1
|
Stefanelli E, Vitolo S, Di Fidio N, Puccini M. Tailoring the porosity of chemically activated carbons derived from the HTC treatment of sewage sludge for the removal of pollutants from gaseous and aqueous phases. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 345:118887. [PMID: 37678019 DOI: 10.1016/j.jenvman.2023.118887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 08/21/2023] [Accepted: 08/26/2023] [Indexed: 09/09/2023]
Abstract
The management of sewage sludge is currently an open issue due to the large volume of waste to be treated and the necessity to avoid incineration or landfill disposal. Hydrothermal carbonization (HTC) has been recognized as a promising thermochemical technique to convert sewage sludge into value-added products. The hydrochar (HC) obtained can be suitable for environmental application as fuel, fertilizer, and sorbent. In this study, activated hydrochars (AHs) were prepared from sewage sludge through HTC followed by chemical activation with potassium hydroxide (KOH) and tested for the removal of pollutants in gaseous and aqueous environments, investigating carbon dioxide (CO2) and ciprofloxacin (CIP) adsorption capacity. The effects of activation temperature (550-750 °C) and KOH/HC impregnation ratio (1-3) on the produced AHs morphology and adsorption capacity were studied by Response Surface Methodology (RSM). The results of RSM analysis evidenced a maximum CO2 uptake of 71.47 mg/g for mild activation conditions (600-650 °C and KOH/HC = 1 ÷ 2), whereas the best CIP uptake of 628.61 mg/g was reached for the most severe conditions (750 °C, KOH/HC = 3). The prepared AHs were also applied for the removal of methylene blue (MB) from aqueous solutions, and the MB uptake results were used for estimating the specific surface area of AHs. High surface areas up to 1902.49 m2/g were obtained for the highest activation temperature and impregnation ratio investigated. Predictive models of CO2 and CIP uptake were developed by RSM analysis, and the optimum activation conditions for maximizing the adsorption performance together with high AH yield were identified: 586 °C and KOH/HC ratio = 1.34 for maximum yield (26.33 %) and CO2 uptake (67.31 mg/g); 715 °C and KOH/HC ratio = 1.78 for maximum yield (18.75 %) and CIP uptake (370.77 mg/g). The obtained results evidenced that chemical activation of previously HTC-treated sewage sludge is a promising way to convert waste into valuable low-cost adsorbents.
Collapse
Affiliation(s)
- Eleonora Stefanelli
- Dipartimento di Ingegneria Civile e Industriale, Università di Pisa, Largo Lucio Lazzarino 1, 56122, Pisa, Italy
| | - Sandra Vitolo
- Dipartimento di Ingegneria Civile e Industriale, Università di Pisa, Largo Lucio Lazzarino 1, 56122, Pisa, Italy
| | - Nicola Di Fidio
- Dipartimento di Chimica e Chimica Industriale, Università di Pisa, Via G. Moruzzi 13, 56124, Pisa, Italy
| | - Monica Puccini
- Dipartimento di Ingegneria Civile e Industriale, Università di Pisa, Largo Lucio Lazzarino 1, 56122, Pisa, Italy.
| |
Collapse
|
2
|
Xu Q, Yang G, Liu X, Wong JWC, Zhao J. Hydrochar mediated anaerobic digestion of bio-wastes: Advances, mechanisms and perspectives. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 884:163829. [PMID: 37121315 DOI: 10.1016/j.scitotenv.2023.163829] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 04/24/2023] [Accepted: 04/25/2023] [Indexed: 05/05/2023]
Abstract
Bio-wastes treatment and disposal has become a challenge because of their increasing output. Given the abundant organic matter in bio-wastes, its related resource treatment methods have received more and more attention. As a promising strategy, anaerobic digestion (AD) has been widely used in the treatment of bio-wastes, during which not only methane as energy can be recovered but also their reduction can be achieved. However, AD process is generally disturbed by some internal factors (e.g., low hydrolysis efficiency and accumulated ammonia) and external factors (e.g., input pollutants), resulting in unstable AD operation performance. Recently, hydrochar was wildly found to improve AD performance when added to AD systems. This review comprehensively summarizes the research progress on the performance of hydrochar-mediated AD, such as increased methane yield, improved operation efficiency and digestate dewatering, and reduced heavy metals in digestate. Subsequently, the underlying mechanisms of hydrochar promoting AD were systematically elucidated and discussed, including regulation of electron transfer (ET) mode, microbial community structure, bio-processes involved in AD, and reaction conditions. Moreover, the effects of properties of hydrochar (e.g., feedstock, hydrothermal carbonization (HTC) temperature, HTC time, modification and dosage) on the improvement of AD performance are systematically concluded. Finally, the relevant knowledge gaps and opportunities to be studied are presented to improve the progress and application of the hydrochar-mediated AD technology. This review aims to offer some references and directions for the hydrochar-mediated AD technology in improving bio-wastes resource recovery.
Collapse
Affiliation(s)
- Qiuxiang Xu
- Research Center for Eco-Environmental Engineering, Dongguan University of Technology, Dongguan, Guangdong 523808, China; College of Biological and Environmental Sciences, Zhejiang Wanli University, Ningbo 315100, PR China
| | - Guojing Yang
- College of Biological and Environmental Sciences, Zhejiang Wanli University, Ningbo 315100, PR China
| | - Xuran Liu
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
| | - Jonathan W C Wong
- Department of Biology, Hong Kong Baptist University, Kowloon Tong, Hong Kong, China
| | - Jun Zhao
- Department of Biology, Hong Kong Baptist University, Kowloon Tong, Hong Kong, China.
| |
Collapse
|
3
|
Marzban N, Libra JA, Rotter VS, Ro KS, Moloeznik Paniagua D, Filonenko S. Changes in Selected Organic and Inorganic Compounds in the Hydrothermal Carbonization Process Liquid While in Storage. ACS OMEGA 2023; 8:4234-4243. [PMID: 36743065 PMCID: PMC9893746 DOI: 10.1021/acsomega.2c07419] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 12/23/2022] [Indexed: 05/29/2023]
Abstract
Although many studies have investigated the hydrothermal transformation of feedstock biomass, little is known about the stability of the compounds present in the process liquid after the carbonization process is completed. The physicochemical characteristics of hydrothermal carbonization (HTC) liquid products may change over storage time, diminishing the amount of desired products or producing unwanted contaminants. These changes may restrict the use of HTC liquid products. Here, we investigate the effect of storage temperature (20, 4, and -18 °C) and time (weeks 1-12) on structural and compositional changes of selected organic compounds and physicochemical characteristics of the process liquid from the HTC of digested cow manure. ANOVA showed that the storage time has a significant effect on the concentrations of almost all of the selected organic compounds, except acetic acid. Considerable changes in the composition of the process liquid took place at all studied temperatures, including deep freezing at -18 °C. Prominent is the polymerization of aromatic compounds with the formation of precipitates, which settle over time. This, in turn, influences the inorganic compounds present in the liquid phase by chelating or selectively adsorbing them. The implications of these results on the further processing of the process liquid for various applications are discussed.
Collapse
Affiliation(s)
- Nader Marzban
- Leibniz
Institute of Agricultural Engineering and Bio-economy e.V. (ATB), Max-Eyth-Allee 100, 14469 Potsdam, Germany
- Department
of Environmental Technology, Chair of Circular Economy and Recycling
Technology, Technische Universität
Berlin, 10623 Berlin, Germany
- Department
of Colloid Chemistry, Max-Planck Institute
of Colloids and Interfaces, Am Mühlenberg 1, 14476 Potsdam, Germany
| | - Judy A. Libra
- Leibniz
Institute of Agricultural Engineering and Bio-economy e.V. (ATB), Max-Eyth-Allee 100, 14469 Potsdam, Germany
| | - Vera Susanne Rotter
- Department
of Environmental Technology, Chair of Circular Economy and Recycling
Technology, Technische Universität
Berlin, 10623 Berlin, Germany
| | - Kyoung S. Ro
- USDA-ARS,
Coastal Plains Soil, Water & Plant Research Center, Florence, South Carolina 29501, United States
| | - Daniela Moloeznik Paniagua
- Leibniz
Institute of Agricultural Engineering and Bio-economy e.V. (ATB), Max-Eyth-Allee 100, 14469 Potsdam, Germany
- Department
of Environmental Technology, Chair of Circular Economy and Recycling
Technology, Technische Universität
Berlin, 10623 Berlin, Germany
| | - Svitlana Filonenko
- Department
of Colloid Chemistry, Max-Planck Institute
of Colloids and Interfaces, Am Mühlenberg 1, 14476 Potsdam, Germany
| |
Collapse
|
4
|
Schneider H, Schmitz T, Flores CG, Tessaro IC, Marcilio NR. Influence of Temperature and Residence Time in the Hydrothermal Carbonization of Rice Husk and Exhausted Black Wattle Bark. Ind Biotechnol (New Rochelle N Y) 2022. [DOI: 10.1089/ind.2021.0031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- Helena Schneider
- Department of Chemical Engineering, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
| | - Thaís Schmitz
- Department of Chemical Engineering, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
| | - Camila Gomes Flores
- Institut de Chimie et Procédés pour l'Énergie, l'Environnement et la Santé, University of Strasbourg, Strasbourg, France
| | - Isabel Cristina Tessaro
- Department of Chemical Engineering, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
| | - Nilson Romeu Marcilio
- Department of Chemical Engineering, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
| |
Collapse
|
5
|
Bona D, Scrinzi D, Tonon G, Ventura M, Nardin T, Zottele F, Andreis D, Andreottola G, Fiori L, Silvestri S. Hydrochar and hydrochar co-compost from OFMSW digestate for soil application: 2. agro-environmental properties. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 312:114894. [PMID: 35334400 DOI: 10.1016/j.jenvman.2022.114894] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 02/24/2022] [Accepted: 03/11/2022] [Indexed: 06/14/2023]
Abstract
The work concerns the study of the hydrochar from digestate and hydrochar co-compost characterization as amendments. The processes for hydrochar and co-compost production were described in Part 1 of this work (Scrinzi et al., 2022). The amendment properties of hydrochar (produced at 180-200-220 °C for 3 h) and co-composts (25%, 50%, and 75% hydrochar percentage of digestate substitution) were assessed by phytotoxicity, plant growth bioassay, and soil effect. Different seeds species (Lepidium sativum, Cucumis sativus, and Sorghum bicolor sp.) were dosed at increased concentrations using both wet raw amendments and their water extracts. The chemical characterization showed phytotoxic compounds content depending on both the initial feedstock (digestate) and the HTC process; at the same time, the analysis highlighted the reduction of these compounds by composting (organic acid, polyphenols, salt concentration). The dose-response was analyzed by the Cedergreen-Streibig-Ritz model and the half-maximal effective concentration (EC50) was calculated based on this equation. The soil properties and GHG emissions measurements (CH4, CO2, N2O, and NH3) highlighted the effect on N dynamics and on soil respiration induced by substrates. The HC200 soil application determined a significant impact on CO2 and N2O emission and NH3 volatilization (10.82 mol CO2/m2; 51.45 mmol N2O/m2; 112 mol NH3/m2) and a significant reduction of total N and TOC (46% of TKN and 49% of TOC). The co-compost (75%) showed specific effects after soil application compared to other samples an increase of available P (48%), a greater content of nitrogen (1626 mg/kg dry basis), and a reduction of organic carbon (17%). Our results demonstrate the good quality of co-compost and at the same time the validity of this post-treatment for addressing many issues related to hydrochar use in the soil as an amendment, confirming the suitability of HTC process integration for digestate treatment in anaerobic digestion plants.
Collapse
Affiliation(s)
- Daniela Bona
- Technology Transfer Centre, Fondazione Edmund Mach, Via E. Mach, 1, 38010, San Michele a/A, Italy
| | - Donato Scrinzi
- Department of Civil, Environmental and Mechanical Engineering, University of Trento, Trento, Italy
| | - Giustino Tonon
- Faculty of Science and Technology, Free University of Bozen-Bolzano, Piazza Università, 5, 39100, Bozen-Bolzano, Italy
| | - Maurizio Ventura
- Faculty of Science and Technology, Free University of Bozen-Bolzano, Piazza Università, 5, 39100, Bozen-Bolzano, Italy
| | - Tiziana Nardin
- Technology Transfer Centre, Fondazione Edmund Mach, Via E. Mach, 1, 38010, San Michele a/A, Italy
| | - Fabio Zottele
- Technology Transfer Centre, Fondazione Edmund Mach, Via E. Mach, 1, 38010, San Michele a/A, Italy
| | - Daniele Andreis
- Technology Transfer Centre, Fondazione Edmund Mach, Via E. Mach, 1, 38010, San Michele a/A, Italy
| | - Gianni Andreottola
- Department of Civil, Environmental and Mechanical Engineering, University of Trento, Trento, Italy
| | - Luca Fiori
- Department of Civil, Environmental and Mechanical Engineering, University of Trento, Trento, Italy; Center Agriculture Food Environment (C3A), University of Trento, Trento, Italy.
| | - Silvia Silvestri
- Technology Transfer Centre, Fondazione Edmund Mach, Via E. Mach, 1, 38010, San Michele a/A, Italy
| |
Collapse
|
6
|
Scrinzi D, Bona D, Denaro A, Silvestri S, Andreottola G, Fiori L. Hydrochar and hydrochar co-compost from OFMSW digestate for soil application: 1. production and chemical characterization. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 309:114688. [PMID: 35180435 DOI: 10.1016/j.jenvman.2022.114688] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 01/26/2022] [Accepted: 02/04/2022] [Indexed: 06/14/2023]
Abstract
The best available technique (BAT) for managing the organic fraction of municipal solid waste (OFMSW) is represented by anaerobic digestion (AD) and subsequent composting. This research explored a new industrial model in the framework of the C2Land international project, with the insertion of hydrothermal carbonization (HTC) as a post-treatment for OFMSW digestate. The reaction was set for 3 h at three different temperatures (180 ÷ 220 °C); the wet solid hydrochar obtained after filtration was then co-composted with greenery waste as a bulking agent and untreated OFMSW digestate in four different proportions in bench-scale bioreactors. The hydrochars and the hydrochar co-composts were suitable for agro-industrial applications, while the HTC liquors were tested in biochemical methane potential (BMP) for internal recirculation to AD. The scenarios proposed can be beneficial for plant enhancement and increased biogas production. This study reports results connected to the production phase. Mass balances confirmed that, during HTC, phosphorus precipitated into the solid products, organic nitrogen partially mineralized into ammonium, and oxidizable organic matter solubilized. The selected hydrochar obtained at 200 °C had mean (dry) solid, liquid, and gaseous yields equal to 77, 20, and 3 %db, respectively. The dynamic respirometric index (DRI) confirmed that the reproduced BAT for the composting process was effective in producing high-quality hydrochar co-composts in terms of biological stability. The BMP tests on HTC liquors showed some inhibitory effects, suggesting the need for future studies with inoculum adaptation and co-digestion, to dilute toxic compounds and enhance biogas production. Part 2 of this study describes the agro-environmental properties of hydrochars and hydrochar co-composts, including the beneficial effect of composting on hydrochars phytotoxicity.
Collapse
Affiliation(s)
- Donato Scrinzi
- Department of Civil, Environmental and Mechanical Engineering, University of Trento, Trento, Italy
| | - Daniela Bona
- Fondazione Edmund Mach, Environmental, Energy and Livestock Resources Unit, Trento, Italy
| | - Andrea Denaro
- Department of Civil, Environmental and Mechanical Engineering, University of Trento, Trento, Italy
| | - Silvia Silvestri
- Fondazione Edmund Mach, Environmental, Energy and Livestock Resources Unit, Trento, Italy
| | - Gianni Andreottola
- Department of Civil, Environmental and Mechanical Engineering, University of Trento, Trento, Italy
| | - Luca Fiori
- Department of Civil, Environmental and Mechanical Engineering, University of Trento, Trento, Italy; Center Agriculture Food Environment (C3A), University of Trento, Trento, Italy.
| |
Collapse
|
7
|
Benefits and Limitations of Using Hydrochars from Organic Residues as Replacement for Peat on Growing Media. HORTICULTURAE 2022. [DOI: 10.3390/horticulturae8040325] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
New technologies for the production of peat-substitutes are required to meet the rising demand for growing media in horticulture and the need to preserve natural peatlands. Hydrothermal conversion of organic residues into char materials, hydrochars, with peat-like properties may produce such substitutes, reducing environmental impacts and CO2 emissions from improper management. To assess their potential as a component in growing media, cress seed germination tests are used to assess hydrochars from digestate (D), spent coffee grounds (SCG), and grape marc (GM). Pre- and post-treatments (extraction, washing, and drying) are applied to remove phytotoxic compounds associated with process waters retained on the hydrochars, and a nitrification bioassay with process water is used to predict their toxicity. All hydrochars achieve similar or better germination results compared to their feedstock, showing a potential to replace at least 5% of peat in growing media. SCG and GM hydrochars show inhibition above 5%, while all post-treated D-hydrochar mixtures produce >3 times longer roots than the control. The nitrification test shows a high sensitivity and good agreement with the high inhibition trends found in the germination tests with process water. Such tests can be a good way to optimize process combinations for the hydrothermal production of peat replacements.
Collapse
|
8
|
Mugoronji M, Manyuchi M, Sukdeo N, Stinner W. Techno-economic assessment for bio coal production from brewers spent grain. SOUTH AFRICAN JOURNAL OF CHEMICAL ENGINEERING 2022. [DOI: 10.1016/j.sajce.2022.01.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
|
9
|
Hossain N, Nizamuddin S, Selvakannan P, Griffin G, Madapusi S, Shah K. The effect of KOH activation and Ag nanoparticle incorporation on rice husk-based porous materials for wastewater treatment. CHEMOSPHERE 2022; 291:132760. [PMID: 34740697 DOI: 10.1016/j.chemosphere.2021.132760] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Revised: 10/01/2021] [Accepted: 10/31/2021] [Indexed: 06/13/2023]
Abstract
Major agricultural solid waste, rice husk (RH)-based mesoporous materials were prepared by potassium hydroxide (KOH) treatment of RH and RH hydrochar (RHH) produced at 180 °C with 20 min reaction time. In this study, RH was treated with three different methods: RH activation by KOH (KOH-RH), RH activation by KOH-aqueous silver (Ag)-shell nanoparticle (AgNP) incorporation followed calcination at 550 °C for 2 h (AgNP-KOH-RH) and hydrothermally carbonized RH activation by KOH (KOH-RHH). The main objective of this study was to determine the effect of KOH activation with different synthesis approaches and compare the characterization results of RH based porous material to identify the potential adsorbent application for wastewater treatment. Therefore, after activation in different methods, all interactive properties such as elemental, chemical, structural, morphological, and thermal analyses were investigated comprehensively for all samples. The crystallinity peak intensity around 22°λ at the angle of diffraction of 2θ confirmed the presence of silica, higher stability of the material, and removal of organic components during the KOH activation. AgNP-KOH-RH and KOH-RHH presented high porosity on the outer surface. The presence of negligible volatile matter in KOH-RHH by TGA demonstrated the decomposition of organic compound. Very high ratio of aromatic carbon and lignin content by FTIR and XPS analysis in both AgNP-KOH-RH and KOH-RHH showed these two samples have improved stability. Very high negative surface charge (zeta potential) in AgNP-KOH-RH (-43.9 mV) and KOH-RHH (-43.1 mV) indicated the enhanced water holding capacity. Surface area for all experimented porous materials has been enhanced after KOH activation, where KOH-RHH demonstrated the maximum surface area value, 27.87 m2/g. However, AgNP-KOH-RH presented maximum pore diameter, 18.16 nm, and pore volume, 0.12 cm3/g. Hence, it can be concluded that both KOH-RHH and AgNP-KOH-RH have the potential to be implemented as wastewater adsorbents.
Collapse
Affiliation(s)
- Nazia Hossain
- School of Engineering, RMIT University, Melbourne, VIC, 3001, Australia.
| | - Sabzoi Nizamuddin
- School of Engineering, RMIT University, Melbourne, VIC, 3001, Australia
| | | | - Gregory Griffin
- School of Engineering, RMIT University, Melbourne, VIC, 3001, Australia
| | - Srinivasan Madapusi
- School of Engineering, RMIT University, Melbourne, VIC, 3001, Australia; Birla Institute of Technology and Science, Pilani, Dubai Campus, Dubai International Academic City, P.O. Box No. - 345055, Dubai, United Arab Emirates
| | - Kalpit Shah
- School of Engineering, RMIT University, Melbourne, VIC, 3001, Australia
| |
Collapse
|
10
|
A Sustainable Approach on Spruce Bark Waste Valorization through Hydrothermal Conversion. Processes (Basel) 2022. [DOI: 10.3390/pr10010111] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
In the context of sustainable use of resources, hydrothermal conversion of biomass has received increased consideration. As well, the hydrochar (the solid C-rich phase that occurs after the process) has caused great interest. In this work, spruce bark (Picea abies) wastes were considered as feedstock and the influence of hydrothermal process parameters (temperature, reaction time, and biomass to water ratio) on the conversion degree has been studied. Using the response surface methodology and MiniTab software, the process parameters were set up and showed that temperature was the significant factor influencing the conversion, while residence time and the solid-to-liquid ratio had a low influence. Furthermore, the chemical (proximate and ultimate analysis), structural (Fourier-transform infrared spectroscopy, scanning electron microscopy) and thermal properties (thermogravimetric analysis) of feedstock and hydrochar were analyzed. Hydrochar obtained at 280 °C, 1 h processing time, and 1/5 solid-to-liquid ratio presented a hydrophobic character, numerous functional groups, a lower O and H content, and an improved C matter, as well as a good thermal stability. Alongside the structural features, these characteristics endorsed this waste-based product for applications other than those already known as a heat source.
Collapse
|
11
|
Yabalak E, Erdogan Eliuz EA. Green synthesis of walnut shell hydrochar, its antimicrobial activity and mechanism on some pathogens as a natural sanitizer. Food Chem 2022; 366:130608. [PMID: 34454799 DOI: 10.1016/j.foodchem.2021.130608] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 07/03/2021] [Accepted: 07/13/2021] [Indexed: 11/16/2022]
Abstract
Hydrochar of waste walnut shells (WSH) was synthesized in the eco-friendly subcritical water medium (SWM) and its potential to fight against Klebsiella pneumoniae (K. pneumoniae), Staphylococcus aureus (S. aureus), Candida albicans (C. albicans) and Candida parapsilosis (C. parapsilosis) was investigated. Minimum Inhibitory Concentration (MIC) values of the WSH were 3.01 g/mL, 2.06 g/mL, 1.95 g/mL, and 3.12 g/mL for K. pneumoniae, S. aureus, C. albicans and C. parapsilosis, respectively. Survival of the pathogens was investigated by 3 min surface disinfection test exposure to WSH. While the highest inhibition was seen for C. parapsilosis (96.67%) on paper surface with 0.3 g/mL of bovine serum albumin (BSA), the lowest inhibition was determined for C. albicans (6.44%) on the plastic glass surface with 3 g/mL of BSA. An increase in protein, DNA, and potassium ion (K+) leakage was observed after microorganisms were incubated with WSH. This study provided an experimental basis for the practical application of WSH as a natural sanitizer agent.
Collapse
Affiliation(s)
- Erdal Yabalak
- Mersin University, Faculty of Arts and Science, Department of Chemistry, Çiftlikköy Campus, 33343 Mersin, Turkey; Mersin University, Department of Nanotechnology and Advanced Materials, TR-33343 Mersin, Turkey.
| | - Elif Ayşe Erdogan Eliuz
- Mersin University, Vocational School of Technical Sciences, Department of Food Technology, Çiftlikköy Campus, 33343 Mersin, Turkey.
| |
Collapse
|
12
|
Gasim MF, Lim JW, Low SC, Lin KYA, Oh WD. Can biochar and hydrochar be used as sustainable catalyst for persulfate activation? CHEMOSPHERE 2022; 287:132458. [PMID: 34610377 DOI: 10.1016/j.chemosphere.2021.132458] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 09/30/2021] [Accepted: 10/01/2021] [Indexed: 06/13/2023]
Abstract
Over the past decade, there has been a surge of interest in using char (hydrochar or biochar) derived from biomass as persulfate (PS, either peroxymonosulfate or peroxydisulfate) activator for anthropogenic pollutants removal. While extensive investigation showed that char could be used as a PS activator, its sustainability over prolonged application is equivocal. This review provides an assessment of the knowledge gap related to the sustainability of char as a PS activator. The desirable char properties for PS activation are identified, include the high specific surface area and favorable surface chemistry. Various synthesis strategies to obtain the desirable properties during biomass pre-treatment, hydrochar and biochar synthesis, and char post-treatment are discussed. Thereafter, factors related to the sustainability of employing char as a PS activator for anthropogenic pollutants removal are critically evaluated. Among the critical factors include performance uncertainty, competing adsorption process, char stability during PS activation, biomass precursor variation, scalability, and toxic components in char. Finally, some potential research directions are provided. Fulfilling the sustainability factors will provide opportunity to employ char as an economical and efficient catalyst for sustainable environmental remediation.
Collapse
Affiliation(s)
| | - Jun-Wei Lim
- Department of Fundamental and Applied Sciences, HICoE-Centre for Biofuel and Biochemical Research, Institute of Self-Sustainable Building, Universiti Teknologi PETRONAS, 32610, Seri Iskandar, Perak Darul Ridzuan, Malaysia
| | - Siew-Chun Low
- School of Chemical Engineering, Engineering Campus, Universiti Sains Malaysia, Seri Ampangan, Nibong Tebal, 14300, Pulau Pinang, Malaysia
| | - Kun-Yi Andrew Lin
- Department of Environmental Engineering & Innovation and Development Center of Sustainable Agriculture, National Chung Hsing University, 250, Kuo-Kuang Road, Taichung, Taiwan.
| | - Wen-Da Oh
- School of Chemical Sciences, Universiti Sains Malaysia, 11800, Penang, Malaysia.
| |
Collapse
|
13
|
Nobre C, Alves O, Durão L, Şen A, Vilarinho C, Gonçalves M. Characterization of hydrochar and process water from the hydrothermal carbonization of Refuse Derived Fuel. WASTE MANAGEMENT (NEW YORK, N.Y.) 2021; 120:303-313. [PMID: 33333468 DOI: 10.1016/j.wasman.2020.11.040] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 10/27/2020] [Accepted: 11/13/2020] [Indexed: 06/12/2023]
Abstract
In this study, hydrothermal carbonization (HTC) was used as a thermochemical conversion process to upgrade Refuse Derived Fuel (RDF). The effect of process temperature (250 °C, 275 °C and 300 °C), residence time (30 min and 120 min), and RDF-to-water ratio (1:15 and 1:5) on the main characteristics of the produced hydrochars and process waters was assessed. The HTC process yielded hydrochars with enhanced fuel properties when compared to the original feedstock, namely higher carbon content and heating value. The hydrochars also presented reduced oxygen and ash contents. The hydrochar produced at 300 °C for 120 min presented the lowest ash content (3.3 wt%, db) whereas the highest heating value was found for the hydrochar obtained at 275 °C for 120 min (28.1 MJ/kg, db). The HTC process was also responsible for a significant reduction in chlorine concentration, showing dechlorination efficiencies between 69.2 and 77.9%. However, the HTC process generated acidic process waters with high COD values (maximum 27.2 gO2/L), which need to be further managed or valorized. Energy calculations were also performed, revealing that lower water amounts, lower temperatures, and longer residence times, represent optimal conditions for higher hydrochar yields and consequently good process efficiencies.
Collapse
Affiliation(s)
- Catarina Nobre
- MEtRICs, Mechanical Engineering and Resource Sustainability Center, Department of Science and Technology of Biomass, FCT- NOVA University of Lisbon, 2829-516 Caparica, Portugal.
| | - Octávio Alves
- MEtRICs, Mechanical Engineering and Resource Sustainability Center, Department of Science and Technology of Biomass, FCT- NOVA University of Lisbon, 2829-516 Caparica, Portugal; VALORIZA, Research Centre for Endogenous Resource Valorization, Polytechnic Institute of Portalegre, 7300-555 Portalegre, Portugal
| | - Luís Durão
- MEtRICs, Mechanical Engineering and Resource Sustainability Center, Department of Science and Technology of Biomass, FCT- NOVA University of Lisbon, 2829-516 Caparica, Portugal; VALORIZA, Research Centre for Endogenous Resource Valorization, Polytechnic Institute of Portalegre, 7300-555 Portalegre, Portugal
| | - Ali Şen
- Forest Research Centre, School of Agriculture, University of Lisbon, Tapada da Ajuda, 1349-017 Lisboa, Portugal
| | - Cândida Vilarinho
- MEtRICs, Mechanical Engineering and Resource Sustainability Center, Mechanical Engineering Department, School of Engineering, University of Minho, 4804-533 Guimarães, Portugal
| | - Margarida Gonçalves
- MEtRICs, Mechanical Engineering and Resource Sustainability Center, Department of Science and Technology of Biomass, FCT- NOVA University of Lisbon, 2829-516 Caparica, Portugal; VALORIZA, Research Centre for Endogenous Resource Valorization, Polytechnic Institute of Portalegre, 7300-555 Portalegre, Portugal
| |
Collapse
|
14
|
Thomas SC. Post-processing of biochars to enhance plant growth responses: a review and meta-analysis. BIOCHAR 2021; 3:437-455. [PMID: 34723131 PMCID: PMC8547209 DOI: 10.1007/s42773-021-00115-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Accepted: 07/14/2021] [Indexed: 05/15/2023]
Abstract
UNLABELLED A number of processes for post-production treatment of "raw" biochars, including leaching, aeration, grinding or sieving to reduce particle size, and chemical or steam activation, have been suggested as means to enhance biochar effectiveness in agriculture, forestry, and environmental restoration. Here, I review studies on post-production processing methods and their effects on biochar physio-chemical properties and present a meta-analysis of plant growth and yield responses to post-processed vs. "raw" biochars. Data from 23 studies provide a total of 112 comparisons of responses to processed vs. unprocessed biochars, and 103 comparisons allowing assessment of effects relative to biochar particle size; additional 8 published studies involving 32 comparisons provide data on effects of biochar leachates. Overall, post-processed biochars resulted in significantly increased average plant growth responses 14% above those observed with unprocessed biochar. This overall effect was driven by plant growth responses to reduced biochar particle size, and heating/aeration treatments. The assessment of biochar effects by particle size indicates a peak at a particle size of 0.5-1.0 mm. Biochar leachate treatments showed very high heterogeneity among studies and no average growth benefit. I conclude that physiochemical post-processing of biochar offers substantial additional agronomic benefits compared to the use of unprocessed biochar. Further research on post-production treatments effects will be important for biochar utilization to maximize benefits to carbon sequestration and system productivity in agriculture, forestry, and environmental restoration. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s42773-021-00115-0.
Collapse
Affiliation(s)
- Sean C. Thomas
- Institute of Forestry and Conservation, University of Toronto, 33 Willcocks St., Toronto, ON M5S 3B3 Canada
| |
Collapse
|
15
|
Celletti S, Lanz M, Bergamo A, Benedetti V, Basso D, Baratieri M, Cesco S, Mimmo T. Evaluating the Aqueous Phase From Hydrothermal Carbonization of Cow Manure Digestate as Possible Fertilizer Solution for Plant Growth. FRONTIERS IN PLANT SCIENCE 2021; 12:687434. [PMID: 34276737 PMCID: PMC8278309 DOI: 10.3389/fpls.2021.687434] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 06/07/2021] [Indexed: 05/14/2023]
Abstract
Improving the agronomic use of recycled nutrients derived from organic waste is one of the priorities within the measures adopted by the European community to reduce environmental issues but remains an unexplored area of research. This study focused on investigating the possibility of using innovative fertilizer solutions in hydroponic systems for the growth of agricultural plants. To this purpose, a liquid fraction [aqueous hydrothermal carbonization (HTC) liquid (AHL)] derived from HTC of cow manure digestate was chemically characterized (pH, electrical conductivity, mineral elements, and organic compounds such as phytotoxins), diluted with distilled water (1:30, 1:60, and 1:90, v/v) to reduce its potential phytotoxicity, and used to grow hydroponic maize (Zea mays L.) plants instead of the classical full-strength nutrient solution. The results indicated that the dilution ratio 1:30 of the AHL solution maintained a high level of toxicity for the plants (phytotoxic substances, especially Na and alkalinity), inducing the arrest of their growth. Differently, the two other dilution ratios (i.e., 1:60 and 1:90) seemed to considerably limit the levels of toxicity, since they allowed the plants to develop. However, these dilution ratios were poor in nutrient elements, inducing alteration in photosynthesis and an onset of deficiency symptoms such as pronounced leaf chlorosis. In view of an eco-friendly approach, future studies are, therefore, needed to identify the correct species-specific dilution ratio to supply both low levels of phytotoxins and adequate content of essential nutrients for appropriate plant growth and development. Furthermore, in order to lower specific Na phytotoxicity, treatments are of utmost importance before using AHL as a fertilizer solution.
Collapse
Affiliation(s)
- Silvia Celletti
- Faculty of Science and Technology, Free University of Bolzano-Bozen, Bolzano, Italy
- *Correspondence: Silvia Celletti,
| | - Maximilian Lanz
- Faculty of Science and Technology, Free University of Bolzano-Bozen, Bolzano, Italy
| | - Alex Bergamo
- Faculty of Science and Technology, Free University of Bolzano-Bozen, Bolzano, Italy
| | - Vittoria Benedetti
- Faculty of Science and Technology, Free University of Bolzano-Bozen, Bolzano, Italy
| | | | - Marco Baratieri
- Faculty of Science and Technology, Free University of Bolzano-Bozen, Bolzano, Italy
| | - Stefano Cesco
- Faculty of Science and Technology, Free University of Bolzano-Bozen, Bolzano, Italy
| | - Tanja Mimmo
- Faculty of Science and Technology, Free University of Bolzano-Bozen, Bolzano, Italy
- Competence Centre for Plant Health, Free University of Bolzano-Bozen, Bolzano, Italy
- Tanja Mimmo,
| |
Collapse
|
16
|
HTC of Wet Residues of the Brewing Process: Comprehensive Characterization of Produced Beer, Spent Grain and Valorized Residues. ENERGIES 2020. [DOI: 10.3390/en13082058] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Steady consumption of beer results in a steady output of residues, i.e., brewer’s spent grain (BSG). Its valorization, using hydrothermal carbonization (HTC) seems sensible. However, a significant knowledge gap regarding the variability of this residue and its influence on the valorization process and its potential use in biorefineries exists. This study attempted to fill this gap by characterization of BSG in conjunction with the main product (beer), taking into accounts details of the brewing process. Moreover, different methods to assess the performance of HTC were investigated. Overall, the differences in terms of the fuel properties of both types of spent grain were much less stark, in comparison to the differences between the respective beers. The use of HTC as a pretreatment of BSG for subsequent use as a biorefinery feedstock can be considered beneficial. HTC was helpful in uniformization and improvement of the fuel properties. A significant decrease in the oxygen content and O/C ratio and improved grindability was achieved. The Weber method proved to be feasible for HTC productivity assessment for commercial installations, giving satisfactory results for most of the cases, contrary to traditional ash tracer method, which resulted in significant overestimations of the mass yield.
Collapse
|
17
|
Bahcivanji L, Gascó G, Paz-Ferreiro J, Méndez A. The effect of post-pyrolysis treatment on waste biomass derived hydrochar. WASTE MANAGEMENT (NEW YORK, N.Y.) 2020; 106:55-61. [PMID: 32182562 DOI: 10.1016/j.wasman.2020.03.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Revised: 03/07/2020] [Accepted: 03/07/2020] [Indexed: 06/10/2023]
Abstract
Hydrochars are materials with a promising future, as their high carbon content and porosity renders them suitable for uses including peat substitutes, soil remediation and carbon adsorbent precursors. Combining hydrothermal carbonization and pyrolysis offers the prospect to provide advanced materials with a higher porosity and carbon content. This approach would mitigate drawbacks associated to hydrochars, including phytotoxicity. This research studied the influence of pyrolysis temperature and heating time on the resulting properties of chars made from hydrothermal carbonization of biomass wastes at 200 °C for 4 h and compared them to biochars that had not received any prior hydrothermal carbonization. Interestingly, hydrochar followed by pyrolysis was able to result in phytostimulation, while, when only pyrolysis was carried out, phytotoxicity was eliminated, but no phytostimulant effect was observed. In addition, the results indicated that the higher and longer the pyrolysis temperature (from 350 to 550 °C) and duration time (from 1 to 5 h), respectively, the more microporosity was generated, while phytotoxicity was reduced. In addition, aromaticity and thermal stability significantly increased with pyrolysis treatment. Consequently, hydrochars improve their properties and offer more potential for environmental applications after a pyrolysis post-treatment.
Collapse
Affiliation(s)
- L Bahcivanji
- Department of Geological and Mining Engineering, Technical University of Madrid, 28040 Madrid, Spain
| | - G Gascó
- Department of Agricultural Production, Technical University of Madrid, Ciudad Universitaria, 28040 Madrid, Spain
| | - J Paz-Ferreiro
- School of Engineering, RMIT University, GPO Box 2476, 3001 Melbourne, VIC, Australia.
| | - A Méndez
- Department of Geological and Mining Engineering, Technical University of Madrid, 28040 Madrid, Spain
| |
Collapse
|
18
|
Tasca AL, Puccini M, Gori R, Corsi I, Galletti AMR, Vitolo S. Hydrothermal carbonization of sewage sludge: A critical analysis of process severity, hydrochar properties and environmental implications. WASTE MANAGEMENT (NEW YORK, N.Y.) 2019; 93:1-13. [PMID: 31235045 DOI: 10.1016/j.wasman.2019.05.027] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Revised: 05/14/2019] [Accepted: 05/16/2019] [Indexed: 05/24/2023]
Abstract
Hydrothermal carbonization (HTC) of sewage sludge reduces the waste volume and can be source of energy and valuable products. Furthermore, HTC offers several advantages over conventional dry-thermal pre-treatments, as no prior drying is requested, and the high quality of the char produced promotes applications as energy production and storage, wastewater remediation, and soil amendment. Relationships between char yields, physicochemical properties and process parameters are here analysed, with the aim to provide insight into the choice of the process severity required to fit the desired application. Moreover, presence and fate of heavy metals and organic contaminants are discussed. The highest reaction temperature is the main parameter affecting the physicochemical characteristics of the char produced, while the heating rate governs the heat mass transfer and the rate of intermediates formation. Depolymerization of the biomass results in a reduction of the oxygen to carbon ratio and, therefore, in augmented high heating values, further increased by deposition of 5-(hydroxymethyl)furfural. Recirculation of process water may enhance dehydration reactions and the deposition of degraded polymers, increasing dewaterability and yield, but field trials are recommended to assess the feasibility of this option. An overuse of chars for energy generation purposes would be deleterious for the environmental life cycle. Further research is encouraged to assess the pollutants abatement and their degradation pathways when incorporated in the carbonaceous product, to promote the application of hydrochars as soil amendment, as well as for environmental remediation purposes.
Collapse
Affiliation(s)
- Andrea Luca Tasca
- Department of Civil and Industrial Engineering, University of Pisa, Largo Lucio Lazzarino, 56122 Pisa, Italy
| | - Monica Puccini
- Department of Civil and Industrial Engineering, University of Pisa, Largo Lucio Lazzarino, 56122 Pisa, Italy.
| | - Riccardo Gori
- Department of Civil & Environmental Engineering, University of Florence, via S. Marta 3, 50139 Florence, Italy
| | - Ilaria Corsi
- Department of Physical, Earth and Environmental Sciences, University of Siena, Strada Laterina 8, 53100 Siena, Italy
| | | | - Sandra Vitolo
- Department of Civil and Industrial Engineering, University of Pisa, Largo Lucio Lazzarino, 56122 Pisa, Italy
| |
Collapse
|
19
|
Melo TM, Bottlinger M, Schulz E, Leandro WM, Botelho de Oliveira S, Menezes de Aguiar Filho A, El-Naggar A, Bolan N, Wang H, Ok YS, Rinklebe J. Management of biosolids-derived hydrochar (Sewchar): Effect on plant germination, and farmers' acceptance. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2019; 237:200-214. [PMID: 30798039 DOI: 10.1016/j.jenvman.2019.02.042] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Revised: 11/15/2018] [Accepted: 02/07/2019] [Indexed: 06/09/2023]
Abstract
Hydrothermal carbonization is a promising approach of biosolids management and its utilization as a soil amendment. This study evaluated the physical and chemical properties of hydrothermally converted biosolids (Sewchar) and its effect as a potential soil amendment on the growth of rice, beans, and radish. The germination experiment was conducted in a greenhouse in a randomized design using five Sewchar doses (0, 10, 20, 40 and 60 Mg ha-1). The results showed that hydrothermal carbonization influences the physicochemical properties of the biosolids, such as promoting pore structure and trace elements below the threshold values for use in agriculture. The spectroscopic techniques demonstrated higher presence of oxygen-containing functional groups (e.g., CO/OH) on surfaces of Sewchar than that of biosolids. The Sewchar doses of 10 Mg ha-1 and 60 Mg ha-1 yielded the highest dry biomass for beans and rice respectively. Increasing Sewchar doses negatively correlated with radish dry biomass, as indicated by linear regression equation fitting (p < 0.05). Thus, biomass responses to Sewchar application into the soil varied with Sewchar dose and type of plant. For a proper environmental management, a survey was conducted to assess farmers' perception and acceptance of Sewchar as a soil amendment. The survey revealed that younger farmers who had higher education qualifications were more prone to use Sewchar as soil amendment. Additionally, farmers who would not use Sewchar as soil amendment attributed the highest level of importance to economic criteria, such as fertilizer and freight prices. In the future, studies on a longer term under field conditions should be performed to elucidate the interactions between Sewchar and soil properties on plant growth and to ensure the safe use of Sewchar as a soil amendment.
Collapse
Affiliation(s)
- Tatiane Medeiros Melo
- University of Wuppertal, Institute of Foundation Engineering, Water- and Waste-Management, School of Architecture and Civil Engineering, Soil and Groundwater Management, Pauluskichstraße 7, 42285 Wuppertal, Germany.
| | - Michael Bottlinger
- Trier University of Applied Sciences, Environmental Campus Birkenfeld, Department of Hydrothermal Carbonization, 55761 Birkenfeld, Germany.
| | - Elke Schulz
- Helmholtz Centre for Environmental Research (UFZ), Department of Soil Ecology, D-06120, Halle, Germany.
| | - Wilson Mozena Leandro
- Federal University of Goiás (UFG), Department of Agronomy, 74690-900, Goiânia, Brazil.
| | | | | | - Ali El-Naggar
- Korea Biochar Research Center, O-Jeong Eco-Resilience Institute (OJERI) & Division of Environmental Science and Ecological Engineering, Korea University, Seoul 02841, Republic of Korea; Department of Soil Sciences, Faculty of Agriculture, Ain Shams University, Cairo 11241, Egypt.
| | - Nanthi Bolan
- Global Centre for Environmental Remediation (GCER), ATC Building, Level 1, Faculty of Science and Information Technology, The University of Newcastle, University Drive, Callaghan NSW 2308, Australia.
| | - Hailong Wang
- Biochar Engineering Technology Research Center of Guangdong Province, School of Environment and Chemical Engineering, Foshan University, Foshan, Guangdong 528000, China; Key Laboratory of Soil Contamination Bioremediation of Zhejiang Province, Zhejiang A & F University, Hangzhou, Zhejiang 311300, China.
| | - Yong Sik Ok
- Korea Biochar Research Center, O-Jeong Eco-Resilience Institute (OJERI) & Division of Environmental Science and Ecological Engineering, Korea University, Seoul 02841, Republic of Korea.
| | - Jörg Rinklebe
- University of Wuppertal, Institute of Foundation Engineering, Water- and Waste-Management, School of Architecture and Civil Engineering, Soil and Groundwater Management, Pauluskichstraße 7, 42285 Wuppertal, Germany; Sejong University, Department of Environment, Energy and Geoinformatics, 98 Gunja-Dong, Guangjin-Gu, Seoul, Republic of Korea.
| |
Collapse
|
20
|
Comparative Life Cycle Assessment of HTC Concepts Valorizing Sewage Sludge for Energetic and Agricultural Use. ENERGIES 2019. [DOI: 10.3390/en12050786] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
In many countries, sewage sludge is directly used for energy and agricultural purposes after dewatering or digestion and dewatering. In recent years, there has been a growing interest in additional upstream hydrothermal carbonization (HTC), which could lead to higher yields in the energetic and agricultural use. Twelve energetic and agricultural valorization concepts of sewage sludge are defined and assessed for Germany to investigate whether the integration of HTC will have a positive effect on the greenhouse gas (GHG) emissions. The study shows that the higher expenses within the HTC process cannot be compensated by additional energy production and agricultural yields. However, the optimization of the HTC process chain through integrated sewage sludge digestion and process water recirculation leads to significant reductions in GHG emissions of the HTC concepts. Subsequently, nearly the same results can be achieved when compared to the direct energetic use of sewage sludge; in the agricultural valorization, the optimized HTC concept would be even the best concept if the direct use of sewage sludge will no longer be permitted in Germany from 2029/2032. Nevertheless, the agricultural valorization concepts are not generally advantageous when compared to the energetic valorization concepts, as it is shown for two concepts.
Collapse
|
21
|
The Influence of Residence Time during Hydrothermal Carbonisation of Miscanthus on Bio-Coal Combustion Chemistry. ENERGIES 2019. [DOI: 10.3390/en12030523] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Miscanthus was treated by hydrothermal carbonisation in a 2-L batch reactor at 200 °C and 250 °C with residence times ranging between 0 and 24 h to understand the impact of residence time has on the resulting bio-coal combustion chemistry. Increasing the residence time results in dehydration of the bio-coal and increased repolymerisation; however, temperature has the greatest influence on bio-coal properties. After 24 h at 200 °C, bio-coal has similar properties to that of the 250 °C + 0 h bio-coal. After 1 h at 250 °C, the cellulose present in the raw biomass appears to be largely removed. The removal of cellulose and the associated dehydration and repolymerisation results in bio-coal having a ‘coal like’ combustion profile, which exhibits a decreasing reactivity with increasing residence time. At 200 °C + 0 h, 75% of the alkali metal is removed, increasing to 86% with increasing residence time. Further extraction is seen at 250 °C. Phosphorus and sulphur appear to undergo substantial extraction at 200 °C + 0 h but then are reincorporated with increasing residence time. The calcium content increases in the bio-coal with increasing residence time at 200 °C but then reduces after 1 h at 250 °C. Increasing temperature and residence time has been shown to decrease the fuels’ fouling and slagging propensity.
Collapse
|