1
|
Agatonovic-Kustrin S, Gegechkori V, Kobakhidze T, Morton D. Solid-Phase Microextraction Techniques and Application in Food and Horticultural Crops. Molecules 2023; 28:6880. [PMID: 37836723 PMCID: PMC10574797 DOI: 10.3390/molecules28196880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 09/08/2023] [Accepted: 09/28/2023] [Indexed: 10/15/2023] Open
Abstract
Solid-phase microextraction (SPME) is a sample preparation technique which utilizes small amounts of an extraction phase for the extraction of target analytes from investigated sample matrices. Its simplicity of use, relatively short sample processing time, and fiber reusability have made SPME an attractive choice for many analytical applications. SPME has been widely applied to the sampling and analysis of environmental, food, aromatic, metallic, forensic, and pharmaceutical samples. Solid phase microextraction is used in horticultural crops, for example, to determine water and soil contaminants (pesticides, alcohols, phenols, amines, herbicides, etc.). SPME is also used in the food industry to separate biologically active substances in food products for various purposes, for example, disease prevention, determining the smell of food products, and analyzing tastes. SPME has been applied to forensic analysis to determine the alcohol concentration in blood and that of sugar in urine. This method has also been widely used in pharmaceutical analysis. It is a solvent-free sample preparation technique that integrates sampling, isolation, and concentration. This review focuses on recent work on the use of SPME techniques in the analysis of food and horticultural crops.
Collapse
Affiliation(s)
- Snezana Agatonovic-Kustrin
- Department of Pharmaceutical and Toxicological Chemistry Named after Arzamastsev of the Institute of Pharmacy, I.M. Sechenov First Moscow State Medical University (Sechenov University), 119991 Moscow, Russia; (V.G.); (T.K.); (D.M.)
- School of Rural Clinical Sciences, La Trobe Institute for Molecular Sciences, La Trobe University, Edwards Rd, Bendigo 3550, Australia
| | - Vladimir Gegechkori
- Department of Pharmaceutical and Toxicological Chemistry Named after Arzamastsev of the Institute of Pharmacy, I.M. Sechenov First Moscow State Medical University (Sechenov University), 119991 Moscow, Russia; (V.G.); (T.K.); (D.M.)
| | - Tamara Kobakhidze
- Department of Pharmaceutical and Toxicological Chemistry Named after Arzamastsev of the Institute of Pharmacy, I.M. Sechenov First Moscow State Medical University (Sechenov University), 119991 Moscow, Russia; (V.G.); (T.K.); (D.M.)
| | - David Morton
- Department of Pharmaceutical and Toxicological Chemistry Named after Arzamastsev of the Institute of Pharmacy, I.M. Sechenov First Moscow State Medical University (Sechenov University), 119991 Moscow, Russia; (V.G.); (T.K.); (D.M.)
- School of Rural Clinical Sciences, La Trobe Institute for Molecular Sciences, La Trobe University, Edwards Rd, Bendigo 3550, Australia
| |
Collapse
|
2
|
Hu X, Li H, Yang J, Wen X, Wang S, Pan M. Nanoscale Materials Applying for the Detection of Mycotoxins in Foods. Foods 2023; 12:3448. [PMID: 37761156 PMCID: PMC10528894 DOI: 10.3390/foods12183448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 09/11/2023] [Accepted: 09/13/2023] [Indexed: 09/29/2023] Open
Abstract
Trace amounts of mycotoxins in food matrices have caused a very serious problem of food safety and have attracted widespread attention. Developing accurate, sensitive, rapid mycotoxin detection and control strategies adapted to the complex matrices of food is crucial for in safeguarding public health. With the continuous development of nanotechnology and materials science, various nanoscale materials have been developed for the purification of complex food matrices or for providing response signals to achieve the accurate and rapid detection of various mycotoxins in food products. This article reviews and summarizes recent research (from 2018 to 2023) on new strategies and methods for the accurate or rapid detection of mold toxins in food samples using nanoscale materials. It places particular emphasis on outlining the characteristics of various nanoscale or nanostructural materials and their roles in the process of detecting mycotoxins. The aim of this paper is to promote the in-depth research and application of various nanoscale or structured materials and to provide guidance and reference for the development of strategies for the detection and control of mycotoxin contamination in complex matrices of food.
Collapse
Affiliation(s)
- Xiaochun Hu
- Key Laboratory of Food Quality and Health of Tianjin, Tianjin University of Science and Technology, Tianjin 300457, China; (X.H.); (H.L.); (J.Y.); (X.W.); (S.W.)
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Huilin Li
- Key Laboratory of Food Quality and Health of Tianjin, Tianjin University of Science and Technology, Tianjin 300457, China; (X.H.); (H.L.); (J.Y.); (X.W.); (S.W.)
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Jingying Yang
- Key Laboratory of Food Quality and Health of Tianjin, Tianjin University of Science and Technology, Tianjin 300457, China; (X.H.); (H.L.); (J.Y.); (X.W.); (S.W.)
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Xintao Wen
- Key Laboratory of Food Quality and Health of Tianjin, Tianjin University of Science and Technology, Tianjin 300457, China; (X.H.); (H.L.); (J.Y.); (X.W.); (S.W.)
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Shuo Wang
- Key Laboratory of Food Quality and Health of Tianjin, Tianjin University of Science and Technology, Tianjin 300457, China; (X.H.); (H.L.); (J.Y.); (X.W.); (S.W.)
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Mingfei Pan
- Key Laboratory of Food Quality and Health of Tianjin, Tianjin University of Science and Technology, Tianjin 300457, China; (X.H.); (H.L.); (J.Y.); (X.W.); (S.W.)
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Tianjin 300457, China
| |
Collapse
|
3
|
Sowa I, Wójciak M, Tyszczuk-Rotko K, Klepka T, Dresler S. Polyaniline and Polyaniline-Based Materials as Sorbents in Solid-Phase Extraction Techniques. MATERIALS (BASEL, SWITZERLAND) 2022; 15:8881. [PMID: 36556687 PMCID: PMC9786183 DOI: 10.3390/ma15248881] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 12/09/2022] [Accepted: 12/09/2022] [Indexed: 06/17/2023]
Abstract
Polyaniline (PANI) is one of the best known and widely studied conducting polymers with multiple applications and unique physicochemical properties. Due to its porous structure and relatively high surface area as well as the affinity toward many analytes related to the ability to establish different types of interactions, PANI has a great potential as a sorbent in sample pretreatment before instrumental analyses. This study provides an overview of the applications of polyaniline and polyaniline composites as sorbents in sample preparation techniques based on solid-phase extraction, including conventional solid-phase extraction (SPE) and its modifications, solid-phase microextraction (SPME), dispersive solid-phase extraction (dSPE), magnetic solid-phase extraction (MSPE) and stir-bar sorptive extraction (SBSE). The utility of PANI-based sorbents in chromatography was also summarized. It has been shown that polyaniline is willingly combined with other components and PANI-based materials may be formed in a variety of shapes. Polyaniline alone and PANI-based composites were successfully applied for sample preparation before determination of various analytes, both metal ions and organic compounds, in different matrices such as environmental samples, food, human plasma, urine, and blood.
Collapse
Affiliation(s)
- Ireneusz Sowa
- Department of Analytical Chemistry, Medical University of Lublin, Chodźki 4a, 20-093 Lublin, Poland
| | - Magdalena Wójciak
- Department of Analytical Chemistry, Medical University of Lublin, Chodźki 4a, 20-093 Lublin, Poland
| | - Katarzyna Tyszczuk-Rotko
- Institute of Chemical Sciences, Faculty of Chemistry, Maria Curie-Skłodowska University in Lublin, 20-031 Lublin, Poland
| | - Tomasz Klepka
- Department of Technology and Polymer Processing, Faculty of Mechanical Engineering, Lublin University of Technology, Nadbystrzycka 36, 20-618 Lublin, Poland
| | - Sławomir Dresler
- Department of Analytical Chemistry, Medical University of Lublin, Chodźki 4a, 20-093 Lublin, Poland
- Department of Plant Physiology and Biophysics, Institute of Biological Science, Maria Curie-Skłodowska University, Akademicka 19, 20-033 Lublin, Poland
| |
Collapse
|
4
|
Mussel Inspired Polydopamine as Silica Fibers Coating for Solid-Phase Microextraction. SEPARATIONS 2022. [DOI: 10.3390/separations9080194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/10/2022] Open
Abstract
Commercial solid-phase microextraction fibers are available in a limited number of expensive coatings, which often contain environmentally harmful substances. Consequently, several different approaches have been used in the attempt to develop new sorbents that should possess intrinsic characteristics such as duration, selectivity, stability, and eco-friendliness. Herein we reported a straightforward, green, and easy coating method of silica fibers for solid-phase microextraction with polydopamine (PDA), an adhesive, biocompatible organic polymer that is easily produced by oxidative polymerization of dopamine in mild basic aqueous conditions. After FT-ATR and SEM characterization, the PDA fibers were tested via chromatographic analyses performed on UHPLC system using biphenyl and benzo(a)pyrene as model compounds, and their performances were compared with those of some commercial fibers. The new PDA fiber was finally used for the determination of selected PAHs in soot samples and the results compared with those obtained using the commercial PA fiber. Good reproducibility, extraction stability, and linearity were obtained using the PDA coating, which proved to be a very promising new material for SPME.
Collapse
|
5
|
Werner J, Grześkowiak T, Zgoła-Grześkowiak A. A polydimethylsiloxane/deep eutectic solvent sol-gel thin film sorbent and its application to solid-phase microextraction of parabens. Anal Chim Acta 2022; 1202:339666. [DOI: 10.1016/j.aca.2022.339666] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 02/25/2022] [Accepted: 02/26/2022] [Indexed: 11/01/2022]
|
6
|
Werner J, Zgoła-Grześkowiak A, Grześkowiak T. Development of novel thin-film solid-phase microextraction materials based on deep eutectic solvents for preconcentration of trace amounts of parabens in surface waters. J Sep Sci 2022; 45:1374-1384. [PMID: 35137554 DOI: 10.1002/jssc.202100917] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 01/16/2022] [Accepted: 01/31/2022] [Indexed: 11/09/2022]
Abstract
A green and sensitive thin-film solid-phase microextraction method based on deep eutectic solvent was developed that enables simultaneous isolation, preconcentration, and determination of parabens in surface waters. Six new deep eutectic solvents were synthesized and used directly to prepare thin-film coatings on a stainless steel mesh support. Among the compounds obtained, the highest efficiency in the extraction of parabens was found for a material consisting of trihexyltetradecylphosphonium chloride and n-docosanol in a molar ratio of 1:2. For the proposed method, parameters affecting the extraction efficiency of parabens, such as the coating material, the desorption solvent, the volume of the sample, the pH of the sample, the extraction and desorption time, and the salting-out effect, were optimized. Under optimal conditions, the proposed method allowed us to achieve good precision between 3.6 and 6.5% and recovery ranging from 68.1 to 91.4%. The limits of detection range from 0.018 to 0.055 ng mL-1 . This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Justyna Werner
- Poznan University of Technology, Faculty of Chemical Technology, Poland
| | | | | |
Collapse
|
7
|
Mohamed HM. Solventless Microextration Techniques for Pharmaceutical Analysis: The Greener Solution. Front Chem 2022; 9:785830. [PMID: 35096766 PMCID: PMC8792605 DOI: 10.3389/fchem.2021.785830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 12/13/2021] [Indexed: 11/13/2022] Open
Abstract
Extensive efforts have been made in the last decades to simplify the holistic sample preparation process. The idea of maximizing the extraction efficiency along with the reduction of extraction time, minimization/elimination of hazardous solvents, and miniaturization of the extraction device, eliminating sample pre- and posttreatment steps and reducing the sample volume requirement is always the goal for an analyst as it ensures the method’s congruency with the green analytical chemistry (GAC) principles and steps toward sustainability. In this context, the microextraction techniques such as solid-phase microextraction (SPME), stir bar sorptive extraction (SBSE), microextraction by packed sorbent (MEPS), fabric phase sorptive extraction (FPSE), in-tube extraction dynamic headspace (ITEX-DHS), and PAL SPME Arrow are being very active areas of research. To help transition into wider applications, the new solventless microextraction techniques have to be commercialized, automated, and validated, and their operating principles to be anchored to theory. In this work, the benefits and drawbacks of the advanced microextraction techniques will be discussed and compared, together with their applicability to the analysis of pharmaceuticals in different matrices.
Collapse
|
8
|
Abstract
The evaluation of volatiles in food is an important aspect of food production. It gives knowledge about the quality of foods and their relationship to consumers’ choices. Alcohols, aldehydes, acids, esters, terpenes, pyrazines, and furans are the main chemical groups that are involved in aroma formation. They are products of food processing: thermal treatment, fermentation, storage, etc. Food aroma is a mixture of varied molecules. Because of this, the analysis of aroma composition can be challenging. The four main steps can be distinguished in the evaluation of the volatiles in the food matrix as follows: (1) isolation and concentration; (2) separation; (3) identification; and (4) sensory characterization. The most commonly used techniques to separate a fraction of volatiles from non-volatiles are solid-phase micro-(SPME) and stir bar sorptive extractions (SBSE). However, to study the active components of food aroma by gas chromatography with olfactometry detector (GC-O), solvent-assisted flavor evaporation (SAFE) is used. The volatiles are mostly separated on GC systems (GC or comprehensive two-dimensional GCxGC) with the support of mass spectrometry (MS, MS/MS, ToF–MS) for chemical compound identification. Besides omics techniques, the promising part could be a study of aroma using electronic nose. Therefore, the main assumptions of volatolomics are here described.
Collapse
|