griffith University, Southport, Australia
| | - Laetitia Hattingh
- Pharmacy Department, Gold Coast Hospital and Health Service, Southport, Australia
- School of Pharmacy and Medical Sciences, Griffith University, Southport, Australia
- School of Pharmacy, University of Queensland, Brisbane, Australia
| | - Lucy Shinners
- Faculty of Health, Southern Cross University, Bilinga, Australia
| | - Rebecca L Angus
- Pharmacy Department, Gold Coast Hospital and Health Service, Southport, Australia
| | - Brent Richards
- Pharmacy Department, Gold Coast Hospital and Health Service, Southport, Australia
- School of Medicine and Dentistry, Griffith University, Southport, Australia
| | - Ian Hughes
- Pharmacy Department, Gold Coast Hospital and Health Service, Southport, Australia
- School of Medicine, University of Queensland, Brisbane, Australia
| | - Rachel Wenke
- Pharmacy Department, Gold Coast Hospital and Health Service, Southport, Australia
| |
Collapse
|
3
|
Niarakis A, Laubenbacher R, An G, Ilan Y, Fisher J, Flobak Å, Reiche K, Rodríguez Martínez M, Geris L, Ladeira L, Veschini L, Blinov ML, Messina F, Fonseca LL, Ferreira S, Montagud A, Noël V, Marku M, Tsirvouli E, Torres MM, Harris LA, Sego TJ, Cockrell C, Shick AE, Balci H, Salazar A, Rian K, Hemedan AA, Esteban-Medina M, Staumont B, Hernandez-Vargas E, Martis B S, Madrid-Valiente A, Karampelesis P, Sordo Vieira L, Harlapur P, Kulesza A, Nikaein N, Garira W, Malik Sheriff RS, Thakar J, Tran VDT, Carbonell-Caballero J, Safaei S, Valencia A, Zinovyev A, Glazier JA. Immune digital twins for complex human pathologies: applications, limitations, and challenges. NPJ Syst Biol Appl 2024; 10:141. [PMID: 39616158 PMCID: PMC11608242 DOI: 10.1038/s41540-024-00450-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Accepted: 09/27/2024] [Indexed: 12/06/2024] Open
Abstract
Digital twins represent a key technology for precision health. Medical digital twins consist of computational models that represent the health state of individual patients over time, enabling optimal therapeutics and forecasting patient prognosis. Many health conditions involve the immune system, so it is crucial to include its key features when designing medical digital twins. The immune response is complex and varies across diseases and patients, and its modelling requires the collective expertise of the clinical, immunology, and computational modelling communities. This review outlines the initial progress on immune digital twins and the various initiatives to facilitate communication between interdisciplinary communities. We also outline the crucial aspects of an immune digital twin design and the prerequisites for its implementation in the clinic. We propose some initial use cases that could serve as "proof of concept" regarding the utility of immune digital technology, focusing on diseases with a very different immune response across spatial and temporal scales (minutes, days, months, years). Lastly, we discuss the use of digital twins in drug discovery and point out emerging challenges that the scientific community needs to collectively overcome to make immune digital twins a reality.
Collapse
Affiliation(s)
- Anna Niarakis
- Molecular, Cellular and Developmental Biology Unit (MCD), Centre de Biologie Integrative (CBI), University of Toulouse, UPS, CNRS, Toulouse, France.
- Lifeware Group, Inria, Saclay-île de France, Palaiseau, France.
| | | | - Gary An
- Department of Surgery, University of Vermont Larner College of Medicine, Vermont, USA
| | - Yaron Ilan
- Faculty of Medicine Hebrew University, Hadassah Medical Center, Jerusalem, Israel
| | - Jasmin Fisher
- UCL Cancer Institute, University College London, Paul O'Gorman Building, 72 Huntley Street, London, WC1E 6BT, UK
| | - Åsmund Flobak
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway
- The Cancer Clinic, St Olav's University Hospital, Trondheim, Norway
- Department of Biotechnology and Nanomedicine, SINTEF Industry, Trondheim, Norway
| | - Kristin Reiche
- Department of Diagnostics, Fraunhofer Institute for Cell Therapy and Immunology, Leipzig, Germany
- Institute of Clinical Immunology, Medical Faculty, University Hospital, University of Leipzig, Leipzig, Germany
- Center for Scalable Data Analytics and Artificial Intelligence (ScaDS.AI), Dresden/Leipzig, Germany
| | - María Rodríguez Martínez
- Department of Biomedical Informatics & Data Science, Yale School of Medicine, New Haven, CT, USA
| | - Liesbet Geris
- Prometheus Division of Skeletal Tissue Engineering, KU Leuven, Leuven, Belgium
- Skeletal Biology and Engineering Research Center, Department of Development and Regeneration, KU Leuven, Leuven, Belgium
- Biomechanics Research Unit, GIGA Molecular and Computational Biology, University of Liège, Liège, Belgium
| | - Luiz Ladeira
- Biomechanics Research Unit, GIGA Molecular and Computational Biology, University of Liège, Liège, Belgium
| | - Lorenzo Veschini
- Faculty of Dentistry Oral & Craniofacial Sciences, King's College London, London, UK
- Biocomplexity Institute and Department of Intelligent Systems Engineering, Indiana University, Bloomington, Indiana, 47408, USA
| | - Michael L Blinov
- Center for Cell Analysis and Modeling, UConn Health, Farmington, CT, 06030, USA
| | - Francesco Messina
- Department of Epidemiology, Preclinical Research and Advanced Diagnostic, National Institute for Infectious Diseases 'Lazzaro Spallanzani' - I.R.C.C.S., Rome, Italy
| | - Luis L Fonseca
- Department of Medicine, University of Florida, Gainesville, FL, USA
| | - Sandra Ferreira
- Mathematics Department and Center of Mathematics, University of Beira Interior, Covilhã, Portugal
| | - Arnau Montagud
- Barcelona Supercomputing Center (BSC), Barcelone, Spain
- Institute for Integrative Systems Biology (I2SysBio), CSIC-UV, Valencia, Spain
| | - Vincent Noël
- Institut Curie, Université PSL, F-75005, Paris, France
- INSERM, U900, F-75005, Paris, France
- Mines ParisTech, Université PSL, F-75005, Paris, France
| | - Malvina Marku
- Université de Toulouse, Inserm, CNRS, Université Toulouse III-Paul Sabatier, Centre de Recherches en Cancérologie de Toulouse, Toulouse, France
| | - Eirini Tsirvouli
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway
- Department of Biology, Norwegian University of Science and Technology, Trondheim, Norway
| | - Marcella M Torres
- Department of Mathematics and Statistics, University of Richmond, Richmond, VA, USA
| | - Leonard A Harris
- Department of Biomedical Engineering, University of Arkansas, Fayetteville, AR, USA
- Interdisciplinary Graduate Program in Cell and Molecular Biology, University of Arkansas, Fayetteville, AR, USA
- Cancer Biology Program, Winthrop P. Rockefeller Cancer Institute, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - T J Sego
- Department of Medicine, University of Florida, Gainesville, FL, USA
| | - Chase Cockrell
- Department of Surgery, University of Vermont Larner College of Medicine, Vermont, USA
| | - Amanda E Shick
- Department of Mechanical and Aerospace Engineering, University of Florida, Gainesville, FL, USA
| | - Hasan Balci
- Maastricht Centre for Systems Biology (MaCSBio), Maastricht University, Maastricht, The Netherlands
| | - Albin Salazar
- INRIA Paris/CNRS/École Normale Supérieure/PSL Research University, Paris, France
| | - Kinza Rian
- Andalusian Platform for Computational Medicine, Andalusian Public Foundation Progress and Health-FPS, Seville, Spain
| | - Ahmed Abdelmonem Hemedan
- Bioinformatics Core Unit, Luxembourg Centre of Systems Biomedicine LCSB, Luxembourg University, Esch-sur-Alzette, Luxembourg
| | - Marina Esteban-Medina
- Andalusian Platform for Computational Medicine, Andalusian Public Foundation Progress and Health-FPS, Seville, Spain
| | - Bernard Staumont
- Biomechanics Research Unit, GIGA Molecular and Computational Biology, University of Liège, Liège, Belgium
| | - Esteban Hernandez-Vargas
- Department of Mathematics and Statistical Science, University of Idaho, Moscow, ID, 83844-1103, USA
| | | | | | | | | | - Pradyumna Harlapur
- Department of Bioengineering, Indian Institute of Science, Bengaluru, India
| | | | - Niloofar Nikaein
- School of Medical Sciences, Faculty of Medicine and Health, Örebro University, SE-70182, Örebro, Sweden
- X-HiDE - Exploring Inflammation in Health and Disease Consortium, Örebro University, Örebro, Sweden
| | - Winston Garira
- Multiscale Mathematical Modelling of Living Systems program (M3-LSP), Kimberley, South Africa
- Department of Mathematical Sciences, Sol Plaatje University, Kimberley, South Africa
- Private Bag X5008, Kimberley, 8300, South Africa
| | - Rahuman S Malik Sheriff
- European Bioinformatics Institute, European Molecular Biology Laboratory (EMBL-EBI), Hinxton, Cambridge, UK
- Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, London, UK
| | - Juilee Thakar
- Department of Microbiology & Immunology and Department of Biostatistics & Computational Biology, University of Rochester Medical Center, Rochester, NY, 14642, USA
| | - Van Du T Tran
- Vital-IT Group, SIB Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | | | - Soroush Safaei
- Institute of Biomedical Engineering and Technology, Ghent University, Gent, Belgium
- Auckland Bioengineering Institute, University of Auckland, Auckland, New Zealand
| | - Alfonso Valencia
- Barcelona Supercomputing Center (BSC), Barcelone, Spain
- ICREA, 23 Passeig Lluís Companys, 08010, Barcelona, Spain
| | | | - James A Glazier
- Biocomplexity Institute and Department of Intelligent Systems Engineering, Indiana University, Bloomington, Indiana, 47408, USA
| |
Collapse
|
4
|
D’Orsi L, Capasso B, Lamacchia G, Pizzichini P, Ferranti S, Liverani A, Fontana C, Panunzi S, De Gaetano A, Lo Presti E. Recent Advances in Artificial Intelligence to Improve Immunotherapy and the Use of Digital Twins to Identify Prognosis of Patients with Solid Tumors. Int J Mol Sci 2024; 25:11588. [PMID: 39519142 PMCID: PMC11546512 DOI: 10.3390/ijms252111588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 10/21/2024] [Accepted: 10/23/2024] [Indexed: 11/16/2024] Open
Abstract
To date, the public health system has been impacted by the increasing costs of many diagnostic and therapeutic pathways due to limited resources. At the same time, we are constantly seeking to improve these paths through approaches aimed at personalized medicine. To achieve the required levels of diagnostic and therapeutic precision, it is necessary to integrate data from different sources and simulation platforms. Today, artificial intelligence (AI), machine learning (ML), and predictive computer models are more efficient at guiding decisions regarding better therapies and medical procedures. The evolution of these multiparametric and multimodal systems has led to the creation of digital twins (DTs). The goal of our review is to summarize AI applications in discovering new immunotherapies and developing predictive models for more precise immunotherapeutic decision-making. The findings from this literature review highlight that DTs, particularly predictive mathematical models, will be pivotal in advancing healthcare outcomes. Over time, DTs will indeed bring the benefits of diagnostic precision and personalized treatment to a broader spectrum of patients.
Collapse
Affiliation(s)
- Laura D’Orsi
- National Research Council of Italy, Institute for Systems Analysis and Computer Science “A. Ruberti”, BioMatLab, Via dei Taurini, 19, 00185 Rome, RM, Italy; (L.D.); (S.P.); (A.D.G.)
| | - Biagio Capasso
- Department of General Surgery, Policlinico Militare di Roma “Celio”, Piazza Celimontana, 50, 00184 Rome, RM, Italy; (B.C.); (S.F.)
| | - Giuseppe Lamacchia
- General Surgery Unit, Regina Apostolorum Hospital, Via S. Francesco d’Assisi, 50, 00041 Albano Laziale, RM, Italy; (G.L.); (A.L.)
| | - Paolo Pizzichini
- Department of Intensive Care Unit, Policlinico Militare di Roma “Celio”, Piazza Celimontana, 50, 00184 Rome, RM, Italy; (P.P.); (C.F.)
| | - Sergio Ferranti
- Department of General Surgery, Policlinico Militare di Roma “Celio”, Piazza Celimontana, 50, 00184 Rome, RM, Italy; (B.C.); (S.F.)
| | - Andrea Liverani
- General Surgery Unit, Regina Apostolorum Hospital, Via S. Francesco d’Assisi, 50, 00041 Albano Laziale, RM, Italy; (G.L.); (A.L.)
| | - Costantino Fontana
- Department of Intensive Care Unit, Policlinico Militare di Roma “Celio”, Piazza Celimontana, 50, 00184 Rome, RM, Italy; (P.P.); (C.F.)
| | - Simona Panunzi
- National Research Council of Italy, Institute for Systems Analysis and Computer Science “A. Ruberti”, BioMatLab, Via dei Taurini, 19, 00185 Rome, RM, Italy; (L.D.); (S.P.); (A.D.G.)
| | - Andrea De Gaetano
- National Research Council of Italy, Institute for Systems Analysis and Computer Science “A. Ruberti”, BioMatLab, Via dei Taurini, 19, 00185 Rome, RM, Italy; (L.D.); (S.P.); (A.D.G.)
- National Research Council of Italy, Institute for Biomedical Research and Innovation (CNR-IRIB), Via Ugo La Malfa, 153, 90146 Palermo, PA, Italy
- Department of Biomatics, Óbuda University, Bécsi Road 96/B, H-1034 Budapest, Hungary
| | - Elena Lo Presti
- National Research Council of Italy, Institute for Biomedical Research and Innovation (CNR-IRIB), Via Ugo La Malfa, 153, 90146 Palermo, PA, Italy
| |
Collapse
|
5
|
Thangaraj PM, Benson SH, Oikonomou EK, Asselbergs FW, Khera R. Cardiovascular care with digital twin technology in the era of generative artificial intelligence. Eur Heart J 2024; 45:ehae619. [PMID: 39322420 PMCID: PMC11638093 DOI: 10.1093/eurheartj/ehae619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 07/16/2024] [Accepted: 09/01/2024] [Indexed: 09/27/2024] Open
Abstract
Digital twins, which are in silico replications of an individual and its environment, have advanced clinical decision-making and prognostication in cardiovascular medicine. The technology enables personalized simulations of clinical scenarios, prediction of disease risk, and strategies for clinical trial augmentation. Current applications of cardiovascular digital twins have integrated multi-modal data into mechanistic and statistical models to build physiologically accurate cardiac replicas to enhance disease phenotyping, enrich diagnostic workflows, and optimize procedural planning. Digital twin technology is rapidly evolving in the setting of newly available data modalities and advances in generative artificial intelligence, enabling dynamic and comprehensive simulations unique to an individual. These twins fuse physiologic, environmental, and healthcare data into machine learning and generative models to build real-time patient predictions that can model interactions with the clinical environment to accelerate personalized patient care. This review summarizes digital twins in cardiovascular medicine and their potential future applications by incorporating new personalized data modalities. It examines the technical advances in deep learning and generative artificial intelligence that broaden the scope and predictive power of digital twins. Finally, it highlights the individual and societal challenges as well as ethical considerations that are essential to realizing the future vision of incorporating cardiology digital twins into personalized cardiovascular care.
Collapse
Affiliation(s)
- Phyllis M Thangaraj
- Section of Cardiology, Department of Internal Medicine, Yale School of Medicine, 789 Howard Ave., New Haven, CT, USA
| | - Sean H Benson
- Department of Cardiology, Amsterdam Cardiovascular Sciences, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, Netherlands
| | - Evangelos K Oikonomou
- Section of Cardiology, Department of Internal Medicine, Yale School of Medicine, 789 Howard Ave., New Haven, CT, USA
| | - Folkert W Asselbergs
- Department of Cardiology, Amsterdam Cardiovascular Sciences, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, Netherlands
- Institute of Health Informatics, University College London, London, UK
- The National Institute for Health Research University College London Hospitals Biomedical Research Center, University College London, London, UK
| | - Rohan Khera
- Section of Cardiology, Department of Internal Medicine, Yale School of Medicine, 789 Howard Ave., New Haven, CT, USA
- Section of Health Informatics, Department of Biostatistics, Yale School of Public Health, 47 College St., New Haven, CT, USA
- Department of Biomedical Informatics and Data Science, Yale School of Medicine, 100 College St. Fl 9, New Haven, CT, USA
- Center for Outcomes Research and Evaluation, Yale-New Haven Hospital, 195 Church St. Fl 6, New Haven, CT 06510, USA
| |
Collapse
|