1
|
Harris T. Physical and Chemical Characterization of Aerosols Produced from Commercial Nicotine Salt-Based E-Liquids. Chem Res Toxicol 2025; 38:115-128. [PMID: 39654291 PMCID: PMC11752517 DOI: 10.1021/acs.chemrestox.4c00315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 11/15/2024] [Accepted: 11/20/2024] [Indexed: 01/21/2025]
Abstract
Nicotine salt e-liquids are widely used in pod-style and disposable electronic nicotine delivery systems (ENDS). Studying the physical and chemical properties of their emissions can inform their toxicological impact. A prior companion study reported the harmful and potentially harmful constituents (HPHCs) and aerosol particle sizes produced from laboratory-made nicotine salt and freebase nicotine e-liquids to assess the effects of varying nicotine salts and nicotine protonation. This study reports the HPHCs and aerosol particle sizes for commercial brand nicotine salt and freebase nicotine formulations. Several tobacco, fruit, mint, and menthol flavored e-liquids of varying nicotine concentrations were tested with open and closed pod-style ENDS and a disposable ENDS. The nicotine yields showed a positive correlation with aerosol output, and the aerosol nicotine mass fractions reflected the e-liquid nicotine quantities. Benzene, crotonaldehyde, and 2,3-pentanedione were not detected or quantified in any of the aerosols, whereas acetaldehyde, acrolein, diacetyl, and formaldehyde were each quantified in at least one of the tested conditions. The aerosol particle number concentrations indicated that 97-99% of the aerosols for all the ENDS tested were composed of ultrafine (<0.1 μm) and fine (0.1-1.0 μm) aerosol particle sizes, and the mass median aerodynamic diameters ranged from 1.0 to 1.4 μm. The estimated regional deposition fractions and total respiratory depositions were calculated for all the ENDS conditions using a dosimetry modeling program. The calculations predicted depositions would predominantly occur in the pulmonary and head regions with a low total respiratory deposition (≤41%) calculated for all ENDS tested. This study broadens the availability of high-quality and reliable testing data of popular commercial nicotine salt-based ENDS for the scientific and regulatory communities. In conjunction with the previous work on the model e-liquids, these studies offer an extensive examination of the HPHCs and physical aerosol parameters of nicotine salt e-liquids.
Collapse
Affiliation(s)
- Trevor Harris
- Office of Science, Center
for Tobacco Products, U.S. Food and Drug
Administration, Silver
Spring, Maryland 20993, United States
| |
Collapse
|
2
|
Omaiye E, Luo W, McWhirter KJ, Talbot P. Ultrasonic Cigarettes: Chemicals and Cytotoxicity are Similar to Heated-Coil Pod-Style Electronic Cigarettes. Chem Res Toxicol 2024; 37:1329-1343. [PMID: 39051826 PMCID: PMC11337213 DOI: 10.1021/acs.chemrestox.4c00085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 07/05/2024] [Accepted: 07/08/2024] [Indexed: 07/27/2024]
Abstract
Our purpose was to test the hypothesis that ultrasonic cigarettes (u-cigarettes), which operate at relatively low temperatures, produce aerosols that are less harmful than heated-coil pod-style electronic cigarettes (e-cigarettes). The major chemicals in SURGE u-cigarette fluids and aerosols were quantified, their cytotoxicity and cellular effects were assessed, and a Margin of Exposure risk assessment was performed on chemicals in SURGE fluids. Four SURGE u-cigarette flavor variants ("Blueberry Ice," "Watermelon Ice," "Green Mint," and "Polar Mint") were evaluated. Flavor chemicals were quantified in fluids and aerosols using gas chromatography/mass spectrometry. Cytotoxicity and cell dynamics were assessed using the MTT assay, live-cell imaging, and fluorescence microscopy. WS-23 (a coolant) and total flavor chemical concentrations in SURGE were similar to e-cigarettes, while SURGE nicotine concentrations (13-19 mg/mL) were lower than many fourth generation e-cigarettes. Transfer efficiencies of dominant chemicals to aerosols in SURGE ranged from 44-100%. SURGE fluids and aerosols had four dominant flavor chemicals (>1 mg/mL). Toxic aldehydes were usually higher in SURGE aerosols than in SURGE fluids. SURGE fluids and aerosols had aldehyde concentrations significantly higher than pod-style e-cigarettes. Chemical constituents, solvent ratios, and aldehydes varied among SURGE flavor variants. SURGE fluids and aerosols inhibited cell growth and mitochondrial reductases, produced attenuated and round cells, and depolymerized actin filaments, effects that depended on pod flavor, chemical constituents, and concentration. The MOEs for nicotine, WS-23, and propylene glycol were <100 based on consumption of 1-2 SURGE u-cigarettes/day. Replacing the heating coil with a sonicator did not eliminate chemicals, including aldehydes, in aerosols or diminish toxicity in comparisons between SURGE and other e-cigarette pod products. The high concentrations of nicotine, WS-23, flavor chemicals, and aldehydes and the cytotoxicity of SURGE aerosols do not support the hypothesis that aerosols from u-cigarettes are less harmful than those from e-cigarettes.
Collapse
Affiliation(s)
- Esther
E. Omaiye
- Department
of Molecular, Cell, and Systems Biology. University of California, Riverside, California 92521, United States
| | - Wentai Luo
- Department
of Civil and Environmental Engineering, Portland State University, Portland, Oregon 97207, United States
| | - Kevin J. McWhirter
- Department
of Civil and Environmental Engineering, Portland State University, Portland, Oregon 97207, United States
| | - Prue Talbot
- Department
of Molecular, Cell, and Systems Biology. University of California, Riverside, California 92521, United States
| |
Collapse
|
3
|
Harris T. Physical and Chemical Characterization of Aerosols Produced from Experimentally Designed Nicotine Salt-Based E-Liquids. Chem Res Toxicol 2024; 37:1315-1328. [PMID: 39078024 PMCID: PMC11337207 DOI: 10.1021/acs.chemrestox.4c00073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 07/11/2024] [Accepted: 07/15/2024] [Indexed: 07/31/2024]
Abstract
Nicotine salt-based e-liquids deliver nicotine more rapidly and efficiently to electronic nicotine delivery system (ENDS) users than freebase nicotine formulations. Nicotine salt-based products represent a substantial majority of the United States ENDS market. Despite the popularity of nicotine salt formulations, the chemical and physical characteristics of aerosols produced by nicotine salt e-liquids are still not well understood. To address this, this study reports the harmful and potentially harmful constituents (HPHCs) and particle sizes of aerosols produced by laboratory-made freebase nicotine and nicotine salt e-liquids. The nicotine salt e-liquids were formulated with benzoic acid, citric acid, lactic acid, malic acid, or oxalic acid. The nicotine salt aerosols had different HPHC profiles than the freebase nicotine aerosols, indicating that the carboxylic acids were not innocent bystanders. The polycarboxylic acid e-liquids containing citric acid, malic acid, or oxalic acid produced higher acrolein yields than the monocarboxylic acid e-liquids containing benzoic acid or lactic acid. Across most PG:VG ratios, nicotine benzoate or nicotine lactate aerosols contained the highest nicotine quantities (in %) and the highest nicotine yields (per milligram of aerosol). Additionally, the nicotine benzoate and nicotine lactate e-liquids produced the highest carboxylic acid yields under all tested conditions. The lower acid yields of the citric, malic, and oxalic acid formulations are potentially due to a combination of factors such as lower transfer efficiencies, lower thermostabilities, and greater susceptibility to side reactions because of their additional carboxyl groups serving as new sites for reactivity. For all nicotine formulations, the particle size characteristics were primarily controlled by the e-liquid solvent ratios, and there were no clear trends between nicotine salt and freebase nicotine aerosols that indicated nicotine protonation affected particle size. The carboxylic acids impacted aerosol output, nicotine delivery, and HPHC yields in distinct ways such that interchanging them in ENDS can potentially cause downstream effects.
Collapse
Affiliation(s)
- Trevor Harris
- Office of Science, Center
for Tobacco Products, U.S. Food and Drug
Administration, Silver
Spring, Maryland 20993, United States
| |
Collapse
|
4
|
Heywood J, Abele G, Langenbach B, Litvin S, Smallets S, Paustenbach D. Composition of e-cigarette aerosols: A review and risk assessment of selected compounds. J Appl Toxicol 2024. [PMID: 39147402 DOI: 10.1002/jat.4683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 07/22/2024] [Accepted: 07/26/2024] [Indexed: 08/17/2024]
Abstract
The potential harms and benefits of e-cigarettes, or electronic nicotine delivery systems (ENDS), have received significant attention from public health and regulatory communities. Such products may provide a reduced risk means of nicotine delivery for combustible cigarette smokers while being inappropriately appealing to nicotine naive youth. Numerous authors have examined the chemical complexity of aerosols from various open- and closed-system ENDS. This body of literature is reviewed here, with the risks of ENDS aerosol exposure among users evaluated with a margin of exposure (MoE) approach for two non-carcinogens (methylglyoxal, butyraldehyde) and a cancer risk analysis for the carcinogen N-nitrosonornicotine (NNN). We identified 96 relevant papers, including 17, 13, and 5 reporting data for methylglyoxal, butyraldehyde, and NNN, respectively. Using low-end (minimum aerosol concentration, low ENDS use) and high-end (maximum aerosol concentration, high ENDS use) assumptions, estimated doses for methylglyoxal (1.78 × 10-3-135 μg/kg-bw/day) and butyraldehyde (1.9 × 10-4-66.54 μg/kg-bw/day) corresponded to MoEs of 227-17,200,000 and 271-280,000,000, respectively, using identified points of departure (PoDs). Doses of 9.90 × 10-6-1.99 × 10-4 μg/kg-bw/day NNN corresponded to 1.4-28 surplus cancers per 100,000 ENDS users, relative to a NNN-attributable surplus of 7440 per 100,000 cigarette smokers. It was concluded that methylglyoxal and butyraldehyde in ENDS aerosols, while not innocuous, did not present a significant risk of irritant effects among ENDS users. The carcinogenic risks of NNN in ENDS aerosols were reduced, but not eliminated, relative to concentrations reported in combustible cigarette smoke.
Collapse
Affiliation(s)
- Jonathan Heywood
- Paustenbach and Associates, Denver, Colorado, USA
- Insight Exposure & Risk Sciences Group, Boulder, Colorado, USA
| | | | | | | | | | | |
Collapse
|
5
|
Cordery S, Thompson K, Stevenson M, Simms L, Chapman F, Grandolfo E, Malt L, Weaver S, Fearon IM, Nahde T. The Product Science of Electrically Heated Tobacco Products: An Updated Narrative Review of the Scientific Literature. Cureus 2024; 16:e61223. [PMID: 38939262 PMCID: PMC11209752 DOI: 10.7759/cureus.61223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/28/2024] [Indexed: 06/29/2024] Open
Abstract
Heated tobacco products represent a novel category of tobacco products in which a tobacco consumable is heated to a temperature that releases nicotine from the tobacco leaf but not to a temperature sufficient to cause combustion. Heated tobacco products may therefore have the potential to be a less harmful alternative for adult smokers who would otherwise continue to smoke cigarettes, as their use should result in exposure to substantially fewer and lower levels of toxicants. This update represents a two-year extension to our previous narrative review, which covered peer-reviewed journal articles published up to August 31, 2021. The scientific evidence published between 2021 and 2023 continues to indicate that aerosols produced from heated tobacco products contain fewer and substantially lower levels of harmful and potentially harmful constituents and that these observed reductions consistently translate to reduced biological effects in both in vitro and in vivo toxicological studies. Biomarker and clinical data from studies in which product use is controlled within a clinical setting continue to suggest changes in levels of biomarkers of exposure, biomarkers of potential harm, and clinical endpoints indicating the potential for reduced harm with switching to exclusive use of heated tobacco products in adult smokers. Overall, the available peer-reviewed scientific evidence continues to indicate that heated tobacco products offer promise as a potentially less harmful alternative to cigarettes, and as such, the conclusions of our original narrative review remain valid.
Collapse
Affiliation(s)
- Sarah Cordery
- Group Science and Regulatory Affairs, Imperial Brands Plc., Bristol, GBR
| | - Keith Thompson
- Independent Scientific Consultant, Elucid8 Holdings Ltd., Coleraine, GBR
| | - Matthew Stevenson
- Group Science and Regulatory Affairs, Imperial Brands Plc., Bristol, GBR
| | - Liam Simms
- Group Science and Regulatory Affairs, Imperial Brands Plc., Bristol, GBR
| | - Fiona Chapman
- Group Science and Regulatory Affairs, Imperial Brands Plc., Bristol, GBR
| | - Erika Grandolfo
- Group Science and Regulatory Affairs, Imperial Brands Plc., Bristol, GBR
| | - Layla Malt
- Group Science and Regulatory Affairs, Imperial Brands Plc., Bristol, GBR
| | - Sarah Weaver
- Group Science and Regulatory Affairs, Imperial Brands Plc., Bristol, GBR
| | - Ian M Fearon
- Scientific Research, whatIF? Consulting Ltd., Harwell, GBR
| | - Thomas Nahde
- Group Science and Regulatory Affairs, Imperial Brands Reemtsma, Hamburg, DEU
| |
Collapse
|
6
|
El-Hellani A, Adeniji A, Erythropel HC, Wang Q, Lamb T, Mikheev VB, Rahman I, Stepanov I, Strongin RM, Wagener TL, Brinkman MC. Comparison of emissions across tobacco products: A slippery slope in tobacco control. Tob Induc Dis 2024; 22:TID-22-57. [PMID: 38560551 PMCID: PMC10980913 DOI: 10.18332/tid/183797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 02/07/2024] [Accepted: 02/10/2024] [Indexed: 04/04/2024] Open
Abstract
In this narrative review, we highlight the challenges of comparing emissions from different tobacco products under controlled laboratory settings (using smoking/vaping machines). We focus on tobacco products that generate inhalable smoke or aerosol, such as cigarettes, cigars, hookah, electronic cigarettes, and heated tobacco products. We discuss challenges associated with sample generation including variability of smoking/vaping machines, lack of standardized adaptors that connect smoking/vaping machines to different tobacco products, puffing protocols that are not representative of actual use, and sample generation session length (minutes or number of puffs) that depends on product characteristics. We also discuss the challenges of physically characterizing and trapping emissions from products with different aerosol characteristics. Challenges to analytical method development are also covered, highlighting matrix effects, order of magnitude differences in analyte levels, and the necessity of tailored quality control/quality assurance measures. The review highlights two approaches in selecting emissions to monitor across products, one focusing on toxicants that were detected and quantified with optimized methods for combustible cigarettes, and the other looking for product-specific toxicants using non-targeted analysis. The challenges of data reporting and statistical analysis that allow meaningful comparison across products are also discussed. We end the review by highlighting that even if the technical challenges are overcome, emission comparison may obscure the absolute exposure from novel products if we only focus on relative exposure compared to combustible products.
Collapse
Affiliation(s)
- Ahmad El-Hellani
- Division of Environmental Health Sciences, College of Public Health, The Ohio State University, Columbus, United States
- Center for Tobacco Research, The Ohio State University Comprehensive Cancer Center, Columbus, United States
| | - Ayomipo Adeniji
- Division of Environmental Health Sciences, College of Public Health, The Ohio State University, Columbus, United States
- Center for Tobacco Research, The Ohio State University Comprehensive Cancer Center, Columbus, United States
| | - Hanno C. Erythropel
- Department of Chemical and Environmental Engineering, School of Engineering & Applied Science, Yale University, New Haven, United States
- Yale Center for the Study of Tobacco Product Use and Addiction (YCSTP), Department of Psychiatry, Yale School of Medicine, New Haven, United States
| | - Qixin Wang
- Department of Environmental Medicine, University of Rochester Medical Center, Rochester, United States
| | - Thomas Lamb
- Department of Environmental Medicine, University of Rochester Medical Center, Rochester, United States
| | - Vladimir B. Mikheev
- Battelle Public Health Center for Tobacco Research, Battelle Memorial Institute, Columbus, United States
| | - Irfan Rahman
- Department of Environmental Medicine, University of Rochester Medical Center, Rochester, United States
| | - Irina Stepanov
- Division of Environmental Health Sciences, School of Public Health, University of Minnesota Twin Cities, Minneapolis, United States
- Masonic Cancer Center, University of Minnesota Twin Cities, Minneapolis, United States
| | - Robert M. Strongin
- Department of Chemistry, Portland State University, Portland, United States
| | - Theodore L. Wagener
- Center for Tobacco Research, The Ohio State University Comprehensive Cancer Center, Columbus, United States
- Department of Internal Medicine, The Ohio State University, Columbus, United States
| | - Marielle C. Brinkman
- Center for Tobacco Research, The Ohio State University Comprehensive Cancer Center, Columbus, United States
- Division of Epidemiology, College of Public Health, The Ohio State University, Columbus, United States
| |
Collapse
|
7
|
Shiffman S, Oliveri DR, Goldenson NI, Liang Q, Black RA, Mishra S. Comparing Adult Smokers Who Switched to JUUL versus Continuing Smokers: Biomarkers of Exposure and of Potential Harm and Respiratory Symptoms. Nicotine Tob Res 2024; 26:494-502. [PMID: 37837438 DOI: 10.1093/ntr/ntad197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 08/31/2023] [Accepted: 10/01/2023] [Indexed: 10/16/2023]
Abstract
OBJECTIVES Real-world evidence on exposure to harmful and potentially harmful constituents (HPHCs) and on biological effects in cigarette smokers who switch to electronic nicotine delivery systems (ENDS) can inform the health effects of switching. AIMS AND METHODS This cross-sectional, observational study assessed adults who had smoked ≥10 cigarettes/day for ≥10 years, comparing 124 continuing cigarette smokers (Smokers) to 140 former smokers who switched to JUUL-brand ENDS exclusively for ≥6 months (Switchers). Assessments included biomarkers of exposure (BOEs) to select HPHCs, biomarkers of potential harm (BOPHs) related to smoking-related diseases, psychometric assessments of dependence on cigarettes and ENDS, respectively, and respiratory symptoms. Planned analyses compared geometric means, adjusted for demographic covariates; further analyses adjusted for additional lifestyle and smoking history covariates. RESULTS Nicotine levels were significantly higher in Switchers (median time switched = 3 years), who were unusually heavy users of JUUL. All other BOEs, including NNAL and HPMA3 (primary endpoints), were significantly lower in Switchers than Smokers. Most BOPHs (sICAM-1 [primary], and eg, white blood cell count, MCP1, HbA1c) were significantly lower in Switchers than Smokers; HDL was significantly higher. Switchers reported significantly lower dependence on JUUL than Smokers did on cigarettes, and respiratory symptom scores were significantly lower among Switchers than Smokers. CONCLUSIONS Compared to continuing smokers, smokers who switched to JUUL had substantially lower exposures to multiple HPHCs, favorable differences in markers of inflammation, endothelial function, oxidative stress, and cardiovascular risk, and fewer respiratory symptoms. These findings suggest that switching from cigarettes to JUUL likely reduces smokers' health risks. IMPLICATIONS Short-term confinement studies and randomized clinical trials demonstrate that adult smokers who switch completely to ENDS experience substantial reductions in exposure to many smoking-related toxicants. This study extends those findings to longer periods of switching to JUUL-brand ENDS (almost 3 years on average) under naturalistic use conditions in real-world settings and also found that switching to JUUL resulted in favorable differences in BOPHs more proximally related to smoking-induced disease, as well as in respiratory symptoms. Smokers who switch to ENDS reduce their exposure to toxicants, likely reducing their disease risk.
Collapse
Affiliation(s)
| | | | | | - Qiwei Liang
- Population and Clinical Sciences, Juul Labs, Inc., Washington, DC, USA
| | - Ryan A Black
- Behavioral and Clinical Sciences, Juul Labs, Inc., Washington, DC, USA
| | - Snigdha Mishra
- Regulatory Sciences, Juul Labs, Inc., Washington, DC, USA
| |
Collapse
|
8
|
Cook DK, Lalonde G, Oldham MJ, Wang J, Bates A, Ullah S, Sulaiman C, Carter K, Jongsma C, Dull G, Gillman IG. A Practical Framework for Novel Electronic Nicotine Delivery System Evaluation: Chemical and Toxicological Characterization of JUUL2 Aerosol and Comparison with Reference Cigarettes. TOXICS 2024; 12:41. [PMID: 38250996 PMCID: PMC10820849 DOI: 10.3390/toxics12010041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 12/15/2023] [Accepted: 12/21/2023] [Indexed: 01/23/2024]
Abstract
Electronic nicotine delivery systems (ENDSs) are designed as a non-combustible alternative to cigarettes, aiming to deliver nicotine without the harmful byproducts of tobacco combustion. As the category evolves and new ENDS products emerge, it is important to continually assess the levels of toxicologically relevant chemicals in the aerosols and characterize any related toxicology. Herein, we present a proposed framework for characterizing novel ENDS products (i.e., devices and formulations) and determining the reduced risk potential utilizing analytical chemistry and in vitro toxicological studies with a qualitative risk assessment. To demonstrate this proposed framework, long-term stability studies (12 months) analyzing relevant toxicant emissions from six formulations of a next-generation product, JUUL2, were conducted and compared to reference combustible cigarette (CC) smoke under both non-intense and intense puffing regimes. In addition, in vitro cytotoxicity, mutagenicity, and genotoxicity assays were conducted on aerosol and smoke condensates. In all samples, relevant toxicants under both non-intense and intense puffing regimes were substantially lower than those observed in reference CC smoke. Furthermore, neither cytotoxicity, mutagenicity, nor genotoxicity was observed in aerosol condensates generated under both intense and non-intense puffing regimes, in contrast to results observed for reference cigarettes. Following the proposed framework, the results demonstrate that the ENDS products studied in this work generate significantly lower levels of toxicants relative to reference cigarettes and were not cytotoxic, mutagenic, or genotoxic under these in vitro assay conditions.
Collapse
Affiliation(s)
- David K. Cook
- JUUL Labs, 1000 F Street NW, Washington, DC 20004, USA (M.J.O.); (S.U.); (C.S.)
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Lalonde G, Tsolakos N, Moir-Savitz TR, Easley AM, Gaworski CL, Oldham MJ. Subchronic inhalation of a novel electronic nicotine delivery system formulation and its corresponding base formulation. Hum Exp Toxicol 2024; 43:9603271241248631. [PMID: 38646969 DOI: 10.1177/09603271241248631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2024]
Abstract
BACKGROUND Fresh Menthol 3% Nicotine (FM3) is a novel JUUL e-liquid formulation. Its potential toxicity and that of the corresponding base formulation relative to a filtered air (FA) control was studied in a subchronic inhalation study conducted in general accordance with OECD 413. METHODS Aerosols generated with an intense puffing regime were administered to rats in a nose-only fashion at 1400 µg aerosol collected mass/L on a 6 hour/day basis for 90 days with a 42-day recovery. Exposure atmospheres met target criteria. Systemic exposure was confirmed by plasma measurement of nicotine. RESULTS No test article-related mortality, clinical signs (other than reversible lower body weight gains in males), clinical pathology or gross findings were noted during this study. No microscopic lesions related to base formulation exposure were identified. Minimal microscopic lesions were observed in the FM3 6-hour exposure group. Microscopic lesions observed in the FM3 6-hour exposure group comprised only minimal laryngeal squamous metaplasia in one male and one female animal. No microscopic lesions related to FM3 exposure remained after the recovery period. CONCLUSION Exposure atmosphere characterization indicated that conditions were achieved to permit thorough assessment of test articles and results indicate a low order of toxicity for the FM3 Electronic nicotine delivery systems (ENDS) formulation and its base formulation.
Collapse
|
10
|
Oldham MJ, Jeong L, Gillman IG. An Approach to Flavor Chemical Thermal Degradation Analysis. TOXICS 2023; 12:16. [PMID: 38250972 PMCID: PMC10819574 DOI: 10.3390/toxics12010016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 12/14/2023] [Accepted: 12/20/2023] [Indexed: 01/23/2024]
Abstract
Toxicological evaluations of flavor chemicals for use in inhalation products that utilize heat for aerosol generation are complicated because of the potential effect heat may have on the flavor chemical. The objective was to develop a thermal degradation technique to screen flavor chemicals as part of a toxicological testing program for their potential use in ENDS formulations. Based upon published data for acetaldehyde, acrolein, and glycidol from ENDS products (common thermal degradants of propylene glycol and glycerin), the pyrolizer temperature was adjusted until a similar ratio of acetaldehyde, acrolein, and glycidol was obtained from a 60/40 ratio (v/v) of glycerin/propylene glycol via GC/MS analysis. For each of 90 flavor chemicals, quantitative measurements of acetaldehyde, acrolein, and glycidol, in addition to semiquantitative non-targeted analysis tentatively identifying chemicals from thermal degradation, were obtained. Twenty flavor chemicals transferred at greater than 99% intact, another 26 transferred at greater than 95% intact, and another 15 flavor chemicals transferred at greater than 90% intact. Most flavor chemicals resulted in fewer than 10-12 tentatively identified thermal degradants. The practical approach to the thermal degradation of flavor chemicals provided useful information as part of the toxicological evaluation of flavor chemicals for potential use in ENDS formulations.
Collapse
|
11
|
Sussman RA, Sipala F, Emma R, Ronsisvalle S. Aerosol Emissions from Heated Tobacco Products: A Review Focusing on Carbonyls, Analytical Methods, and Experimental Quality. TOXICS 2023; 11:947. [PMID: 38133348 PMCID: PMC10747376 DOI: 10.3390/toxics11120947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 11/07/2023] [Accepted: 11/08/2023] [Indexed: 12/23/2023]
Abstract
We provide an extensive review of 17 independent and industry-funded studies targeting carbonyls in aerosol emissions of Heated Tobacco Products (HTPs), focusing on quality criteria based on the reproducibility of experiments, appropriate analytic methods, and puffing regimes. Most revised studies complied with these requirements, but some were unreproducible, while others failed to consider analytical variables that may have affected the results and/or produced unrealistic comparisons. We also provide a review of the literature on the physicochemical properties of heated tobacco and HTP aerosols, as well as the evaluation of HTPs by regulatory agencies, addressing various critiques of their relative safety profile. The outcomes from the revised studies and regulatory evaluations tend to agree with and converge to a general consensus that HTP aerosols expose users to significantly lower levels of toxicity than tobacco smoke.
Collapse
Affiliation(s)
- Roberto A. Sussman
- Institute of Physical Sciences, National Autonomous University of Mexico UNAM, Mexico City 04510, Mexico
| | - Federica Sipala
- Department of Drug and Health Sciences, University of Catania, 95123 Catania, Italy
- Center of Excellence for the Acceleration of Harm Reduction (CoEHAR), 95123 Catania, Italy
| | - Rosalia Emma
- Center of Excellence for the Acceleration of Harm Reduction (CoEHAR), 95123 Catania, Italy
- Department of Clinical and Experimental Medicine, University of Catania, 95123 Catania, Italy
| | - Simone Ronsisvalle
- Department of Drug and Health Sciences, University of Catania, 95123 Catania, Italy
- Center of Excellence for the Acceleration of Harm Reduction (CoEHAR), 95123 Catania, Italy
| |
Collapse
|
12
|
Selya A, Shiffman S. Comparative risk perceptions of switching to JUUL vs. continued smoking and subsequent switching away from cigarettes: a longitudinal observational study. BMC Psychol 2023; 11:305. [PMID: 37798775 PMCID: PMC10552465 DOI: 10.1186/s40359-023-01351-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 09/26/2023] [Indexed: 10/07/2023] Open
Abstract
BACKGROUND Evidence indicates that electronic nicotine delivery systems (ENDS) pose lower risk than cigarettes; however, many smokers harbor misperceptions that ENDS are equally or more harmful, possibly deterring them from switching. This study examines whether comparative risk perceptions of JUUL vs. smoking are associated with subsequent switching, among smokers who recently purchased JUUL. METHODS N = 16,996 current established smokers who recently purchased a JUUL Starter Kit were followed 6 times over 12 months. Comparative risk perceptions were assessed using both direct and indirect measures (i.e., contrasting JUUL and smoking directly in questions, and deriving from separate absolute scales). Repeated-measures logistic regression examined switching across follow-up (no smoking in past 30 days) as a function of baseline risk perceptions, adjusting for demographics and baseline smoking behavior. RESULTS Perceiving JUUL as less harmful than smoking was associated with higher switching rates, using both direct (e.g., adjusted odds ratio [AOR] = 1.48 for "JUUL much less" vs. "more/much more harmful") and indirect (AOR = 1.07, for each 10-unit increase in fraction; AOR = 1.51 for highest (6-100) vs. lowest (0 to < 1) fraction categories) comparative risk measures (all p < 0.0001). Among the subset smoking 10 + cigarettes per day, associations between risk perceptions and switching were more pronounced (AOR = 2.51 for "JUUL much less" vs. "more/much more harmful"; AOR = 1.81 for 6-100 vs. 0 to < 1 fraction, both p < 0.0001). CONCLUSIONS Smokers who perceive JUUL as less harmful than cigarettes have higher odds of switching. Future research should examine whether messaging which aligns comparative risk perceptions with current evidence can facilitate switching, especially among heavier smokers.
Collapse
Affiliation(s)
- Arielle Selya
- Pinney Associates, Inc, 201 N Craig St., Suite 320, Pittsburgh, PA, 15213, USA.
| | - Saul Shiffman
- Pinney Associates, Inc, 201 N Craig St., Suite 320, Pittsburgh, PA, 15213, USA
| |
Collapse
|
13
|
Jameson JB, Wang J, Bailey PC, Oldham MJ, Smith CR, Jeong LN, Cook DK, Bates AL, Ullah S, Pennington ASC, Gillman IG. Determination of chemical constituent yields in e-cigarette aerosol using partial and whole pod collections, a comparative analysis. Front Chem 2023; 11:1223967. [PMID: 37744056 PMCID: PMC10512464 DOI: 10.3389/fchem.2023.1223967] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 08/18/2023] [Indexed: 09/26/2023] Open
Abstract
Literature reports the chemical constituent yields of electronic nicotine delivery systems (ENDS) aerosol collected using a range of aerosol collection strategies. The number of puffs to deplete an ENDS product varies widely, but collections often consist of data from the first 50-100 puffs. However, it is not clear whether these discrete puff blocks are representative of constituent yields over the life of a pod. We aimed to assess the effect of differing aerosol collection strategies on reported yields for select chemical constituents in the aerosol of closed pod-based ENDS products. Constituents analyzed were chosen to reflect important classes of compounds from the Final Premarket Tobacco Product Application Guidance. Yields were normalized to total device mass loss (DML). Collection strategies that consisted of partial pod collection were valid for determining yields of constituents whose DML normalized yields were consistent for the duration of pod life. These included primary aerosol constituents, such as propylene glycol, glycerol, and nicotine, and whole pod yields could be determined from initial puff blocks. However, changes were observed in the yields of some metals, some carbonyl compounds, and glycidol over pod life in a chemical constituent and product dependent manner. These results suggest that collection strategies consisting of initial puff block collections require validation per chemical constituent/product and are not appropriate for chemical constituents with variable yields over pod life. Whole pod collection increased sensitivity and accuracy in determining metal, carbonyl, and glycidol yields compared to puff block-based collection methodologies for all products tested.
Collapse
|
14
|
Desai RW, Demir K, Tsolakos N, Moir-Savitz TR, Gaworski CL, Weil R, Oldham MJ, Lalonde G. Comparison of the toxicological potential of two JUUL ENDS products to reference cigarette 3R4F and filtered air in a 90-day nose-only inhalation toxicity study. Food Chem Toxicol 2023; 179:113917. [PMID: 37451597 DOI: 10.1016/j.fct.2023.113917] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Revised: 06/13/2023] [Accepted: 06/22/2023] [Indexed: 07/18/2023]
Abstract
Electronic nicotine delivery systems (ENDS) are generally recognized as less harmful alternatives for those who would otherwise continue to smoke cigarettes. The potential toxicity of aerosols generated from JUUL Device and Virginia Tobacco (VT3) or Menthol (ME3) JUULpods at 3.0% nicotine concentration was assessed in rats exposed at target aerosol concentrations of 1400 μg/L for up to 6 h/day on a 5 day/week basis for at least 90 days (general accordance with OECD 413). 3R4F reference cigarette smoke (250 μg/L) and Filtered Air were used as comparators. JUUL ENDS product aerosol exposures at >5x the 3R4F cigarette smoke level resulted in greater plasma nicotine and cotinine levels (up to 2x). Notable cigarette smoke related effects included pronounced body weight reductions in male rats, pulmonary inflammation evidenced by elevated lactate dehydrogenase, pro-inflammatory cytokines and neutrophils in bronchoalveolar lavage fluid, increased heart and lung weights, and minimal to marked respiratory tract histopathology. In contrast, ENDS aerosol exposed animals had minimal body weight changes, no measurable inflammatory changes and minimal to mild laryngeal squamous metaplasia. Despite the higher exposure levels, VT3 and ME3 did not result in significant toxicity or appreciable respiratory histopathology relative to 3R4F cigarette smoke following 90 days administration.
Collapse
Affiliation(s)
| | | | - Nikos Tsolakos
- Protatonce Ltd, National Centre of Scientific Research Demokritos, Patriarchou Grigoriou E' & Neapoleos 27, Technological Park Lefkippos, Bldg 27, 15341, Ag. Paraskevi, Attiki, Greece
| | - Tessa R Moir-Savitz
- AmplifyBio, 1425 NE Plain City-Georgesville Rd, West Jefferson, OH, 43162, USA
| | | | | | | | | |
Collapse
|
15
|
Guo W, Yu JZ, Chan W. Face Mask as a Versatile Sampling Device for the Assessment of Personal Exposure to 54 Toxic Compounds in Environmental Tobacco Smoke. Chem Res Toxicol 2023. [PMID: 37406339 DOI: 10.1021/acs.chemrestox.3c00114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/07/2023]
Abstract
Exposure to environmental tobacco smoke (ETS), which contains hundreds of toxic compounds, significantly increases the risk of developing many human diseases, including lung cancer. The most common method of assessing personal exposure to ETS-borne toxicants is by sampling sidestream smoke generated by a smoking machine through a sorbent tube or filter, followed by solvent extraction and instrumental analysis. However, the ETS sampled may not truly represent the ETS in the ambient environment, due to complicating factors from the smoke released by the burning end of the cigarette and from the absorption of the chemicals in the respiratory tract of the smoker. In this study, we developed and validated an alternative air sampling method involving breathing through a face mask to simultaneously determine personal exposure to 54 ETS-borne compounds, including polycyclic aromatic hydrocarbons, aromatic amines, alkaloids, and phenolic compounds in real smoking scenarios. The newly developed method was used to evaluate the risk associated with exposure to ETS released from conventional cigarettes (CCs) and that from novel tobacco products such as e-cigarettes (ECs) and heated tobacco products (HTPs), with the observation of cancer risk associated with exposure to ETS released from CCs significantly higher than that from ECs and HTPs. It is anticipated that this method offers a convenient and sensitive way to collect samples for assessing the health impacts of ETS exposure.
Collapse
|
16
|
Soulet S, Sussman RA. Critical Review of the Recent Literature on Organic Byproducts in E-Cigarette Aerosol Emissions. TOXICS 2022; 10:714. [PMID: 36548547 PMCID: PMC9787926 DOI: 10.3390/toxics10120714] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 11/03/2022] [Accepted: 11/14/2022] [Indexed: 06/17/2023]
Abstract
We review the literature on laboratory studies quantifying the production of potentially toxic organic byproducts (carbonyls, carbon monoxide, free radicals and some nontargeted compounds) in e-cigarette (EC) aerosol emissions, focusing on the consistency between their experimental design and a realistic usage of the devices, as determined by the power ranges of an optimal regime fulfilling a thermodynamically efficient process of aerosol generation that avoids overheating and "dry puffs". The majority of the reviewed studies failed in various degrees to comply with this consistency criterion or supplied insufficient information to verify it. Consequently, most of the experimental outcomes and risk assessments are either partially or totally unreliable and/or of various degrees of questionable relevance to end users. Studies testing the devices under reasonable approximation to realistic conditions detected levels of all organic byproducts that are either negligible or orders of magnitude lower than in tobacco smoke. Our review reinforces the pressing need to update and improve current laboratory standards by an appropriate selection of testing parameters and the logistical incorporation of end users in the experimental design.
Collapse
Affiliation(s)
| | - Roberto A. Sussman
- Institute of Nuclear Sciences, National Autonomous University of Mexico, Mexico City 04510, Mexico
| |
Collapse
|
17
|
Non-Targeted Chemical Characterization of JUUL-Menthol-Flavored Aerosols Using Liquid and Gas Chromatography. SEPARATIONS 2022. [DOI: 10.3390/separations9110367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The aerosol constituents generated from JUUL Menthol pods with 3.0% and 5.0% nicotine by weight (Me3 and Me5) are characterized by a non-targeted approach, which was developed to detect aerosol constituents that are not known to be present beforehand or that may be measured with targeted methods. Three replicates from three production batches (n = 9) were aerosolized using two puffing regimens (intense and non-intense). Each of the 18 samples were analyzed by gas chromatography electron ionization mass spectrometry and by liquid chromatography electrospray ionization high-resolving power mass spectrometry. All chemical constituents determined to differ from control were identified and semi-quantified. To have a complete understanding of the aerosol constituents and chemistry, each chemical constituent was categorized into one of five groups: (1) flavorants, (2) harmful and potentially harmful constituents, (3) leachables, (4) reaction products, and (5) chemical constituents that were unable to be identified or rationalized (e.g., chemical constituents that could not be categorized in groups (1–4). Under intense puffing, 74 chemical constituents were identified in Me3 aerosols and 68 under non-intense puffing, with 53 chemical constituents common between both regimens. Eighty-three chemical constituents were identified in Me5 aerosol using an intense puffing regimen and seventy-five with a non-intense puffing regimen, with sixty-two chemical constituents in common. Excluding primary constituents, reaction products accounted for the greatest number of chemical constituents (approximately 60% in all cases, ranging from about 0.05% to 0.1% by mass), and flavorants—excluding menthol—comprised the second largest number of chemical constituents (approximately 25%, ranging consistently around 0.01% by mass). The chemical constituents detected in JUUL aerosols were then compared to known constituents from cigarette smoke to determine the relative chemical complexities and commonalities/differences between the two. This revealed (1) a substantial decrease in the chemical complexity of JUUL aerosols vs. cigarette smoke and (2) that there are between 55 (Me3) and 61 (Me5) unique chemical constituents in JUUL aerosols not reported in cigarette smoke. Understanding the chemical complexity of JUUL aerosols is important because the health effects of combustible cigarette smoke are related to the combined effect of these chemical constituents through multiple mechanisms, not just the effects of any single smoke constituent.
Collapse
|
18
|
Soulet S, Sussman RA. A Critical Review of Recent Literature on Metal Contents in E-Cigarette Aerosol. TOXICS 2022; 10:510. [PMID: 36136475 PMCID: PMC9506048 DOI: 10.3390/toxics10090510] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 08/24/2022] [Accepted: 08/26/2022] [Indexed: 05/23/2023]
Abstract
The inhalation of metallic compounds in e-cigarette (EC) aerosol emissions presents legitimate concerns of potential harms for users. We provide a critical review of laboratory studies published after 2017 on metal contents in EC aerosol, focusing on the consistency between their experimental design, real life device usage and appropriate evaluation of exposure risks. All experiments reporting levels above toxicological markers for some metals (e.g., nickel, lead, copper, manganese) exhibited the following experimental flaws: (i) high powered sub-ohm tank devices tested by means of puffing protocols whose airflows and puff volumes are conceived and appropriate for low powered devices; this testing necessarily involves overheating conditions that favor the production of toxicants and generate aerosols that are likely repellent to human users; (ii) miscalculation of exposure levels from experimental outcomes; (iii) pods and tank devices acquired months and years before the experiments, so that corrosion effects cannot be ruled out; (iv) failure to disclose important information on the characteristics of pods and tank devices, on the experimental methodology and on the resulting outcomes, thus hindering the interpretation of results and the possibility of replication. In general, low powered devices tested without these shortcomings produced metal exposure levels well below strict reference toxicological markers. We believe this review provides useful guidelines for a more objective risk assessment of EC aerosol emissions and signals the necessity to upgrade current laboratory testing standards.
Collapse
Affiliation(s)
| | - Roberto A. Sussman
- Institute of Nuclear Sciences, National Autonomous University of Mexico, Mexico City 04510, Mexico
| |
Collapse
|
19
|
El-Kaassamani M, Yen M, Talih S, El-Hellani A. Analysis of mainstream emissions, secondhand emissions and the environmental impact of IQOS waste: a systematic review on IQOS that accounts for data source. Tob Control 2022; 33:tobaccocontrol-2021-056986. [PMID: 35568394 DOI: 10.1136/tobaccocontrol-2021-056986] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Accepted: 05/05/2022] [Indexed: 11/03/2022]
Abstract
OBJECTIVE To highlight the general features of IQOS literature focusing on the chemical analysis of IQOS emissions. DATA SOURCES PubMed, Web of Science and Scopus databases were searched on 8 November 2021 using the terms 'heated tobacco product', 'heat-not-burn', 'IQOS' and 'tobacco heating system' with time restriction (2010-2021). The search yielded 5480 records. STUDY SELECTION Relevant publications on topics related to IQOS assessment were retrieved (n=341). Two reviewers worked separately and reached agreement by consensus. DATA EXTRACTION Data on author affiliation and funding, article type and date of publication were extracted. Publications were categorised depending on their focus and outcomes. Data on IQOS emissions from the chemical analysis category were extracted. DATA SYNTHESIS Of the included publications, 25% were published by Philip Morris International (PMI) affiliates or PMI-funded studies. PMI-sponsored publications on emissions, toxicology assessments and health effects were comparable in number to those reported by independent research, in contrast to publications on IQOS use, market trends and regulation. Data on nicotine yield, carbonyl emissions, other mainstream emissions, secondhand emissions and IQOS waste were compared between data sources to highlight agreement or disagreement between PMI-sponsored and independent research. CONCLUSIONS Our analysis showed agreement between the data sources on nicotine yield from IQOS under the same puffing conditions. Also, both sources agreed that IQOS emits significantly reduced levels of some emissions compared with combustible cigarettes. However, independent studies and examination of PMI's data showed significant increases in other emissions from and beyond the Food and Drug Administration's harmful and potentially harmful constituents list.
Collapse
Affiliation(s)
- Malak El-Kaassamani
- Department of Chemistry, American University of Beirut Faculty of Arts and Sciences, Beirut, Lebanon
| | - Miaoshan Yen
- Department of Biostatistics, Virginia Commonwealth University School of Medicine, Richmond, Virginia, USA
- Center for the Study of Tobacco Products, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Soha Talih
- Center for the Study of Tobacco Products, Virginia Commonwealth University, Richmond, Virginia, USA
- Department of Mechanical Engineering, American University of Beirut Faculty of Engineering and Architecture, Beirut, Lebanon
| | - Ahmad El-Hellani
- Center for the Study of Tobacco Products, Virginia Commonwealth University, Richmond, Virginia, USA
- Division of Environmental Health Sciences, The Ohio State University College of Public Health, Columbus, Ohio, USA
- Center for Tobacco Research, The Ohio State University Comprehensive Cancer Center, Columbus, Ohio, USA
| |
Collapse
|
20
|
Method Development and Applications for Reduced-Risk Products. SEPARATIONS 2022. [DOI: 10.3390/separations9030078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Cigarette smoking remains the leading cause of preventable premature death and disease in the U [...]
Collapse
|