1
|
Kosmopoulos JC, Klier KM, Langwig MV, Tran PQ, Anantharaman K. Viromes vs. mixed community metagenomes: choice of method dictates interpretation of viral community ecology. MICROBIOME 2024; 12:195. [PMID: 39375774 PMCID: PMC11460016 DOI: 10.1186/s40168-024-01905-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 08/12/2024] [Indexed: 10/09/2024]
Abstract
BACKGROUND Viruses, the majority of which are uncultivated, are among the most abundant biological entities on Earth. From altering microbial physiology to driving community dynamics, viruses are fundamental members of microbiomes. While the number of studies leveraging viral metagenomics (viromics) for studying uncultivated viruses is growing, standards for viromics research are lacking. Viromics can utilize computational discovery of viruses from total metagenomes of all community members (hereafter metagenomes) or use physical separation of virus-specific fractions (hereafter viromes). However, differences in the recovery and interpretation of viruses from metagenomes and viromes obtained from the same samples remain understudied. RESULTS Here, we compare viral communities from paired viromes and metagenomes obtained from 60 diverse samples across human gut, soil, freshwater, and marine ecosystems. Overall, viral communities obtained from viromes had greater species richness and total viral genome abundances than those obtained from metagenomes, although there were some exceptions. Despite this, metagenomes still contained many viral genomes not detected in viromes. We also found notable differences in the predicted lytic state of viruses detected in viromes vs metagenomes at the time of sequencing. Other forms of variation observed include genome presence/absence, genome quality, and encoded protein content between viromes and metagenomes, but the magnitude of these differences varied by environment. CONCLUSIONS Overall, our results show that the choice of method can lead to differing interpretations of viral community ecology. We suggest that the choice of whether to target a metagenome or virome to study viral communities should be dependent on the environmental context and ecological questions being asked. However, our overall recommendation to researchers investigating viral ecology and evolution is to pair both approaches to maximize their respective benefits. Video Abstract.
Collapse
Affiliation(s)
- James C Kosmopoulos
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI, USA
- Microbiology Doctoral Training Program, University of Wisconsin-Madison, Madison, WI, USA
| | - Katherine M Klier
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI, USA
- Freshwater and Marine Sciences Program, University of Wisconsin-Madison, Madison, WI, USA
| | - Marguerite V Langwig
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI, USA
- Freshwater and Marine Sciences Program, University of Wisconsin-Madison, Madison, WI, USA
| | - Patricia Q Tran
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI, USA
| | - Karthik Anantharaman
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI, USA.
- Department of Integrative Biology, University of Wisconsin-Madison, Madison, WI, USA.
- Department of Data Science and AI, Wadhwani School of Data Science and AI, Indian Institute of Technology Madras, Chennai, India.
| |
Collapse
|
2
|
Zimmerman AE, Graham EB, McDermott J, Hofmockel KS. Estimating the Importance of Viral Contributions to Soil Carbon Dynamics. GLOBAL CHANGE BIOLOGY 2024; 30:e17524. [PMID: 39450620 DOI: 10.1111/gcb.17524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 09/10/2024] [Accepted: 09/13/2024] [Indexed: 10/26/2024]
Abstract
Biogeochemical models for predicting carbon dynamics increasingly include microbial processes, reflecting the importance of microorganisms in regulating the movement of carbon between soils and the atmosphere. Soil viruses can redirect carbon among various chemical pools, indicating a need for quantification and development soil carbon models that explicitly represent viral dynamics. In this opinion, we derive a global estimate of carbon potentially released from microbial biomass by viral infections in soils and synthesize a quantitative soil carbon budget from existing literature that explicitly includes viral impacts. We then adapt known mechanisms by which viruses influence carbon cycles in marine ecosystems into a soil-explicit framework. Finally, we explore the diversity of virus-host interactions during infection and conceptualize how infection mode may impact soil carbon fate. Our synthesis highlights key knowledge gaps hindering the incorporation of viruses into soil carbon cycling research and generates specific hypotheses to test in the pursuit of better quantifying microbial dynamics that explain ecosystem-scale carbon fluxes. The importance of identifying critical drivers behind soil carbon dynamics, including these elusive but likely pervasive viral mechanisms of carbon redistribution, becomes more pressing with climate change.
Collapse
Affiliation(s)
- Amy E Zimmerman
- Earth and Biological Sciences Directorate, Pacific Northwest National Lab, Richland, Washington, USA
| | - Emily B Graham
- Earth and Biological Sciences Directorate, Pacific Northwest National Lab, Richland, Washington, USA
- School of Biological Sciences, Washington State University, Pullman, Washington, USA
| | - Jason McDermott
- Earth and Biological Sciences Directorate, Pacific Northwest National Lab, Richland, Washington, USA
- Department of Molecular Microbiology and Immunology, Oregon Health & Science University, Portland, Oregon, USA
| | - Kirsten S Hofmockel
- Earth and Biological Sciences Directorate, Pacific Northwest National Lab, Richland, Washington, USA
- Department of Agronomy, Iowa State University, Ames, Iowa, USA
| |
Collapse
|
3
|
Jia P, Liang JL, Lu JL, Zhong SJ, Xiong T, Feng SW, Wang Y, Wu ZH, Yi XZ, Gao SM, Zheng J, Wen P, Li F, Li Y, Liao B, Shu WS, Li JT. Soil keystone viruses are regulators of ecosystem multifunctionality. ENVIRONMENT INTERNATIONAL 2024; 191:108964. [PMID: 39173234 DOI: 10.1016/j.envint.2024.108964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 08/14/2024] [Accepted: 08/16/2024] [Indexed: 08/24/2024]
Abstract
Ecosystem multifunctionality reflects the capacity of ecosystems to simultaneously maintain multiple functions which are essential bases for human sustainable development. Whereas viruses are a major component of the soil microbiome that drive ecosystem functions across biomes, the relationships between soil viral diversity and ecosystem multifunctionality remain under-studied. To address this critical knowledge gap, we employed a combination of amplicon and metagenomic sequencing to assess prokaryotic, fungal and viral diversity, and to link viruses to putative hosts. We described the features of viruses and their potential hosts in 154 soil samples from 29 farmlands and 25 forests distributed across China. Although 4,460 and 5,207 viral populations (vOTUs) were found in the farmlands and forests respectively, the diversity of specific vOTUs rather than overall soil viral diversity was positively correlated with ecosystem multifunctionality in both ecosystem types. Furthermore, the diversity of these keystone vOTUs, despite being 10-100 times lower than prokaryotic or fungal diversity, was a better predictor of ecosystem multifunctionality and more strongly associated with the relative abundances of prokaryotic genes related to soil nutrient cycling. Gemmatimonadota and Actinobacteria dominated the host community of soil keystone viruses in the farmlands and forests respectively, but were either absent or showed a significantly lower relative abundance in that of soil non-keystone viruses. These findings provide novel insights into the regulators of ecosystem multifunctionality and have important implications for the management of ecosystem functioning.
Collapse
Affiliation(s)
- Pu Jia
- Institute of Ecological Science, Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou 510631, PR China
| | - Jie-Liang Liang
- Institute of Ecological Science, Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou 510631, PR China
| | - Jing-Li Lu
- Institute of Ecological Science, Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou 510631, PR China
| | - Sheng-Ji Zhong
- Institute of Ecological Science, Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou 510631, PR China
| | - Tian Xiong
- Institute of Ecological Science, Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou 510631, PR China
| | - Shi-Wei Feng
- Institute of Ecological Science, Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou 510631, PR China
| | - Yutao Wang
- Institute of Ecological Science, Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou 510631, PR China
| | - Zhuo-Hui Wu
- Institute of Ecological Science, Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou 510631, PR China
| | - Xin-Zhu Yi
- Institute of Ecological Science, Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou 510631, PR China
| | - Shao-Ming Gao
- School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, PR China
| | - Jin Zheng
- Institute of Ecological Science, Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou 510631, PR China
| | - Ping Wen
- Institute of Ecological Science, Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou 510631, PR China
| | - Fenglin Li
- Institute of Ecological Science, Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou 510631, PR China
| | - Yanying Li
- Institute of Ecological Science, Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou 510631, PR China
| | - Bin Liao
- School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, PR China
| | - Wen-Sheng Shu
- Institute of Ecological Science, Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou 510631, PR China
| | - Jin-Tian Li
- Institute of Ecological Science, Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou 510631, PR China.
| |
Collapse
|
4
|
Halankar SR, Noronha JM. Virome Analysis of Paddy Floodwater in Two Cropping Seasons. Indian J Microbiol 2024; 64:1395-1399. [PMID: 39282203 PMCID: PMC11399352 DOI: 10.1007/s12088-024-01292-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 04/21/2024] [Indexed: 09/18/2024] Open
Abstract
Paddy fields include two interconnected ecosystems-soil and floodwater. Microbes and viruses are an integral component of these ecosystems, yet the viral communities have not been extensively studied. We present an analysis of the viromes of paddy floodwater collected during the two cropping seasons in India, the kharif and rabi seasons respectively. The overall taxonomic and functional characteristics appeared to be similar in both seasons, suggesting stability of the viral community. Taxonomically, the families of tailed bacteriophages dominated. The predominance of functional roles related to lytic phages further confirmed this. We reconstructed two complete and several partial viral genomes from the assembled data. The genomes did not align with any known sequences, thus representing novel viruses of the floodwater ecosystem. Supplementary Information The online version contains supplementary material available at 10.1007/s12088-024-01292-9.
Collapse
Affiliation(s)
- Sarvesh R Halankar
- Microbiology Programme, School of Biological Sciences and Biotechnology, Goa University, Taleigao Plateau, Goa 403206 India
| | - Judith M Noronha
- Microbiology Programme, School of Biological Sciences and Biotechnology, Goa University, Taleigao Plateau, Goa 403206 India
| |
Collapse
|
5
|
Sbardellati DL, Vannette RL. Targeted viromes and total metagenomes capture distinct components of bee gut phage communities. MICROBIOME 2024; 12:155. [PMID: 39175056 PMCID: PMC11342477 DOI: 10.1186/s40168-024-01875-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 07/16/2024] [Indexed: 08/24/2024]
Abstract
BACKGROUND Despite being among the most abundant biological entities on earth, bacteriophage (phage) remain an understudied component of host-associated systems. One limitation to studying host-associated phage is the lack of consensus on methods for sampling phage communities. Here, we compare paired total metagenomes and viral size fraction metagenomes (viromes) as methods for investigating the dsDNA viral communities associated with the GI tract of two bee species: the European honey bee Apis mellifera and the eastern bumble bee Bombus impatiens. RESULTS We find that viromes successfully enriched for phage, thereby increasing phage recovery, but only in honey bees. In contrast, for bumble bees, total metagenomes recovered greater phage diversity. Across both bee species, viromes better sampled low occupancy phage, while total metagenomes were biased towards sampling temperate phage. Additionally, many of the phage captured by total metagenomes were absent altogether from viromes. Comparing between bees, we show that phage communities in commercially reared bumble bees are significantly reduced in diversity compared to honey bees, likely reflecting differences in bacterial titer and diversity. In a broader context, these results highlight the complementary nature of total metagenomes and targeted viromes, especially when applied to host-associated environments. CONCLUSIONS Overall, we suggest that studies interested in assessing total communities of host-associated phage should consider using both approaches. However, given the constraints of virome sampling, total metagenomes may serve to sample phage communities with the understanding that they will preferentially sample dominant and temperate phage. Video Abstract.
Collapse
Affiliation(s)
| | - Rachel Lee Vannette
- Department of Entomology and Nematology, University of California Davis, Davis, CA, USA
| |
Collapse
|
6
|
Li Y, Xue Y, Roy Chowdhury T, Graham DE, Tringe SG, Jansson JK, Taş N. Genomic insights into redox-driven microbial processes for carbon decomposition in thawing Arctic soils and permafrost. mSphere 2024; 9:e0025924. [PMID: 38860762 PMCID: PMC11288003 DOI: 10.1128/msphere.00259-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 05/03/2024] [Indexed: 06/12/2024] Open
Abstract
Climate change is rapidly transforming Arctic landscapes where increasing soil temperatures speed up permafrost thaw. This exposes large carbon stocks to microbial decomposition, possibly worsening climate change by releasing more greenhouse gases. Understanding how microbes break down soil carbon, especially under the anaerobic conditions of thawing permafrost, is important to determine future changes. Here, we studied the microbial community dynamics and soil carbon decomposition potential in permafrost and active layer soils under anaerobic laboratory conditions that simulated an Arctic summer thaw. The microbial and viral compositions in the samples were analyzed based on metagenomes, metagenome-assembled genomes, and metagenomic viral contigs (mVCs). Following the thawing of permafrost, there was a notable shift in microbial community structure, with fermentative Firmicutes and Bacteroidota taking over from Actinobacteria and Proteobacteria over the 60-day incubation period. The increase in iron and sulfate-reducing microbes had a significant role in limiting methane production from thawed permafrost, underscoring the competition within microbial communities. We explored the growth strategies of microbial communities and found that slow growth was the major strategy in both the active layer and permafrost. Our findings challenge the assumption that fast-growing microbes mainly respond to environmental changes like permafrost thaw. Instead, they indicate a common strategy of slow growth among microbial communities, likely due to the thermodynamic constraints of soil substrates and electron acceptors, and the need for microbes to adjust to post-thaw conditions. The mVCs harbored a wide range of auxiliary metabolic genes that may support cell protection from ice formation in virus-infected cells. IMPORTANCE As the Arctic warms, thawing permafrost unlocks carbon, potentially accelerating climate change by releasing greenhouse gases. Our research delves into the underlying biogeochemical processes likely mediated by the soil microbial community in response to the wet and anaerobic conditions, akin to an Arctic summer thaw. We observed a significant shift in the microbial community post-thaw, with fermentative bacteria like Firmicutes and Bacteroidota taking over and switching to different fermentation pathways. The dominance of iron and sulfate-reducing bacteria likely constrained methane production in the thawing permafrost. Slow-growing microbes outweighed fast-growing ones, even after thaw, upending the expectation that rapid microbial responses to dominate after permafrost thaws. This research highlights the nuanced and complex interactions within Arctic soil microbial communities and underscores the challenges in predicting microbial response to environmental change.
Collapse
Affiliation(s)
- Yaoming Li
- College of Grassland Science, Beijing Forest University, Beijing, China
- Earth and Environmental Sciences Area, Lawrence Berkeley National Laboratory, Berkeley, California, USA
| | - Yaxin Xue
- Data Sciences and Quantitative Biology, Discovery Sciences, AstraZeneca R&D, Cambridge, United Kingdom
| | | | - David E. Graham
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA
| | - Susannah G. Tringe
- DOE Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, California, USA
| | - Janet K. Jansson
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington, USA
| | - Neslihan Taş
- Earth and Environmental Sciences Area, Lawrence Berkeley National Laboratory, Berkeley, California, USA
| |
Collapse
|
7
|
Sadiq S, Harvey E, Mifsud JCO, Minasny B, McBratney AB, Pozza LE, Mahar JE, Holmes EC. Australian terrestrial environments harbour extensive RNA virus diversity. Virology 2024; 593:110007. [PMID: 38346363 DOI: 10.1016/j.virol.2024.110007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 01/20/2024] [Accepted: 01/22/2024] [Indexed: 03/13/2024]
Abstract
Australia is home to a diverse range of unique native fauna and flora. To address whether Australian ecosystems also harbour unique viruses, we performed meta-transcriptomic sequencing of 16 farmland and sediment samples taken from the east and west coasts of Australia. We identified 2460 putatively novel RNA viruses across 18 orders, the vast majority of which belonged to the microbe-associated phylum Lenarviricota. In many orders, such as the Nodamuvirales and Ghabrivirales, the novel viruses identified here comprised entirely new clades. Novel viruses also fell between established genera or families, such as in the Cystoviridae and Picornavirales, while highly divergent lineages were identified in the Sobelivirales and Ghabrivirales. Viral read abundance and alpha diversity were influenced by sampling site, soil type and land use, but not by depth from the surface. In sum, Australian soils and sediments are home to remarkable viral diversity, reflecting the biodiversity of local fauna and flora.
Collapse
Affiliation(s)
- Sabrina Sadiq
- Sydney Institute for Infectious Diseases, School of Medical Sciences, The University of Sydney, Sydney, NSW 2006, Australia
| | - Erin Harvey
- Sydney Institute for Infectious Diseases, School of Medical Sciences, The University of Sydney, Sydney, NSW 2006, Australia
| | - Jonathon C O Mifsud
- Sydney Institute for Infectious Diseases, School of Medical Sciences, The University of Sydney, Sydney, NSW 2006, Australia
| | - Budiman Minasny
- School of Life and Environmental Sciences & Sydney Institute of Agriculture, Faculty of Science, The University of Sydney, Sydney, NSW 2006, Australia
| | - Alex B McBratney
- School of Life and Environmental Sciences & Sydney Institute of Agriculture, Faculty of Science, The University of Sydney, Sydney, NSW 2006, Australia
| | - Liana E Pozza
- School of Life and Environmental Sciences & Sydney Institute of Agriculture, Faculty of Science, The University of Sydney, Sydney, NSW 2006, Australia
| | - Jackie E Mahar
- Sydney Institute for Infectious Diseases, School of Medical Sciences, The University of Sydney, Sydney, NSW 2006, Australia
| | - Edward C Holmes
- Sydney Institute for Infectious Diseases, School of Medical Sciences, The University of Sydney, Sydney, NSW 2006, Australia.
| |
Collapse
|
8
|
Ma B, Wang Y, Zhao K, Stirling E, Lv X, Yu Y, Hu L, Tang C, Wu C, Dong B, Xue R, Dahlgren RA, Tan X, Dai H, Zhu YG, Chu H, Xu J. Biogeographic patterns and drivers of soil viromes. Nat Ecol Evol 2024; 8:717-728. [PMID: 38383853 DOI: 10.1038/s41559-024-02347-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 01/26/2024] [Indexed: 02/23/2024]
Abstract
Viruses are crucial in shaping soil microbial functions and ecosystems. However, studies on soil viromes have been limited in both spatial scale and biome coverage. Here we present a comprehensive synthesis of soil virome biogeographic patterns using the Global Soil Virome dataset (GSV) wherein we analysed 1,824 soil metagenomes worldwide, uncovering 80,750 partial genomes of DNA viruses, 96.7% of which are taxonomically unassigned. The biogeography of soil viral diversity and community structure varies across different biomes. Interestingly, the diversity of viruses does not align with microbial diversity and contrasts with it by showing low diversity in forest and shrubland soils. Soil texture and moisture conditions are further corroborated as key factors affecting diversity by our predicted soil viral diversity atlas, revealing higher diversity in humid and subhumid regions. In addition, the binomial degree distribution pattern suggests a random co-occurrence pattern of soil viruses. These findings are essential for elucidating soil viral ecology and for the comprehensive incorporation of viruses into soil ecosystem models.
Collapse
Affiliation(s)
- Bin Ma
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, China
- Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Zhejiang University, Hangzhou, China
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou, China
| | - Yiling Wang
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, China
- Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Zhejiang University, Hangzhou, China
| | - Kankan Zhao
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, China
- Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Zhejiang University, Hangzhou, China
| | - Erinne Stirling
- Agriculture and Food, CSIRO, Adelaide, South Australia, Australia
- Acid Sulfate Soils Centre, School of Biological Sciences, The University of Adelaide, Adelaide, South Australia, Australia
| | - Xiaofei Lv
- Department of Environmental Engineering, China Jiliang University, Hangzhou, China
| | - Yijun Yu
- Arable Soil Quality and Fertilizer Administration Bureau of Zhejiang Province, Hangzhou, China
| | - Lingfei Hu
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, China
- Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Zhejiang University, Hangzhou, China
| | - Chao Tang
- Institute of Applied Remote Sensing and Information Technology, Zhejiang University, Hangzhou, China
| | - Chuyi Wu
- School of Earth Sciences, Zhejiang University, Hangzhou, China
| | - Baiyu Dong
- Institute of Applied Remote Sensing and Information Technology, Zhejiang University, Hangzhou, China
| | - Ran Xue
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, China
- Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Zhejiang University, Hangzhou, China
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou, China
| | - Randy A Dahlgren
- Department of Land, Air and Water Resources, University of California, Davis, CA, USA
| | - Xiangfeng Tan
- Institute of Digital Agriculture, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Hengyi Dai
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, China
- Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Zhejiang University, Hangzhou, China
| | - Yong-Guan Zhu
- Research Center for Eco-environmental Sciences, Chinese Academy of Sciences, Beijing, China
| | - Haiyan Chu
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, China
| | - Jianming Xu
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, China.
- Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Zhejiang University, Hangzhou, China.
| |
Collapse
|
9
|
Heinrichs ME, Piedade GJ, Popa O, Sommers P, Trubl G, Weissenbach J, Rahlff J. Breaking the Ice: A Review of Phages in Polar Ecosystems. Methods Mol Biol 2024; 2738:31-71. [PMID: 37966591 DOI: 10.1007/978-1-0716-3549-0_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2023]
Abstract
Bacteriophages, or phages, are viruses that infect and replicate within bacterial hosts, playing a significant role in regulating microbial populations and ecosystem dynamics. However, phages from extreme environments such as polar regions remain relatively understudied due to challenges such as restricted ecosystem access and low biomass. Understanding the diversity, structure, and functions of polar phages is crucial for advancing our knowledge of the microbial ecology and biogeochemistry of these environments. In this review, we will explore the current state of knowledge on phages from the Arctic and Antarctic, focusing on insights gained from -omic studies, phage isolation, and virus-like particle abundance data. Metagenomic studies of polar environments have revealed a high diversity of phages with unique genetic characteristics, providing insights into their evolutionary and ecological roles. Phage isolation studies have identified novel phage-host interactions and contributed to the discovery of new phage species. Virus-like particle abundance and lysis rate data, on the other hand, have highlighted the importance of phages in regulating bacterial populations and nutrient cycling in polar environments. Overall, this review aims to provide a comprehensive overview of the current state of knowledge about polar phages, and by synthesizing these different sources of information, we can better understand the diversity, dynamics, and functions of polar phages in the context of ongoing climate change, which will help to predict how polar ecosystems and residing phages may respond to future environmental perturbations.
Collapse
Affiliation(s)
- Mara Elena Heinrichs
- Institute for Chemistry and Biology of the Marine Environment, Carl von Ossietzky University, Oldenburg, Germany
| | - Gonçalo J Piedade
- Department of Marine Microbiology and Biogeochemistry, NIOZ Royal Netherlands Institute for Sea Research, 't Horntje, The Netherlands
- Institute for Biodiversity and Ecosystem Dynamics (IBED), University of Amsterdam, Amsterdam, The Netherlands
| | - Ovidiu Popa
- Institute of Quantitative and Theoretical Biology Heinrich-Heine University Duesseldorf, Duesseldorf, Germany
| | | | - Gareth Trubl
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA, USA
| | - Julia Weissenbach
- Centre for Ecology and Evolution in Microbial Model Systems (EEMiS), Department of Biology and Environmental Science, Linnaeus University, Kalmar, Sweden
| | - Janina Rahlff
- Centre for Ecology and Evolution in Microbial Model Systems (EEMiS), Department of Biology and Environmental Science, Linnaeus University, Kalmar, Sweden.
- Aero-Aquatic Virus Research Group, Friedrich Schiller University Jena, Jena, Germany.
| |
Collapse
|
10
|
Muscatt G, Cook R, Millard A, Bending GD, Jameson E. Viral metagenomics reveals diverse virus-host interactions throughout the soil depth profile. mBio 2023; 14:e0224623. [PMID: 38032184 PMCID: PMC10746233 DOI: 10.1128/mbio.02246-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 10/17/2023] [Indexed: 12/01/2023] Open
Abstract
IMPORTANCE Soil viruses can moderate the roles that their host microbes play in global carbon cycling. However, given that most studies investigate the surface layer (i.e., top 20 cm) of soil, the extent to which this occurs in subsurface soil (i.e., below 20 cm) is unknown. Here, we leveraged public sequencing data to investigate the interactions between viruses and their hosts at soil depth intervals, down to 115 cm. While most viruses were detected throughout the soil depth profile, their adaptation to host microbes varied. Nonetheless, we uncovered evidence for the potential of soil viruses to encourage their hosts to recycle plant-derived carbon in both surface and subsurface soils. This work reasons that our understanding of soil viral functions requires us to continue to dig deeper and compare viruses existing throughout soil ecosystems.
Collapse
Affiliation(s)
- George Muscatt
- School of Life Sciences, University of Warwick, Coventry, United Kingdom
| | - Ryan Cook
- School of Veterinary Medicine and Science, University of Nottingham, Loughborough, United Kingdom
| | - Andrew Millard
- Department of Genetics and Genome Biology, Leicester Centre for Phage Research, University of Leicester, Leicester, United Kingdom
| | - Gary D. Bending
- School of Life Sciences, University of Warwick, Coventry, United Kingdom
| | - Eleanor Jameson
- School of Life Sciences, University of Warwick, Coventry, United Kingdom
- School of Natural Sciences, Bangor University, Bangor, Gwynedd, United Kingdom
| |
Collapse
|
11
|
Kosmopoulos JC, Klier KM, Langwig MV, Tran PQ, Anantharaman K. Viromes vs. mixed community metagenomes: choice of method dictates interpretation of viral community ecology. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.15.562385. [PMID: 37904928 PMCID: PMC10614762 DOI: 10.1101/2023.10.15.562385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/01/2023]
Abstract
Background Viruses, the majority of which are uncultivated, are among the most abundant biological entities on Earth. From altering microbial physiology to driving community dynamics, viruses are fundamental members of microbiomes. While the number of studies leveraging viral metagenomics (viromics) for studying uncultivated viruses is growing, standards for viromics research are lacking. Viromics can utilize computational discovery of viruses from total metagenomes of all community members (hereafter metagenomes) or use physical separation of virus-specific fractions (hereafter viromes). However, differences in the recovery and interpretation of viruses from metagenomes and viromes obtained from the same samples remain understudied. Results Here, we compare viral communities from paired viromes and metagenomes obtained from 60 diverse samples across human gut, soil, freshwater, and marine ecosystems. Overall, viral communities obtained from viromes were more abundant and species rich than those obtained from metagenomes, although there were some exceptions. Despite this, metagenomes still contained many viral genomes not detected in viromes. We also found notable differences in the predicted lytic state of viruses detected in viromes vs metagenomes at the time of sequencing. Other forms of variation observed include genome presence/absence, genome quality, and encoded protein content between viromes and metagenomes, but the magnitude of these differences varied by environment. Conclusions Overall, our results show that the choice of method can lead to differing interpretations of viral community ecology. We suggest that the choice of whether to target a metagenome or virome to study viral communities should be dependent on the environmental context and ecological questions being asked. However, our overall recommendation to researchers investigating viral ecology and evolution is to pair both approaches to maximize their respective benefits.
Collapse
Affiliation(s)
- James C. Kosmopoulos
- Department of Bacteriology, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Microbiology Doctoral Training Program, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Katherine M. Klier
- Department of Bacteriology, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Freshwater and Marine Sciences Program, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Marguerite V. Langwig
- Department of Bacteriology, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Freshwater and Marine Sciences Program, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Patricia Q. Tran
- Department of Bacteriology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Karthik Anantharaman
- Department of Bacteriology, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Department of Integrative Biology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| |
Collapse
|
12
|
Santos-Medellín C, Blazewicz SJ, Pett-Ridge J, Firestone MK, Emerson JB. Viral but not bacterial community successional patterns reflect extreme turnover shortly after rewetting dry soils. Nat Ecol Evol 2023; 7:1809-1822. [PMID: 37770548 DOI: 10.1038/s41559-023-02207-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Accepted: 08/25/2023] [Indexed: 09/30/2023]
Abstract
As central members of soil trophic networks, viruses have the potential to drive substantial microbial mortality and nutrient turnover. Pinpointing viral contributions to terrestrial ecosystem processes remains a challenge, as temporal dynamics are difficult to unravel in the spatially and physicochemically heterogeneous soil environment. In Mediterranean grasslands, the first rainfall after seasonal drought provides an ecosystem reset, triggering microbial activity during a tractable window for capturing short-term dynamics. Here, we simulated precipitation in microcosms from four distinct dry grassland soils and generated 144 viromes, 84 metagenomes and 84 16S ribosomal RNA gene amplicon datasets to characterize viral, prokaryotic and relic DNA dynamics over 10 days. Vastly different viral communities in each soil followed remarkably similar successional trajectories. Wet-up triggered a significant increase in viral richness, followed by extensive compositional turnover. Temporal succession in prokaryotic communities was much less pronounced, perhaps suggesting differences in the scales of activity captured by viromes (representing recently produced, ephemeral viral particles) and total DNA. Still, differences in the relative abundances of Actinobacteria (enriched in dry soils) and Proteobacteria (enriched in wetted soils) matched those of their predicted phages, indicating viral predation of dominant bacterial taxa. Rewetting also rapidly depleted relic DNA, which subsequently reaccumulated, indicating substantial new microbial mortality in the days after wet-up, particularly of the taxa putatively under phage predation. Production of abundant, diverse viral particles via microbial host cell lysis appears to be a conserved feature of the early response to soil rewetting, and results suggest the potential for 'Cull-the-Winner' dynamics, whereby viruses infect and cull but do not decimate dominant host populations.
Collapse
Affiliation(s)
| | - Steven J Blazewicz
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA, USA
| | - Jennifer Pett-Ridge
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA, USA
- Life & Environmental Sciences Department, University of California, Merced, CA, USA
- Innovative Genomics Institute, University of California, Berkeley, CA, USA
| | - Mary K Firestone
- Department of Environmental Science, Policy, and Management, University of California, Berkeley, CA, USA
| | - Joanne B Emerson
- Department of Plant Pathology, University of California, Davis, CA, USA.
| |
Collapse
|
13
|
Coclet C, Sorensen PO, Karaoz U, Wang S, Brodie EL, Eloe-Fadrosh EA, Roux S. Virus diversity and activity is driven by snowmelt and host dynamics in a high-altitude watershed soil ecosystem. MICROBIOME 2023; 11:237. [PMID: 37891627 PMCID: PMC10604447 DOI: 10.1186/s40168-023-01666-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 09/07/2023] [Indexed: 10/29/2023]
Abstract
BACKGROUND Viruses impact nearly all organisms on Earth, including microbial communities and their associated biogeochemical processes. In soils, highly diverse viral communities have been identified, with a global distribution seemingly driven by multiple biotic and abiotic factors, especially soil temperature and moisture. However, our current understanding of the stability of soil viral communities across time and their response to strong seasonal changes in environmental parameters remains limited. Here, we investigated the diversity and activity of environmental soil DNA and RNA viruses, focusing especially on bacteriophages, across dynamics' seasonal changes in a snow-dominated mountainous watershed by examining paired metagenomes and metatranscriptomes. RESULTS We identified a large number of DNA and RNA viruses taxonomically divergent from existing environmental viruses, including a significant proportion of fungal RNA viruses, and a large and unsuspected diversity of positive single-stranded RNA phages (Leviviricetes), highlighting the under-characterization of the global soil virosphere. Among these, we were able to distinguish subsets of active DNA and RNA phages that changed across seasons, consistent with a "seed-bank" viral community structure in which new phage activity, for example, replication and host lysis, is sequentially triggered by changes in environmental conditions. At the population level, we further identified virus-host dynamics matching two existing ecological models: "Kill-The-Winner" which proposes that lytic phages are actively infecting abundant bacteria, and "Piggyback-The-Persistent" which argues that when the host is growing slowly, it is more beneficial to remain in a dormant state. The former was associated with summer months of high and rapid microbial activity, and the latter with winter months of limited and slow host growth. CONCLUSION Taken together, these results suggest that the high diversity of viruses in soils is likely associated with a broad range of host interaction types each adapted to specific host ecological strategies and environmental conditions. As our understanding of how environmental and host factors drive viral activity in soil ecosystems progresses, integrating these viral impacts in complex natural microbiome models will be key to accurately predict ecosystem biogeochemistry. Video Abstract.
Collapse
Affiliation(s)
- Clement Coclet
- DOE Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA.
| | - Patrick O Sorensen
- Earth and Environmental Sciences Area, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Ulas Karaoz
- Earth and Environmental Sciences Area, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Shi Wang
- Earth and Environmental Sciences Area, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Eoin L Brodie
- Earth and Environmental Sciences Area, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
- Department of Environmental Science, Policy and Management, University of California, Berkeley, Berkeley, CA, USA
| | - Emiley A Eloe-Fadrosh
- DOE Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Simon Roux
- DOE Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA.
| |
Collapse
|
14
|
Barnett SE, Buckley DH. Metagenomic stable isotope probing reveals bacteriophage participation in soil carbon cycling. Environ Microbiol 2023; 25:1785-1795. [PMID: 37139849 DOI: 10.1111/1462-2920.16395] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 04/25/2023] [Indexed: 05/05/2023]
Abstract
Soil viruses are important components of the carbon (C) cycle, yet we still know little about viral ecology in soils. We added diverse 13 C-labelled carbon sources to soil and we used metagenomic-SIP to detect 13 C assimilation by viruses and their putative bacterial hosts. These data allowed us to link a 13 C-labelled bacteriophage to its 13 C-labelled Streptomyces putative host, and we used qPCR to track the dynamics of the putative host and phage in response to C inputs. Following C addition, putative host numbers increased rapidly for 3 days, and then more gradually, reaching maximal abundance on Day 6. Viral abundance and virus:host ratio increased dramatically over 6 days, and remained high thereafter (8.42 ± 2.94). From Days 6 to 30, virus:host ratio remained high, while putative host numbers declined more than 50%. Putative host populations were 13 C-labelled on Days 3-30, while 13 C-labelling of phage was detected on Days 14 and 30. This dynamic suggests rapid growth and 13 C-labelling of the host fueled by new C inputs, followed by extensive host mortality driven by phage lysis. These findings indicate that the viral shunt promotes microbial turnover in soil following new C inputs, thereby altering microbial community dynamics, and facilitating soil organic matter production.
Collapse
Affiliation(s)
- Samuel E Barnett
- Soil and Crop Sciences Section, School of Integrative Plant Science, Cornell University, Ithaca, New York, USA
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan, USA
| | - Daniel H Buckley
- Soil and Crop Sciences Section, School of Integrative Plant Science, Cornell University, Ithaca, New York, USA
- Department of Microbiology, Cornell University, Ithaca, New York, USA
| |
Collapse
|
15
|
Abedon ST. Bacteriophage Adsorption: Likelihood of Virion Encounter with Bacteria and Other Factors Affecting Rates. Antibiotics (Basel) 2023; 12:723. [PMID: 37107086 PMCID: PMC10135360 DOI: 10.3390/antibiotics12040723] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Revised: 03/29/2023] [Accepted: 04/05/2023] [Indexed: 04/29/2023] Open
Abstract
For ideal gasses, the likelihood of collision of two molecules is a function of concentrations as well as environmental factors such as temperature. This too is the case for particles diffusing within liquids. Two such particles are bacteria and their viruses, the latter called bacteriophages or phages. Here, I review the basic process of predicting the likelihoods of phage collision with bacteria. This is a key step governing rates of phage-virion adsorption to their bacterial hosts, thereby underlying a large fraction of the potential for a given phage concentration to affect a susceptible bacterial population. Understanding what can influence those rates is very relevant to appreciating both phage ecology and the phage therapy of bacterial infections, i.e., where phages are used to augment or replace antibiotics; so too adsorption rates are highly important for predicting the potential for phage-mediated biological control of environmental bacteria. Particularly emphasized here, however, are numerous complications on phage adsorption rates beyond as dictated by the ideals of standard adsorption theory. These include movements other than due to diffusion, various hindrances to diffusive movement, and the influence of assorted heterogeneities. Considered chiefly are the biological consequences of these various phenomena rather than their mathematical underpinnings.
Collapse
|
16
|
Braga LPP, Schumacher RI. Awaking the dormant virome in the rhizosphere. Mol Ecol 2023; 32:2985-2999. [PMID: 36807953 DOI: 10.1111/mec.16893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 01/16/2023] [Accepted: 02/06/2023] [Indexed: 02/22/2023]
Abstract
The rhizosphere is a vital soil compartment providing key plant-beneficial functions. However, little is known about the mechanisms driving viral diversity in the rhizosphere. Viruses can establish lytic or lysogenic interactions with their bacterial hosts. In the latter, they assume a dormant state integrated in the host genome and can be awakened by different perturbations that impact host cell physiology, triggering a viral bloom, which is potentially a fundamental mechanism driving soil viral diversity, as 22%-68% of soil bacteria are predicted to harbour dormant viruses. Here we assessed the viral bloom response in rhizospheric viromes by exposing them to three contrasting soil perturbation agents: earthworms, herbicide and antibiotic pollutant. The viromes were next screened for rhizosphere-relevant genes and also used as inoculant on microcosms incubations to test their impacts on pristine microbiomes. Our results show that while post-perturbation viromes diverged from control conditions, viral communities exposed to both herbicide and antibiotic pollutant were more similar to each other than those influenced by earthworms. The latter also favoured an increase in viral populations harbouring genes involved in plant-beneficial functions. Post-perturbation viromes inoculated on soil microcosms changed the diversity of pristine microbiomes, suggesting that viromes are important components of the soil ecological memory driving eco-evolutionary processes that determine future microbiome trajectories according to past events. Our findings demonstrate that viromes are active players in the rhizosphere and need to be considered in efforts to understand and control the microbial processes towards sustainable crop production.
Collapse
Affiliation(s)
- Lucas P P Braga
- Department of Biochemistry, Institute of Chemistry, University of Sao Paulo, Sao Paulo, Brazil.,Ecosystems and Global Change Group, Department of Plant Sciences, University of Cambridge, Cambridge, UK
| | - Robert I Schumacher
- Department of Biochemistry, Institute of Chemistry, University of Sao Paulo, Sao Paulo, Brazil
| |
Collapse
|
17
|
Identification of Novel Viruses and Their Microbial Hosts from Soils with Long-Term Nitrogen Fertilization and Cover Cropping Management. mSystems 2022; 7:e0057122. [PMID: 36445691 PMCID: PMC9765229 DOI: 10.1128/msystems.00571-22] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Soils are the largest organic carbon reservoir and are key to global biogeochemical cycling, and microbes are the major drivers of carbon and nitrogen transformations in the soil systems. Thus, virus infection-induced microbial mortality could impact soil microbial structure and functions. In this study, we recovered 260 viral operational taxonomic units (vOTUs) in samples collected from soil taken from four nitrogen fertilization (N-fertilization) and cover-cropping practices at an experimental site under continuous cotton production evaluating conservation agricultural management systems for more than 40 years. Only ~6% of the vOTUs identified were clustered with known viruses in the RefSeq database using a gene-sharing network. We found that 14% of 260 vOTUs could be linked to microbial hosts that cover key carbon and nitrogen cycling taxa, including Acidobacteriota, Proteobacteria, Verrucomicrobiota, Firmicutes, and ammonia-oxidizing archaea, i.e., Nitrososphaeria (phylum Thermoproteota). Viral diversity, community structure, and the positive correlation between abundance of a virus and its host indicate that viruses and microbes are more sensitive to N-fertilization than cover-cropping treatment. Viruses may influence key carbon and nitrogen cycling through control of microbial function and host populations (e.g., Chthoniobacterales and Nitrososphaerales). These findings provide an initial view of soil viral ecology and how it is influenced by long-term conservation agricultural management. IMPORTANCE Bacterial viruses are extremely small and abundant particles that can control the microbial abundance and community composition through infection, which gradually showed their vital roles in the ecological process to influence the nutrient flow. Compared to the substrate control, less is known about the influence of soil viruses on microbial community function, and even less is known about microbial and viral diversity in the soil system. To obtain a more complete knowledge of microbial function dynamics, the interaction between microbes and viruses cannot be ignored. To fully understand this process, it is fundamental to get insight into the correlation between the diversity of viral communities and bacteria which could induce these changes.
Collapse
|
18
|
Brown TL, Charity OJ, Adriaenssens EM. Ecological and functional roles of bacteriophages in contrasting environments: marine, terrestrial and human gut. Curr Opin Microbiol 2022; 70:102229. [PMID: 36347213 DOI: 10.1016/j.mib.2022.102229] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 09/22/2022] [Accepted: 10/06/2022] [Indexed: 11/08/2022]
Abstract
While they are the most abundant biological entities on the planet, the role of bacteriophages (phages) in the microbiome remains enigmatic and understudied. With a rise in the number of metagenomics studies and the publication of highly efficient phage mining programmes, we now have extensive data on the genomic and taxonomic diversity of (mainly) DNA bacteriophages in a wide range of environments. In addition, the higher throughput and quality of sequencing is allowing for strain-level reconstructions of phage genomes from metagenomes. These factors will ultimately help us to understand the role these phages play as part of specific microbial communities, enabling the tracking of individual virus genomes through space and time. Using lessons learned from the latest metagenomic studies, we focus on two explicit aspects of the role bacteriophages play within the microbiome, their ecological role in structuring bacterial populations, and their contribution to microbiome functioning by encoding auxiliary metabolism genes.
Collapse
Affiliation(s)
- Teagan L Brown
- Quadram Institute Bioscience, Norwich NR4 7UQ, United Kingdom
| | | | | |
Collapse
|
19
|
Roux S, Emerson JB. Diversity in the soil virosphere: to infinity and beyond? Trends Microbiol 2022; 30:1025-1035. [PMID: 35644779 DOI: 10.1016/j.tim.2022.05.003] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 05/02/2022] [Accepted: 05/03/2022] [Indexed: 01/13/2023]
Abstract
Viruses are key members of Earth's microbiomes, shaping microbial community composition and metabolism. Here, we describe recent advances in 'soil viromics', that is, virus-focused metagenome and metatranscriptome analyses that offer unprecedented windows into the soil virosphere. Given the emerging picture of high soil viral activity, diversity, and dynamics over short spatiotemporal scales, we then outline key eco-evolutionary processes that we hypothesize are the major diversity drivers for soil viruses. We argue that a community effort is needed to establish a 'global soil virosphere atlas' that can be used to address the roles of viruses in soil microbiomes and terrestrial biogeochemical cycles across spatiotemporal scales.
Collapse
Affiliation(s)
- Simon Roux
- DOE (Department of Energy) Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA.
| | - Joanne B Emerson
- Department of Plant Pathology, University of California, Davis, Davis, CA, USA; Genome Center, University of California, Davis, Davis, CA, USA.
| |
Collapse
|
20
|
Muscatt G, Hilton S, Raguideau S, Teakle G, Lidbury IDEA, Wellington EMH, Quince C, Millard A, Bending GD, Jameson E. Crop management shapes the diversity and activity of DNA and RNA viruses in the rhizosphere. MICROBIOME 2022; 10:181. [PMID: 36280853 PMCID: PMC9590211 DOI: 10.1186/s40168-022-01371-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 08/18/2022] [Indexed: 05/25/2023]
Abstract
BACKGROUND The rhizosphere is a hotspot for microbial activity and contributes to ecosystem services including plant health and biogeochemical cycling. The activity of microbial viruses, and their influence on plant-microbe interactions in the rhizosphere, remains undetermined. Given the impact of viruses on the ecology and evolution of their host communities, determining how soil viruses influence microbiome dynamics is crucial to build a holistic understanding of rhizosphere functions. RESULTS Here, we aimed to investigate the influence of crop management on the composition and activity of bulk soil, rhizosphere soil, and root viral communities. We combined viromics, metagenomics, and metatranscriptomics on soil samples collected from a 3-year crop rotation field trial of oilseed rape (Brassica napus L.). By recovering 1059 dsDNA viral populations and 16,541 ssRNA bacteriophage populations, we expanded the number of underexplored Leviviricetes genomes by > 5 times. Through detection of viral activity in metatranscriptomes, we uncovered evidence of "Kill-the-Winner" dynamics, implicating soil bacteriophages in driving bacterial community succession. Moreover, we found the activity of viruses increased with proximity to crop roots, and identified that soil viruses may influence plant-microbe interactions through the reprogramming of bacterial host metabolism. We have provided the first evidence of crop rotation-driven impacts on soil microbial communities extending to viruses. To this aim, we present the novel principal of "viral priming," which describes how the consecutive growth of the same crop species primes viral activity in the rhizosphere through local adaptation. CONCLUSIONS Overall, we reveal unprecedented spatial and temporal diversity in viral community composition and activity across root, rhizosphere soil, and bulk soil compartments. Our work demonstrates that the roles of soil viruses need greater consideration to exploit the rhizosphere microbiome for food security, food safety, and environmental sustainability. Video Abstract.
Collapse
Affiliation(s)
- George Muscatt
- School of Life Sciences, University of Warwick, Coventry, UK
| | - Sally Hilton
- School of Life Sciences, University of Warwick, Coventry, UK
| | - Sebastien Raguideau
- School of Life Sciences, University of Warwick, Coventry, UK
- Earlham Institute, Norwich Research Park, Norwich, UK
| | - Graham Teakle
- School of Life Sciences, University of Warwick, Coventry, UK
| | - Ian D E A Lidbury
- School of Life Sciences, University of Warwick, Coventry, UK
- Plants, Photosynthesis and Soil, School of Biosciences, University of Sheffield, Sheffield, UK
| | | | - Christopher Quince
- School of Life Sciences, University of Warwick, Coventry, UK
- Earlham Institute, Norwich Research Park, Norwich, UK
| | - Andrew Millard
- Department of Genetics and Genome Biology, University of Leicester, Leicester, UK.
| | - Gary D Bending
- School of Life Sciences, University of Warwick, Coventry, UK
| | - Eleanor Jameson
- School of Life Sciences, University of Warwick, Coventry, UK.
- School of Natural Sciences, Bangor University, Bangor, UK.
| |
Collapse
|
21
|
Florent P, Cauchie H, Herold M, Ogorzaly L. Bacteriophages pass through candle-shaped porous ceramic filters: Application for the collection of viruses in soil water. Microbiologyopen 2022; 11:e1314. [PMID: 36314760 PMCID: PMC9490336 DOI: 10.1002/mbo3.1314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Accepted: 08/26/2022] [Indexed: 11/15/2022] Open
Abstract
Despite the ubiquity of viruses in soils, their diversity in soil water has not been explored, mainly due to the difficulty of collecting them. In hydrology, soil water is usually collected using porous candles. This study proposes using these porous candles as a new tool for sampling viruses in soil water to analyze their passage through the ceramic part of the candles. The recovery of the viruses was determined after filtration under laboratory conditions using three model bacteriophages (MS2, ΦX174, and Φ6) and Escherichia coli, at neutral and acidic pH. Then, a field experiment was carried out where soil water filtration and viral identification by metagenomic shotgun were performed. At neutral pH, all bacteriophages tested successfully passed through the porous candles during the filtration process, with reductions of 0.02 log, 0.16 log, and 0.55 log for MS2 ΦX174 and Φ6, respectively. At pH 4.4, the passage of MS2 was not affected while ΦX174 underwent a slight reduction in recovery, probably caused by adsorption onto the filter material. Regarding the application of the porous candles in the field, the results obtained allowed the successful recovery of viruses, exposing porous candles as a new method suitable for the collection of viruses from soil water in the context of the study of viral communities.
Collapse
Affiliation(s)
- Perrine Florent
- Environmental Research and Innovation Department (ERIN)Luxembourg Institute of Science and Technology (LIST)BelvauxLuxembourg
- Faculté des Sciences, de la Technologie et de la Communication (FSTC), Doctoral School in Science and Engineering (DSSE)University of LuxembourgEsch‐sur‐AlzetteLuxembourg
| | - Henry‐Michel Cauchie
- Environmental Research and Innovation Department (ERIN)Luxembourg Institute of Science and Technology (LIST)BelvauxLuxembourg
| | - Malte Herold
- Environmental Research and Innovation Department (ERIN)Luxembourg Institute of Science and Technology (LIST)BelvauxLuxembourg
| | - Leslie Ogorzaly
- Environmental Research and Innovation Department (ERIN)Luxembourg Institute of Science and Technology (LIST)BelvauxLuxembourg
| |
Collapse
|
22
|
Chen YM, Sadiq S, Tian JH, Chen X, Lin XD, Shen JJ, Chen H, Hao ZY, Wille M, Zhou ZC, Wu J, Li F, Wang HW, Yang WD, Xu QY, Wang W, Gao WH, Holmes EC, Zhang YZ. RNA viromes from terrestrial sites across China expand environmental viral diversity. Nat Microbiol 2022; 7:1312-1323. [PMID: 35902778 DOI: 10.1038/s41564-022-01180-2] [Citation(s) in RCA: 74] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 06/21/2022] [Indexed: 12/26/2022]
Abstract
Environmental RNA viruses are ubiquitous and diverse, and probably have important ecological and biogeochemical impacts. Understanding the global diversity of RNA viruses is limited by sampling biases, dependence on cell culture and PCR for virus discovery, and a focus on viruses pathogenic to humans or economically important animals and plants. To address this knowledge gap, we generated metatranscriptomic sequence data from 32 diverse environments in 16 provinces and regions of China. We identified 6,624 putatively novel virus operational taxonomic units from soil, sediment and faecal samples, greatly expanding known diversity of the RNA virosphere. These newly identified viruses included positive-sense, negative-sense and double-strand RNA viruses from at least 62 families. Sediments and animal faeces were rich sources of viruses. Virome compositions were affected by local environmental factors, including organic content and eukaryote species abundance. Notably, environmental factors had a greater impact on the abundance and diversity of plant, fungal and bacterial viruses than of animal viromes. Our data confirm that RNA viruses are an integral part of both terrestrial and aquatic ecosystems.
Collapse
Affiliation(s)
- Yan-Mei Chen
- Shanghai Public Health Clinical Center, Shanghai Key Laboratory of Organ Transplantation of Zhongshan Hospital, State Key Laboratory of Genetic Engineering, School of Life Sciences and Human Phenome Institute, Fudan University, Shanghai, China
| | - Sabrina Sadiq
- Sydney Institute for Infectious Diseases, School of Life and Environmental Sciences and School of Medical Sciences, The University of Sydney, Sydney, Australia
| | - Jun-Hua Tian
- Wuhan Center for Disease Control and Prevention, Wuhan, Hubei, China
| | - Xiao Chen
- College of Marine Sciences, South China Agricultural University, Guangzhou, Guangdong, China
| | - Xian-Dan Lin
- Wenzhou Center for Disease Control and Prevention, Wenzhou, Zhejiang, China
| | - Jin-Jin Shen
- Yancheng Center for Disease Control and Prevention, Yancheng, Jiangsu, China
| | - Hao Chen
- Jiangsu Yancheng Wetland National Nature Reserve of Rare Birds, Yangcheng, Jiangsu, China
| | - Zong-Yu Hao
- Henan Center for Disease Control and Prevention, Zhengzhou, Henan, China
| | - Michelle Wille
- Sydney Institute for Infectious Diseases, School of Life and Environmental Sciences and School of Medical Sciences, The University of Sydney, Sydney, Australia
| | - Zhuo-Cheng Zhou
- Professional Committee of Native Aquatic Organisms and Water Ecosystem of China Fisheries Association, Beijing, China
| | - Jun Wu
- Jiyuan People's Hospital, Jiyuan, Henan, China
| | - Feng Li
- Yancheng Center for Disease Control and Prevention, Yancheng, Jiangsu, China
| | - Hong-Wei Wang
- Neixiang Center for Disease Control and Prevention, Nanyang, Henan, China
| | - Wei-Di Yang
- College of Ocean and Earth Science, Xiamen University, Xiamen, Fujian, China
| | - Qi-Yi Xu
- Yili Prefecture Center for Disease Control and Prevention, Yili, China
| | - Wen Wang
- Shanghai Public Health Clinical Center, Shanghai Key Laboratory of Organ Transplantation of Zhongshan Hospital, State Key Laboratory of Genetic Engineering, School of Life Sciences and Human Phenome Institute, Fudan University, Shanghai, China.,Department of Zoonosis, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Wen-Hua Gao
- Department of Zoonosis, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Edward C Holmes
- Shanghai Public Health Clinical Center, Shanghai Key Laboratory of Organ Transplantation of Zhongshan Hospital, State Key Laboratory of Genetic Engineering, School of Life Sciences and Human Phenome Institute, Fudan University, Shanghai, China.,Sydney Institute for Infectious Diseases, School of Life and Environmental Sciences and School of Medical Sciences, The University of Sydney, Sydney, Australia
| | - Yong-Zhen Zhang
- Shanghai Public Health Clinical Center, Shanghai Key Laboratory of Organ Transplantation of Zhongshan Hospital, State Key Laboratory of Genetic Engineering, School of Life Sciences and Human Phenome Institute, Fudan University, Shanghai, China.
| |
Collapse
|
23
|
Florent P, Cauchie HM, Herold M, Jacquet S, Ogorzaly L. Soil pH, Calcium Content and Bacteria as Major Factors Responsible for the Distribution of the Known Fraction of the DNA Bacteriophage Populations in Soils of Luxembourg. Microorganisms 2022; 10:1458. [PMID: 35889177 PMCID: PMC9321959 DOI: 10.3390/microorganisms10071458] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 07/15/2022] [Accepted: 07/16/2022] [Indexed: 01/21/2023] Open
Abstract
Bacteriophages participate in soil life by influencing bacterial community structure and function, biogeochemical cycling and horizontal gene transfer. Despite their great abundance, diversity, and importance in microbial processes, they remain little explored in environmental studies. The influence of abiotic factors on the persistence of bacteriophages is now recognized; however, it has been mainly studied under experimental conditions. This study aimed to determine whether the abiotic factors well-known to influence bacteriophage persistence also control the natural distribution of the known DNA bacteriophage populations. To this end, soil from eight study sites including forests and grasslands located in the Attert River basin (Grand Duchy of Luxembourg) were sampled, covering different soil and land cover characteristics. Shotgun metagenomics, reference-based bioinformatics and statistical analyses allowed characterising the diversity of known DNA bacteriophage and bacterial communities. After combining soil properties with the identified DNA bacteriophage populations, our in-situ study highlighted the influence of pH and calcium cations on the diversity of the known fraction of the soil DNA bacteriophages. More interestingly, significant relationships were established between bacteriophage and bacterial populations. This study provides new insights into the importance of abiotic and biotic factors in the distribution of DNA bacteriophages and the natural ecology of terrestrial bacteriophages.
Collapse
Affiliation(s)
- Perrine Florent
- Environmental Research and Innovation Department (ERIN), Luxembourg Institute of Science and Technology (LIST), 4422 Belvaux, Luxembourg; (P.F.); (H.-M.C.); (M.H.)
- Faculté des Sciences, de la Technologie et de la Communication (FSTC), Doctoral School in Science and Engineering (DSSE), University of Luxembourg, 4365 Esch-sur-Alzette, Luxembourg
| | - Henry-Michel Cauchie
- Environmental Research and Innovation Department (ERIN), Luxembourg Institute of Science and Technology (LIST), 4422 Belvaux, Luxembourg; (P.F.); (H.-M.C.); (M.H.)
| | - Malte Herold
- Environmental Research and Innovation Department (ERIN), Luxembourg Institute of Science and Technology (LIST), 4422 Belvaux, Luxembourg; (P.F.); (H.-M.C.); (M.H.)
| | - Stéphan Jacquet
- INRAE, UMR CARRTEL, Université Savoie Mont Blanc, 74200 Thonon-les-Bains, France;
| | - Leslie Ogorzaly
- Environmental Research and Innovation Department (ERIN), Luxembourg Institute of Science and Technology (LIST), 4422 Belvaux, Luxembourg; (P.F.); (H.-M.C.); (M.H.)
| |
Collapse
|
24
|
Hillary LS, Adriaenssens EM, Jones DL, McDonald JE. RNA-viromics reveals diverse communities of soil RNA viruses with the potential to affect grassland ecosystems across multiple trophic levels. ISME COMMUNICATIONS 2022; 2:34. [PMID: 36373138 PMCID: PMC8992426 DOI: 10.1038/s43705-022-00110-x] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 02/08/2022] [Accepted: 02/14/2022] [Indexed: 02/08/2023]
Abstract
The distribution and diversity of RNA viruses in soil ecosystems are largely unknown, despite their significant impact on public health, ecosystem functions, and food security. Here, we characterise soil RNA viral communities along an altitudinal productivity gradient of peat, managed grassland and coastal soils. We identified 3462 viral contigs in RNA viromes from purified virus-like-particles in five soil-types and assessed their spatial distribution, phylogenetic diversity and potential host ranges. Soil types exhibited minimal similarity in viral community composition, but with >10-fold more viral contigs shared between managed grassland soils when compared with peat or coastal soils. Phylogenetic analyses predicted soil RNA viral communities are formed from viruses of bacteria, plants, fungi, vertebrates and invertebrates, with only 12% of viral contigs belonging to the bacteria-infecting Leviviricetes class. 11% of viral contigs were found to be most closely related to members of the Ourmiavirus genus, suggesting that members of this clade of plant viruses may be far more widely distributed and diverse than previously thought. These results contrast with soil DNA viromes which are typically dominated by bacteriophages. RNA viral communities, therefore, have the potential to exert influence on inter-kingdom interactions across terrestrial biomes.
Collapse
Affiliation(s)
- Luke S. Hillary
- School of Natural Sciences, Bangor University, Bangor, Gwynedd LL57 2UW UK
| | | | - David L. Jones
- School of Natural Sciences, Bangor University, Bangor, Gwynedd LL57 2UW UK
- SoilsWest, Centre for Sustainable Farming Systems, Food Futures Institute, Murdoch University, Murdoch, WA 6105 Australia
| | - James E. McDonald
- School of Natural Sciences, Bangor University, Bangor, Gwynedd LL57 2UW UK
| |
Collapse
|
25
|
Bekliz M, Pramateftaki P, Battin TJ, Peter H. Viral diversity is linked to bacterial community composition in alpine stream biofilms. ISME COMMUNICATIONS 2022; 2:27. [PMID: 37938299 PMCID: PMC9723757 DOI: 10.1038/s43705-022-00112-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 02/21/2022] [Accepted: 03/01/2022] [Indexed: 06/03/2023]
Abstract
Biofilms play pivotal roles in fluvial ecosystems, yet virtually nothing is known about viruses in these communities. Leveraging an optimized sample-to-sequence pipeline, we studied the spatiotemporal turnover of dsDNA viruses associated with stream biofilms and found an astounding diversity to be structured by seasons and along the longitudinal gradient in the stream. While some vOTUs were region- or season-specific, we also identified a large group of permanent biofilm phages, taxonomically dominated by Myoviridae. Comparison of the observed viral distribution with predictions based on neutral community assembly indicated that chance and dispersal may be important for structuring stream biofilm viral communities. Deviation from neutral model predictions suggests that certain phages distribute efficiently across distant locations within the stream network. This dispersal capacity appears to be linked to EPS depolymerases that enable phages to efficiently overcome the biofilm barrier. Other phages, particularly vOTUs classified as Siphoviridae, appear locally overrepresented and to rely on a lysogenic life cycle, potentially to exploit the spatial distribution of bacterial populations in stream biofilms. Overall, biofilm viral and bacterial community turnover were significantly coupled. Yet, viral communities were linked to the presence of the most abundant bacterial community members. With this work, we provide a foundational ecological perspective on factors that structure viral diversity in stream biofilms and identify potentially important viral traits related to the biofilm mode of life.
Collapse
Affiliation(s)
- Meriem Bekliz
- River Ecosystems Laboratory, Ecole Polytechnique Fédérale de Lausanne, CH-1015, Lausanne, Switzerland
| | - Paraskevi Pramateftaki
- River Ecosystems Laboratory, Ecole Polytechnique Fédérale de Lausanne, CH-1015, Lausanne, Switzerland
| | - Tom Jan Battin
- River Ecosystems Laboratory, Ecole Polytechnique Fédérale de Lausanne, CH-1015, Lausanne, Switzerland
| | - Hannes Peter
- River Ecosystems Laboratory, Ecole Polytechnique Fédérale de Lausanne, CH-1015, Lausanne, Switzerland.
| |
Collapse
|
26
|
Albright MBN, Gallegos-Graves LV, Feeser KL, Montoya K, Emerson JB, Shakya M, Dunbar J. Experimental evidence for the impact of soil viruses on carbon cycling during surface plant litter decomposition. ISME COMMUNICATIONS 2022; 2:24. [PMID: 37938672 PMCID: PMC9723558 DOI: 10.1038/s43705-022-00109-4] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 02/13/2022] [Accepted: 02/16/2022] [Indexed: 06/01/2023]
Abstract
To date, the potential impact of viral communities on biogeochemical cycles in soil has largely been inferred from correlational evidence, such as virus-driven changes in microbial abundances, viral auxiliary metabolic genes, and links with soil physiochemical properties. To more directly test the impact of soil viruses on carbon cycling during plant litter decomposition, we added concentrated viral community suspensions to complex litter decomposer communities in 40-day microcosm experiments. Microbial communities from two New Mexico alpine soils, Pajarito (PJ) and Santa Fe (SF), were inoculated onto grass litter on sand, and three treatments were applied in triplicate to each set of microcosms: addition of buffer (no added virus), live virus (+virus), or killed-virus (+killed-virus) fractions extracted from the same soil. Significant differences in respiration were observed between the +virus and +killed-virus treatments in the PJ, but not the SF microcosms. Bacterial and fungal community composition differed significantly by treatment in both PJ and SF microcosms. Combining data across both soils, viral addition altered links between bacterial and fungal diversity, dissolved organic carbon and total nitrogen. Overall, we demonstrate that increasing viral pressure in complex microbial communities can impact terrestrial biogeochemical cycling but is context-dependent.
Collapse
Affiliation(s)
- Michaeline B N Albright
- Bioscience Division, Los Alamos National Laboratory, Los Alamos, NM, US.
- Allonnia LLC, Boston, MA, US.
| | | | - Kelli L Feeser
- Bioscience Division, Los Alamos National Laboratory, Los Alamos, NM, US
| | - Kyana Montoya
- Bioscience Division, Los Alamos National Laboratory, Los Alamos, NM, US
| | - Joanne B Emerson
- Department of Plant Pathology, University of California, Davis, Davis, CA, US
| | - Migun Shakya
- Bioscience Division, Los Alamos National Laboratory, Los Alamos, NM, US
| | - John Dunbar
- Bioscience Division, Los Alamos National Laboratory, Los Alamos, NM, US
| |
Collapse
|
27
|
Bi L, Yu DT, Han LL, Du S, Yuan CY, He JZ, Hu HW. Unravelling the ecological complexity of soil viromes: Challenges and opportunities. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 812:152217. [PMID: 34890674 DOI: 10.1016/j.scitotenv.2021.152217] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 11/26/2021] [Accepted: 12/02/2021] [Indexed: 06/13/2023]
Abstract
Viruses are extremely abundant and ubiquitous in soil, and significantly contribute to various terrestrial ecosystem processes such as biogeochemical nutrient cycling, microbiome regulation and community assembly, and host evolutionary dynamics. Despite their numerous dominance and functional importance, understanding soil viral ecology is a formidable challenge, because of the technological challenges to characterize the abundance, diversity and community compositions of viruses, and their interactions with other organisms in the complex soil environment. Viruses may engage in a myriad of biological interactions within soil food webs across a broad range of spatiotemporal scales and are exposed to various biotic and abiotic disturbances. Current studies on the soil viromes, however, often describe the complexity of their tremendous diversity, but lack of exploring their potential ecological roles. In this article, we summarized the major methods to decipher the ecology of soil viruses, discussed biotic and abiotic factors and global change factors that shape the diversity and composition of soil viromes, and the ecological roles of soil viruses. We also proposed a new framework to understand the ecological complexity of viruses from micro to macro ecosystem scales and to predict and unravel their activities in terrestrial ecosystems.
Collapse
Affiliation(s)
- Li Bi
- School of Agriculture and Food, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Dan-Ting Yu
- State Key Laboratory for Subtropical Mountain Ecology of the Ministry of Science and Technology and Fujian Province, Fujian Normal University, Fujian 350007, China; School of Geographical Sciences, Fujian Normal University, Fujian 350007, China.
| | - Li-Li Han
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Shuai Du
- College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
| | - Cheng-Yu Yuan
- State Key Laboratory for Subtropical Mountain Ecology of the Ministry of Science and Technology and Fujian Province, Fujian Normal University, Fujian 350007, China; School of Geographical Sciences, Fujian Normal University, Fujian 350007, China
| | - Ji-Zheng He
- School of Agriculture and Food, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Hang-Wei Hu
- School of Agriculture and Food, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, Victoria 3010, Australia.
| |
Collapse
|
28
|
You X, Klose N, Kallies R, Harms H, Chatzinotas A, Wick LY. Mycelia-Assisted Isolation of Non-Host Bacteria Able to Co-Transport Phages. Viruses 2022; 14:195. [PMID: 35215789 PMCID: PMC8877629 DOI: 10.3390/v14020195] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 01/14/2022] [Accepted: 01/17/2022] [Indexed: 11/27/2022] Open
Abstract
Recent studies have demonstrated that phages can be co-transported with motile non-host bacteria, thereby enabling their invasion of biofilms and control of biofilm composition. Here, we developed a novel approach to isolate non-host bacteria able to co-transport phages from soil. It is based on the capability of phage-carrying non-host bacteria to move along mycelia out of soil and form colonies in plaques of their co-transported phages. The approach was tested using two model phages of differing surface hydrophobicity, i.e., hydrophobic Escherichia virus T4 (T4) and hydrophilic Pseudoalteromonas phage HS2 (HS2). The phages were mixed into soil and allowed to be transported by soil bacteria along the mycelia of Pythium ultimum. Five phage-carrying bacterial species were isolated (Viridibacillus sp., Enterobacter sp., Serratia sp., Bacillus sp., Janthinobacterium sp.). These bacteria exhibited phage adsorption efficiencies of ≈90-95% for hydrophobic T4 and 30-95% for hydrophilic HS2. The phage adsorption efficiency of Viridibacillus sp. was ≈95% for both phages and twofold higher than T4-or HS2-adsorption to their respective hosts, qualifying Viridibacillus sp. as a potential super carrier for phages. Our approach offers an effective and target-specific way to identify and isolate phage-carrying bacteria in natural and man-made environments.
Collapse
Affiliation(s)
- Xin You
- Helmholtz Centre for Environmental Research-UFZ, Department of Environmental Microbiology, Permoserstraße 15, 04318 Leipzig, Germany; (X.Y.); (N.K.); (R.K.); (H.H.); (A.C.)
| | - Niclas Klose
- Helmholtz Centre for Environmental Research-UFZ, Department of Environmental Microbiology, Permoserstraße 15, 04318 Leipzig, Germany; (X.Y.); (N.K.); (R.K.); (H.H.); (A.C.)
| | - René Kallies
- Helmholtz Centre for Environmental Research-UFZ, Department of Environmental Microbiology, Permoserstraße 15, 04318 Leipzig, Germany; (X.Y.); (N.K.); (R.K.); (H.H.); (A.C.)
| | - Hauke Harms
- Helmholtz Centre for Environmental Research-UFZ, Department of Environmental Microbiology, Permoserstraße 15, 04318 Leipzig, Germany; (X.Y.); (N.K.); (R.K.); (H.H.); (A.C.)
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Puschstraße 4, 04103 Leipzig, Germany
| | - Antonis Chatzinotas
- Helmholtz Centre for Environmental Research-UFZ, Department of Environmental Microbiology, Permoserstraße 15, 04318 Leipzig, Germany; (X.Y.); (N.K.); (R.K.); (H.H.); (A.C.)
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Puschstraße 4, 04103 Leipzig, Germany
- Institute of Biology, Leipzig University, Talstr.33, 04103 Leipzig, Germany
| | - Lukas Y. Wick
- Helmholtz Centre for Environmental Research-UFZ, Department of Environmental Microbiology, Permoserstraße 15, 04318 Leipzig, Germany; (X.Y.); (N.K.); (R.K.); (H.H.); (A.C.)
| |
Collapse
|
29
|
ter Horst AM, Santos-Medellín C, Sorensen JW, Zinke LA, Wilson RM, Johnston ER, Trubl G, Pett-Ridge J, Blazewicz SJ, Hanson PJ, Chanton JP, Schadt CW, Kostka JE, Emerson JB. Minnesota peat viromes reveal terrestrial and aquatic niche partitioning for local and global viral populations. MICROBIOME 2021; 9:233. [PMID: 34836550 PMCID: PMC8626947 DOI: 10.1186/s40168-021-01156-0] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Accepted: 09/02/2021] [Indexed: 05/31/2023]
Abstract
BACKGROUND Peatlands are expected to experience sustained yet fluctuating higher temperatures due to climate change, leading to increased microbial activity and greenhouse gas emissions. Despite mounting evidence for viral contributions to these processes in peatlands underlain with permafrost, little is known about viruses in other peatlands. More generally, soil viral biogeography and its potential drivers are poorly understood at both local and global scales. Here, 87 metagenomes and five viral size-fraction metagenomes (viromes) from a boreal peatland in northern Minnesota (the SPRUCE whole-ecosystem warming experiment and surrounding bog) were analyzed for dsDNA viral community ecological patterns, and the recovered viral populations (vOTUs) were compared with our curated PIGEON database of 266,125 vOTUs from diverse ecosystems. RESULTS Within the SPRUCE experiment, viral community composition was significantly correlated with peat depth, water content, and carbon chemistry, including CH4 and CO2 concentrations, but not with temperature during the first 2 years of warming treatments. Peat vOTUs with aquatic-like signatures (shared predicted protein content with marine and/or freshwater vOTUs) were significantly enriched in more waterlogged surface peat depths. Predicted host ranges for SPRUCE vOTUs were relatively narrow, generally within a single bacterial genus. Of the 4326 SPRUCE vOTUs, 164 were previously detected in other soils, mostly peatlands. None of the previously identified 202,371 marine and freshwater vOTUs in our PIGEON database were detected in SPRUCE peat, but 0.4% of 80,714 viral clusters (VCs, grouped by predicted protein content) were shared between soil and aquatic environments. On a per-sample basis, vOTU recovery was 32 times higher from viromes compared with total metagenomes. CONCLUSIONS Results suggest strong viral "species" boundaries between terrestrial and aquatic ecosystems and to some extent between peat and other soils, with differences less pronounced at higher taxonomic levels. The significant enrichment of aquatic-like vOTUs in more waterlogged peat suggests that viruses may also exhibit niche partitioning on more local scales. These patterns are presumably driven in part by host ecology, consistent with the predicted narrow host ranges. Although more samples and increased sequencing depth improved vOTU recovery from total metagenomes, the substantially higher per-sample vOTU recovery after viral particle enrichment highlights the utility of soil viromics. Video abstract The importance of Minnesota peat viromes in revealing terrestrial and aquatic niche partitioning for viral populations.
Collapse
Affiliation(s)
| | | | - Jackson W. Sorensen
- Department of Plant Pathology, University of California, Davis, Davis, CA USA
| | - Laura A. Zinke
- Department of Plant Pathology, University of California, Davis, Davis, CA USA
| | - Rachel M. Wilson
- Department of Earth, Ocean, and Atmospheric Science, Florida State University, Tallahassee, FL USA
| | - Eric R. Johnston
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN USA
| | - Gareth Trubl
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA USA
| | - Jennifer Pett-Ridge
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA USA
| | - Steven J. Blazewicz
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA USA
| | - Paul J. Hanson
- Environmental Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN USA
| | - Jeffrey P. Chanton
- Department of Earth, Ocean, and Atmospheric Science, Florida State University, Tallahassee, FL USA
| | | | - Joel E. Kostka
- Schools of Biology and Earth & Atmospheric Sciences, Georgia Institute of Technology, Atlanta, GA USA
- Center for Microbial Dynamics and Infection, Georgia Institute of Technology, Atlanta, GA 30332 USA
| | - Joanne B. Emerson
- Department of Plant Pathology, University of California, Davis, Davis, CA USA
- Genome Center, University of California, Davis, Davis, CA USA
| |
Collapse
|
30
|
Meaden S, Biswas A, Arkhipova K, Morales SE, Dutilh BE, Westra ER, Fineran PC. High viral abundance and low diversity are associated with increased CRISPR-Cas prevalence across microbial ecosystems. Curr Biol 2021; 32:220-227.e5. [PMID: 34758284 PMCID: PMC8751634 DOI: 10.1016/j.cub.2021.10.038] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 09/12/2021] [Accepted: 10/19/2021] [Indexed: 11/28/2022]
Abstract
CRISPR-Cas are adaptive immune systems that protect their hosts against viruses and other parasitic mobile genetic elements.1 Although widely distributed among prokaryotic taxa, CRISPR-Cas systems are not ubiquitous.2, 3, 4 Like most defense-system genes, CRISPR-Cas are frequently lost and gained, suggesting advantages are specific to particular environmental conditions.5 Selection from viruses is assumed to drive the acquisition and maintenance of these immune systems in nature, and both theory6, 7, 8 and experiments have identified phage density and diversity as key fitness determinants.9,10 However, these approaches lack the biological complexity inherent in nature. Here, we exploit metagenomic data from 324 samples across diverse ecosystems to analyze CRISPR abundance in natural environments. For each metagenome, we quantified viral abundance and diversity to test whether these contribute to CRISPR-Cas abundance across ecosystems. We find a strong positive association between CRISPR-Cas abundance and viral abundance. In addition, when controlling for differences in viral abundance, CRISPR-Cas systems are more abundant when viral diversity is low, suggesting that such adaptive immune systems may offer limited protection when required to target a diverse viral community. CRISPR-Cas abundance also differed among environments, with environmental classification explaining roughly a quarter of the variation in CRISPR-Cas relative abundance. The relationships between CRISPR-Cas abundance, viral abundance, and viral diversity are broadly consistent across environments, providing robust evidence from natural ecosystems that supports predictions of when CRISPR is beneficial. These results indicate that viral abundance and diversity are major ecological factors that drive the selection and maintenance of CRISPR-Cas in microbial ecosystems. Metagenomic data from diverse ecosystems are used to analyze CRISPR prevalence Environment type explains ∼a quarter of the variation in CRISPR-Cas abundance There is a positive association between CRISPR-Cas abundance and viral abundance CRISPR-Cas is more abundant when viral diversity is comparatively lower
Collapse
Affiliation(s)
- Sean Meaden
- Environment and Sustainability Institute, Biosciences, University of Exeter, Penryn TR10 9EZ, UK; Department of Microbiology and Immunology, University of Otago, PO Box 56, Dunedin 9054, New Zealand.
| | - Ambarish Biswas
- Department of Microbiology and Immunology, University of Otago, PO Box 56, Dunedin 9054, New Zealand; Grasslands Research Centre, AgResearch, PO Box 11008, Palmerston North 4442, New Zealand
| | - Ksenia Arkhipova
- Theoretical Biology and Bioinformatics, Science for Life, Utrecht University, Utrecht, the Netherlands
| | - Sergio E Morales
- Department of Microbiology and Immunology, University of Otago, PO Box 56, Dunedin 9054, New Zealand
| | - Bas E Dutilh
- Theoretical Biology and Bioinformatics, Science for Life, Utrecht University, Utrecht, the Netherlands
| | - Edze R Westra
- Environment and Sustainability Institute, Biosciences, University of Exeter, Penryn TR10 9EZ, UK
| | - Peter C Fineran
- Department of Microbiology and Immunology, University of Otago, PO Box 56, Dunedin 9054, New Zealand; Bioprotection Aotearoa, University of Otago, PO Box 56, Dunedin 9054, New Zealand
| |
Collapse
|
31
|
Sorensen JW, Zinke LA, ter Horst AM, Santos-Medellín C, Schroeder A, Emerson JB. DNase Treatment Improves Viral Enrichment in Agricultural Soil Viromes. mSystems 2021; 6:e0061421. [PMID: 34491084 PMCID: PMC8547471 DOI: 10.1128/msystems.00614-21] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Accepted: 08/11/2021] [Indexed: 11/20/2022] Open
Abstract
The small genomes of most viruses make it difficult to fully capture viral diversity in metagenomes dominated by DNA from cellular organisms. Viral size fraction metagenomics (viromics) protocols facilitate the enrichment of viral DNA from environmental samples, and these protocols typically include DNase treatment of the post-0.2-μm-filtered viromic fraction to remove contaminating free DNA prior to virion lysis. However, DNase may also remove desirable viral genomic DNA (e.g., contained in virions compromised due to frozen storage or laboratory processing), suggesting that DNase-untreated viromes might be useful in some cases. In order to understand how virome preparation with and without DNase treatment influences the resultant data, here, we compared 15 soil viromes (7 DNase treated and 8 untreated) from 8 samples collected from agricultural fields prior to tomato planting. DNase-treated viromes yielded significantly more assembled viral contigs, contained significantly less nonviral microbial DNA, and recovered more viral populations (viral operational taxonomic units [vOTUs]) through read mapping. However, DNase-treated and untreated viromes were statistically indistinguishable in terms of ecological patterns across viral communities. Although the results suggest that DNase treatment is preferable where possible, in comparison to previously reported total metagenomes from the same samples, both DNase-treated and untreated viromes were significantly enriched in viral signatures by all metrics compared, including a 225-times-higher proportion of viral reads in untreated viromes compared to total metagenomes. Thus, even without DNase treatment, viromics was preferable to total metagenomics for capturing viral diversity in these soils, suggesting that preparation of DNase-untreated viromes can be worthwhile when DNase treatment is not possible. IMPORTANCE Viromics is becoming an increasingly popular method for characterizing soil viral communities. DNase treatment of the viral size fraction prior to DNA extraction is meant to reduce contaminating free DNA and is a common step within viromics protocols to ensure that sequences are of viral origin. However, some samples may not be amenable to DNase treatment due to viral particles being compromised either in storage (i.e., frozen) or during other sample processing steps. To date, the effect of DNase treatment on the recovery of viruses and downstream ecological interpretations of soil viral communities is not thoroughly understood. This work sheds light on these questions and indicates that while DNase treatment of soil viromes improves the recovery of viral populations, this improvement is modest in comparison to the gains made by viromics over total soil metagenomics. Furthermore, DNase treatment may not be necessary to observe the ecological patterns structuring soil viral communities.
Collapse
Affiliation(s)
- Jackson W. Sorensen
- Department of Plant Pathology, University of California, Davis, Davis, California, USA
| | - Laura A. Zinke
- Department of Plant Pathology, University of California, Davis, Davis, California, USA
| | - Anneliek M. ter Horst
- Department of Plant Pathology, University of California, Davis, Davis, California, USA
| | | | - Alena Schroeder
- Department of Plant Pathology, University of California, Davis, Davis, California, USA
| | - Joanne B. Emerson
- Department of Plant Pathology, University of California, Davis, Davis, California, USA
- Genome Center, University of California, Davis, Davis, California, USA
| |
Collapse
|
32
|
Trubl G, Kimbrel JA, Liquet-Gonzalez J, Nuccio EE, Weber PK, Pett-Ridge J, Jansson JK, Waldrop MP, Blazewicz SJ. Active virus-host interactions at sub-freezing temperatures in Arctic peat soil. MICROBIOME 2021; 9:208. [PMID: 34663463 PMCID: PMC8522061 DOI: 10.1186/s40168-021-01154-2] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 08/19/2021] [Indexed: 05/02/2023]
Abstract
BACKGROUND Winter carbon loss in northern ecosystems is estimated to be greater than the average growing season carbon uptake and is primarily driven by microbial decomposers. Viruses modulate microbial carbon cycling via induced mortality and metabolic controls, but it is unknown whether viruses are active under winter conditions (anoxic and sub-freezing temperatures). RESULTS We used stable isotope probing (SIP) targeted metagenomics to reveal the genomic potential of active soil microbial populations under simulated winter conditions, with an emphasis on viruses and virus-host dynamics. Arctic peat soils from the Bonanza Creek Long-Term Ecological Research site in Alaska were incubated under sub-freezing anoxic conditions with H218O or natural abundance water for 184 and 370 days. We sequenced 23 SIP-metagenomes and measured carbon dioxide (CO2) efflux throughout the experiment. We identified 46 bacterial populations (spanning 9 phyla) and 243 viral populations that actively took up 18O in soil and respired CO2 throughout the incubation. Active bacterial populations represented only a small portion of the detected microbial community and were capable of fermentation and organic matter degradation. In contrast, active viral populations represented a large portion of the detected viral community and one third were linked to active bacterial populations. We identified 86 auxiliary metabolic genes and other environmentally relevant genes. The majority of these genes were carried by active viral populations and had diverse functions such as carbon utilization and scavenging that could provide their host with a fitness advantage for utilizing much-needed carbon sources or acquiring essential nutrients. CONCLUSIONS Overall, there was a stark difference in the identity and function of the active bacterial and viral community compared to the unlabeled community that would have been overlooked with a non-targeted standard metagenomic analysis. Our results illustrate that substantial active virus-host interactions occur in sub-freezing anoxic conditions and highlight viruses as a major community-structuring agent that likely modulates carbon loss in peat soils during winter, which may be pivotal for understanding the future fate of arctic soils' vast carbon stocks. Video abstract.
Collapse
Affiliation(s)
- Gareth Trubl
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA, USA.
| | - Jeffrey A Kimbrel
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA, USA
| | - Jose Liquet-Gonzalez
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA, USA
| | - Erin E Nuccio
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA, USA
| | - Peter K Weber
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA, USA
| | - Jennifer Pett-Ridge
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA, USA
- Department of Life and Environmental Sciences, University of California, Merced, CA, 95343, USA
| | - Janet K Jansson
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Mark P Waldrop
- U.S. Geological Survey, Geology, Minerals, Energy, and Geophysics Science Center, Menlo Park, CA, USA
| | - Steven J Blazewicz
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA, USA.
| |
Collapse
|
33
|
Anand U, Bianco F, Suresh S, Tripathi V, Núñez-Delgado A, Race M. SARS-CoV-2 and other viruses in soil: An environmental outlook. ENVIRONMENTAL RESEARCH 2021; 198:111297. [PMID: 33971130 PMCID: PMC8102436 DOI: 10.1016/j.envres.2021.111297] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 04/30/2021] [Accepted: 05/01/2021] [Indexed: 05/15/2023]
Abstract
In the present review, the authors shed light on the SARS-CoV-2 impact, persistence, and monitoring in the soil environment. With this purpose, several aspects have been deepened: i) viruses in soil ecosystems; ii) direct and indirect impact on the soil before and after the pandemic, and iii) methods for quantification of viruses and SARS-CoV-2 monitoring in soil. Viruses are present in soil (i.e. up to 417 × 107 viruses per g TS-1 in wetlands) and can affect the behavior and ecology of other life forms (e.g. bacteria), which are remarkably important for maintaining environmental equilibrium. Also, SARS-CoV-2 can be found in soil (i.e. up to 550 copies·g-1). Considering that the SARS-CoV-2 is very recent, poor knowledge is available in the literature on persistence in the soil and reference has been made to coronaviruses and other families of viruses. For instance, the survival of enveloped viruses (e.g. SARS-CoV) can reach 90 days in soils with 10% of moisture content at ambient. In such a context, the possible spread of the SARS-CoV-2 in the soil was evaluated by analyzing the possible contamination routes.
Collapse
Affiliation(s)
- Uttpal Anand
- Department of Life Sciences, National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer-Sheva, 84105, Israel
| | - Francesco Bianco
- Department of Civil and Mechanical Engineering, University of Cassino and Southern Lazio, Via Di Biasio 43, 03043, Cassino, Italy
| | - S Suresh
- Department of Chemical Engineering, Maulana Azad National Institute of Technology, Bhopal, 462 003, Madhya Pradesh, India
| | - Vijay Tripathi
- Department of Molecular and Cellular Engineering, Jacob Institute of Biotechnology and Bioengineering, Sam Higginbottom University of Agriculture, Technology and Sciences, Prayagraj, 211007, India
| | - Avelino Núñez-Delgado
- Department Soil Science and Agricultural Chemistry, Engineering Polytechnic School, Campus Univ. Lugo, Univ. Santiago de Compostela, 27002, Spain
| | - Marco Race
- Department of Civil and Mechanical Engineering, University of Cassino and Southern Lazio, Via Di Biasio 43, 03043, Cassino, Italy.
| |
Collapse
|
34
|
Santos-Medellin C, Zinke LA, Ter Horst AM, Gelardi DL, Parikh SJ, Emerson JB. Viromes outperform total metagenomes in revealing the spatiotemporal patterns of agricultural soil viral communities. THE ISME JOURNAL 2021; 15:1956-1970. [PMID: 33612831 PMCID: PMC8245658 DOI: 10.1038/s41396-021-00897-y] [Citation(s) in RCA: 75] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 12/19/2020] [Accepted: 01/15/2021] [Indexed: 01/31/2023]
Abstract
Viruses are abundant yet understudied members of soil environments that influence terrestrial biogeochemical cycles. Here, we characterized the dsDNA viral diversity in biochar-amended agricultural soils at the preplanting and harvesting stages of a tomato growing season via paired total metagenomes and viral size fraction metagenomes (viromes). Size fractionation prior to DNA extraction reduced sources of nonviral DNA in viromes, enabling the recovery of a vaster richness of viral populations (vOTUs), greater viral taxonomic diversity, broader range of predicted hosts, and better access to the rare virosphere, relative to total metagenomes, which tended to recover only the most persistent and abundant vOTUs. Of 2961 detected vOTUs, 2684 were recovered exclusively from viromes, while only three were recovered from total metagenomes alone. Both viral and microbial communities differed significantly over time, suggesting a coupled response to rhizosphere recruitment processes and/or nitrogen amendments. Viral communities alone were also structured along an 18 m spatial gradient. Overall, our results highlight the utility of soil viromics and reveal similarities between viral and microbial community dynamics throughout the tomato growing season yet suggest a partial decoupling of the processes driving their spatial distributions, potentially due to differences in dispersal, decay rates, and/or sensitivities to soil heterogeneity.
Collapse
Affiliation(s)
| | - Laura A Zinke
- Department of Plant Pathology, University of California, Davis, CA, USA
| | | | - Danielle L Gelardi
- Department of Land, Air and Water Resources, University of California, Davis, CA, USA
| | - Sanjai J Parikh
- Department of Land, Air and Water Resources, University of California, Davis, CA, USA
| | - Joanne B Emerson
- Department of Plant Pathology, University of California, Davis, CA, USA.
- Genome Center, University of California, Davis, CA, USA.
| |
Collapse
|
35
|
Improving Phage-Biofilm In Vitro Experimentation. Viruses 2021; 13:v13061175. [PMID: 34205417 PMCID: PMC8234374 DOI: 10.3390/v13061175] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Revised: 06/14/2021] [Accepted: 06/15/2021] [Indexed: 02/07/2023] Open
Abstract
Bacteriophages or phages, the viruses of bacteria, are abundant components of most ecosystems, including those where bacteria predominantly occupy biofilm niches. Understanding the phage impact on bacterial biofilms therefore can be crucial toward understanding both phage and bacterial ecology. Here, we take a critical look at the study of bacteriophage interactions with bacterial biofilms as carried out in vitro, since these studies serve as bases of our ecological and therapeutic understanding of phage impacts on biofilms. We suggest that phage-biofilm in vitro experiments often may be improved in terms of both design and interpretation. Specific issues discussed include (a) not distinguishing control of new biofilm growth from removal of existing biofilm, (b) inadequate descriptions of phage titers, (c) artificially small overlying fluid volumes, (d) limited explorations of treatment dosing and duration, (e) only end-point rather than kinetic analyses, (f) importance of distinguishing phage enzymatic from phage bacteriolytic anti-biofilm activities, (g) limitations of biofilm biomass determinations, (h) free-phage interference with viable-count determinations, and (i) importance of experimental conditions. Toward bettering understanding of the ecology of bacteriophage-biofilm interactions, and of phage-mediated biofilm disruption, we discuss here these various issues as well as provide tips toward improving experiments and their reporting.
Collapse
|
36
|
Sommers P, Chatterjee A, Varsani A, Trubl G. Integrating Viral Metagenomics into an Ecological Framework. Annu Rev Virol 2021; 8:133-158. [PMID: 34033501 DOI: 10.1146/annurev-virology-010421-053015] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Viral metagenomics has expanded our knowledge of the ecology of uncultured viruses, within both environmental (e.g., terrestrial and aquatic) and host-associated (e.g., plants and animals, including humans) contexts. Here, we emphasize the implementation of an ecological framework in viral metagenomic studies to address questions in virology rarely considered ecological, which can change our perception of viruses and how they interact with their surroundings. An ecological framework explicitly considers diverse variants of viruses in populations that make up communities of interacting viruses, with ecosystem-level effects. It provides a structure for the study of the diversity, distributions, dynamics, and interactions of viruses with one another, hosts, and the ecosystem, including interactions with abiotic factors. An ecological framework in viral metagenomics stands poised to broadly expand our knowledge in basic and applied virology. We highlight specific fundamental research needs to capitalize on its potential and advance the field. Expected final online publication date for the Annual Review of Virology, Volume 8 is September 2021. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Pacifica Sommers
- Department of Ecology and Evolutionary Biology, University of Colorado at Boulder, Boulder, Colorado 80309, USA.,These authors contributed equally to this article
| | - Anushila Chatterjee
- Department of Ecology and Evolutionary Biology, University of Colorado at Boulder, Boulder, Colorado 80309, USA.,These authors contributed equally to this article
| | - Arvind Varsani
- The Biodesign Center for Fundamental and Applied Microbiomics, Center for Evolution and Medicine, School of Life Sciences, Arizona State University, Tempe, Arizona 85287, USA; .,Structural Biology Research Unit, Department of Integrative Biomedical Sciences, University of Cape Town, Observatory 7925, South Africa
| | - Gareth Trubl
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, California 94550, USA
| |
Collapse
|
37
|
Abstract
Viruses play an essential role in shaping microbial community structures and serve as reservoirs for genetic diversity in many ecosystems. In hyperarid desert environments, where life itself becomes scarce and loses diversity, the interactions between viruses and host populations have remained elusive. Here, we resolved host-virus interactions in the soil metagenomes of the Atacama Desert hyperarid core, one of the harshest terrestrial environments on Earth. We show evidence of diverse viruses infecting a wide range of hosts found in sites up to 205 km apart. Viral genomes carried putative extremotolerance features (i.e., spore formation proteins) and auxiliary metabolic genes, indicating that viruses could mediate the spread of microbial resilience against environmental stress across the desert. We propose a mutualistic model of host-virus interactions in the hyperarid core where viruses seek protection in microbial cells as lysogens or pseudolysogens, while viral extremotolerance genes aid survival of their hosts. Our results suggest that the host-virus interactions in the Atacama Desert soils are dynamic and complex, shaping uniquely adapted microbiomes in this highly selective and hostile environment.IMPORTANCE Deserts are one of the largest and rapidly expanding terrestrial ecosystems characterized by low biodiversity and biomass. The hyperarid core of the Atacama Desert, previously thought to be devoid of life, is one of the harshest environments, supporting only scant biomass of highly adapted microbes. While there is growing evidence that viruses play essential roles in shaping the diversity and structure of nearly every ecosystem, very little is known about the role of viruses in desert soils, especially where viral contact with viable hosts is significantly reduced. Our results demonstrate that diverse viruses are widely dispersed across the desert, potentially spreading key stress resilience and metabolic genes to ensure host survival. The desertification accelerated by climate change expands both the ecosystem cover and the ecological significance of the desert virome. This study sheds light on the complex virus-host interplay that shapes the unique microbiome in desert soils.
Collapse
|
38
|
Wei X, Ge T, Wu C, Wang S, Mason-Jones K, Li Y, Zhu Z, Hu Y, Liang C, Shen J, Wu J, Kuzyakov Y. T4-like Phages Reveal the Potential Role of Viruses in Soil Organic Matter Mineralization. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:6440-6448. [PMID: 33852292 DOI: 10.1021/acs.est.0c06014] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Viruses are the most abundant biological entities in the world, but their ecological functions in soil are virtually unknown. We hypothesized that greater abundance of T4-like phages will increase bacterial death and thereby suppress soil organic carbon (SOC) mineralization. A range of phage and bacterial abundances were established in sterilized soil by reinoculation with 10-3 and 10-6 dilutions of suspensions of unsterilized soil. The total and viable 16S rRNA gene abundance (a universal marker for bacteria) was measured by qPCR to determine bacterial abundance, with propidium monoazide (PMA) preapplication to eliminate DNA from non-viable cells. Abundance of the g23 marker gene was used to quantify T4-like phages. A close negative correlation between g23 abundance and viable 16S rRNA gene abundance was observed. High abundance of g23 led to lower viable ratios for bacteria, which suggested that phages drove microbial necromass production. The CO2 efflux from soil increased with bacterial abundance but decreased with higher abundance of T4-like phages. Elimination of extracellular DNA by PMA strengthened the relationship between CO2 efflux and bacterial abundance, suggesting that SOC mineralization by bacteria is strongly reduced by the T4-like phages. A random forest model revealed that abundance of T4-like phages and the abundance ratio of T4-like phages to bacteria are better predictors of SOC mineralization (measured as CO2 efflux) than bacterial abundance. Our study provides experimental evidence of phages' role in organic matter turnover in soil: they can retard SOC decomposition but accelerate bacterial turnover.
Collapse
Affiliation(s)
- Xiaomeng Wei
- Key Laboratory of Agro-ecological Processes in Subtropical Region & Changsha Research Station for Agricultural and Environmental Monitoring, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan 410125, PR China
| | - Tida Ge
- Key Laboratory of Agro-ecological Processes in Subtropical Region & Changsha Research Station for Agricultural and Environmental Monitoring, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan 410125, PR China
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo 315211, PR China
| | - Chuanfa Wu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo 315211, PR China
| | - Shuang Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo 315211, PR China
| | - Kyle Mason-Jones
- Department of Terrestrial Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Wageningen 106708, The Netherlands
| | - Yong Li
- Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, PR China
| | - Zhenke Zhu
- Key Laboratory of Agro-ecological Processes in Subtropical Region & Changsha Research Station for Agricultural and Environmental Monitoring, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan 410125, PR China
| | - Yajun Hu
- Key Laboratory of Agro-ecological Processes in Subtropical Region & Changsha Research Station for Agricultural and Environmental Monitoring, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan 410125, PR China
| | - Chao Liang
- Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, PR China
| | - JianLin Shen
- Key Laboratory of Agro-ecological Processes in Subtropical Region & Changsha Research Station for Agricultural and Environmental Monitoring, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan 410125, PR China
| | - Jinshui Wu
- Key Laboratory of Agro-ecological Processes in Subtropical Region & Changsha Research Station for Agricultural and Environmental Monitoring, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan 410125, PR China
| | - Yakov Kuzyakov
- Department of Soil Science of Temperate Ecosystems, Department of Agricultural Soil Science, University of Goettingen, Goettingen 37073, Germany
- Agro-Technological Institute, RUDN University, 117198 Moscow, Russia
| |
Collapse
|
39
|
Hyman P, Trubl G, Abedon ST. Virus-Like Particle: Evolving Meanings in Different Disciplines. PHAGE (NEW ROCHELLE, N.Y.) 2021; 2:11-15. [PMID: 36148434 PMCID: PMC9041479 DOI: 10.1089/phage.2020.0026] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Virus-like particle (VLP) is a term that has been in use for about 80 years. Usually, VLP has meant a particle that is like a virus, generally by appearance, but without either proven or actual virus functionality. Initially VLP referred to particles seen in electron microscope images of tissues. More recently, VLP has come to mean other things to other researchers. A key divergence has been use of VLP in association with vaccine and biotechnology applications versus use of VLP in enumeration of viruses in environmental samples. To these viral ecologists, a VLP is a particle that is virus sized, has nucleic acid, and could be a functional virus. But to vaccine developers and biotechnology researchers a VLP instead is a viral structure that intentionally lacks a viral genome. In this study, we look at the history of use of VLP, following changes in meaning as the technology to study VLPs changed.
Collapse
Affiliation(s)
- Paul Hyman
- Department of Biology and Toxicology, Ashland University, Ashland, Ohio, USA
| | - Gareth Trubl
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, California, USA
| | - Stephen T. Abedon
- Department of Microbiology, The Ohio State University, Mansfield, Ohio, USA
| |
Collapse
|
40
|
Taş N, de Jong AE, Li Y, Trubl G, Xue Y, Dove NC. Metagenomic tools in microbial ecology research. Curr Opin Biotechnol 2021; 67:184-191. [PMID: 33592536 DOI: 10.1016/j.copbio.2021.01.019] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 01/22/2021] [Accepted: 01/24/2021] [Indexed: 01/05/2023]
Abstract
Ability to directly sequence DNA from the environment permanently changed microbial ecology. Here, we review the new insights to microbial life gleaned from the applications of metagenomics, as well as the extensive set of analytical tools that facilitate exploration of diversity and function of complex microbial communities. While metagenomics is shaping our understanding of microbial functions in ecosystems via gene-centric and genome-centric methods, annotating functions, metagenome assembly and binning in heterogeneous samples remains challenging. Development of new analysis and sequencing platforms generating high-throughput long-read sequences and functional screening opportunities will aid in harnessing metagenomes to increase our understanding of microbial taxonomy, function, ecology, and evolution in the environment.
Collapse
Affiliation(s)
- Neslihan Taş
- Earth and Environmental Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA; Biosciences Area, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA.
| | - Anniek Ee de Jong
- Deltares, Daltonlaan 600, 3584 BK Utrecht, The Netherlands; Department of Microbiology, Institute for Water and Wetland Research, Radboud University, Heyendaalseweg 135, 6525 AJ, Nijmegen, The Netherlands
| | - Yaoming Li
- School of Grassland Science, Beijing Forest University, Beijing, 100083, China; Zhejiang Tiantong Forest Ecosystem National Observation and Research Station, Shanghai, 200241, China
| | - Gareth Trubl
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA 94550, USA
| | - Yaxin Xue
- Computational Biology Unit, Department of Informatics, University of Bergen, Bergen, N-5008, Norway
| | - Nicholas C Dove
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| |
Collapse
|
41
|
Environmental Impact of Sulfate-Reducing Bacteria, Their Role in Intestinal Bowel Diseases, and Possible Control by Bacteriophages. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11020735] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Sulfate-reducing bacteria (SRB) represent a group of prokaryotic microorganisms that are widely spread in the anoxic environment (seabed, riverbed and lakebed sediments, mud, intestinal tract of humans and animals, metal surfaces). SRB species also have an impact on processes occurring in the intestinal tract of humans and animals, including the connections between their presence and inflammatory bowel disease (IBD). Since these SRB can develop antimicrobial resistance toward the drugs, including antibiotics and antimicrobial agents, bacteriophages could represent an additional potential effective treatment. The main objectives of the review were as follows: (a) to review SRB (both from intestinal and environmental sources) regarding their role in intestinal diseases as well as their influence in environmental processes; and (b) to review, according to literature data, the influence of bacteriophages on SRB and their possible applications. Since SRB can have a significant adverse influence on industry as well as on humans and animals health, phage treatment of SRB can be seen as a possible effective method of SRB inhibition. However, there are relatively few studies concerning the influence of phages on SRB strains. Siphoviridae and Myoviridae families represent the main sulfide-producing bacteria phages. The most recent studies induced, by UV light, bacteriophages from Desulfovibrio vulgaris NCIMB 8303 and Desulfovibrio desulfuricans ATCC 13541. Notwithstanding costly and medically significant negative impacts of phages on SRB, they have been the subject of relatively few studies. The current search for alternatives to chemical biocides and antibiotics has led to the renewed interest in phages as antibacterial biocontrol and therapeutic agents, including their use against SRB. Hence, phages might represent a promising treatment against SRB in the future.
Collapse
|