1
|
Feigin SV, Wiebers DO, Lueddeke G, Morand S, Lee K, Knight A, Brainin M, Feigin VL, Whitfort A, Marcum J, Shackelford TK, Skerratt LF, Winkler AS. Proposed solutions to anthropogenic climate change: A systematic literature review and a new way forward. Heliyon 2023; 9:e20544. [PMID: 37867892 PMCID: PMC10585315 DOI: 10.1016/j.heliyon.2023.e20544] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 09/27/2023] [Accepted: 09/28/2023] [Indexed: 10/24/2023] Open
Abstract
Humanity is now facing what may be the biggest challenge to its existence: irreversible climate change brought about by human activity. Our planet is in a state of emergency, and we only have a short window of time (7-8 years) to enact meaningful change. The goal of this systematic literature review is to summarize the peer-reviewed literature on proposed solutions to climate change in the last 20 years (2002-2022), and to propose a framework for a unified approach to solving this climate change crisis. Solutions reviewed include a transition toward use of renewable energy resources, reduced energy consumption, rethinking the global transport sector, and nature-based solutions. This review highlights one of the most important but overlooked pieces in the puzzle of solving the climate change problem - the gradual shift to a plant-based diet and global phaseout of factory (industrialized animal) farming, the most damaging and prolific form of animal agriculture. The gradual global phaseout of industrialized animal farming can be achieved by increasingly replacing animal meat and other animal products with plant-based products, ending government subsidies for animal-based meat, dairy, and eggs, and initiating taxes on such products. Failure to act will ultimately result in a scenario of irreversible climate change with widespread famine and disease, global devastation, climate refugees, and warfare. We therefore suggest an "All Life" approach, invoking the interconnectedness of all life forms on our planet. The logistics for achieving this include a global standardization of Environmental, Social, and Governance (ESG) or similar measures and the introduction of a regulatory body for verification of such measures. These approaches will help deliver environmental and sustainability benefits for our planet far beyond an immediate reduction in global warming.
Collapse
Affiliation(s)
| | | | - George Lueddeke
- Centre for the Study of Resilience and Future Africa, University of Pretoria, Pretoria, South Africa
- Ministry of Environment, Forest and Climate Change (MoEFCC), India
| | - Serge Morand
- Faculty of Veterinary Technology (CNRS), Kasetsart University, Bangkok, Thailand
- Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Kelley Lee
- Pacific Institute on Pathogens, Pandemics and Society, Faculty of Health Sciences, Simon Fraser University, Burnaby, British Columbia, Canada
- Global Health Governance, Canada
| | - Andrew Knight
- School of Environment and Science, Nathan Campus, Griffith University, Nathan, QLD, Australia
- Faculty of Health and Wellbeing, University of Winchester, Winchester, UK
| | - Michael Brainin
- Clinical Neurosciences and Preventive Medicine, Danube University Krems, Austria
| | - Valery L. Feigin
- National Institute for Stroke and Applied Neurosciences, School of Clinical Sciences, Auckland University of Technology, New Zealand
| | - Amanda Whitfort
- Department of Professional Legal Education, Faculty of Law, The University of Hong Kong, Hong Kong
| | - James Marcum
- Department of Philosophy, Baylor University, Waco, TX, USA
| | - Todd K. Shackelford
- Department of Psychology and Center for Evolutionary Psychological Science, Oakland University, Rochester, MI, USA
| | - Lee F. Skerratt
- Melbourne Veterinary School, Faculty of Science, University of Melbourne, Melbourne, Victoria, Australia
| | - Andrea S. Winkler
- Center for Global Health, Department of Neurology, Faculty of Medicine, Technical University of Munich, Munich, Germany
- Department of Community Medicine and Global Health, Institute of Health and Society, Faculty of Medicine, University of Oslo, Norway
| |
Collapse
|
2
|
A Typology of Nature-Based Solutions for Sustainable Development: An Analysis of Form, Function, Nomenclature, and Associated Applications. LAND 2022. [DOI: 10.3390/land11071072] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/10/2022]
Abstract
This study presents a typology of nature-based solutions (NbS), addressing the need for a standardized source of definitions and nomenclature, and to facilitate communication in this interdisciplinary field of theory and practice. Growing usage of the umbrella phrase ‘nature-based solutions’ has led to a broad inclusion of terms. With the diversity of terminology used, the full potential of NbS may be lost in the confusion of misapplied terms. Standardization and definition of commonly used nature-based nomenclature are necessary to facilitate communication in this rapidly expanding field. Through objective systemization of applications, functions, and benefits, NbS can be embraced as a standard intervention to address societal challenges and support achievement of the UN SDGs.
Collapse
|
3
|
Lowering the Temperature to Increase Heat Equity: A Multi-Scale Evaluation of Nature-Based Solutions in Toronto, Ontario, Canada. ATMOSPHERE 2022. [DOI: 10.3390/atmos13071027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/10/2022]
Abstract
Nature-based solutions (NbS) present an opportunity to reduce rising temperatures and the urban heat island effect. A multi-scale study in Toronto, Ontario, Canada, evaluates the effect of NbS on air and land surface temperature through two field campaigns at the micro and meso scales, using in situ measurements and LANDSAT imagery. This research demonstrates that the application of NbS in the form of green infrastructure has a beneficial impact on urban climate regimes with measurable reductions in air and land surface temperatures. Broad implementation of green infrastructure is a sustainable solution to improve the urban climate, enhance heat and greenspace equity, and increase resilience.
Collapse
|
4
|
Anderson V, Gough WA. Nature-based cooling potential: a multi-type green infrastructure evaluation in Toronto, Ontario, Canada. INTERNATIONAL JOURNAL OF BIOMETEOROLOGY 2022; 66:397-410. [PMID: 33783637 PMCID: PMC8807462 DOI: 10.1007/s00484-021-02100-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 02/08/2021] [Accepted: 02/16/2021] [Indexed: 06/12/2023]
Abstract
The application of green infrastructure presents an opportunity to mitigate rising temperatures using a multi-faceted ecosystems-based approach. A controlled field study in Toronto, Ontario, Canada, evaluates the impact of nature-based solutions on near surface air temperature regulation focusing on different applications of green infrastructure. A field campaign was undertaken over the course of two summers to measure the impact of green roofs, green walls, urban vegetation and forestry systems, and urban agriculture systems on near surface air temperature. This study demonstrates that multiple types of green infrastructure applications are beneficial in regulating near surface air temperature and are not limited to specific treatments. Widespread usage of green infrastructure could be a viable strategy to cool cities and improve urban climate.
Collapse
Affiliation(s)
- Vidya Anderson
- Climate Lab, University of Toronto Scarborough, Toronto, Canada
| | - William A. Gough
- Climate Lab, University of Toronto Scarborough, Toronto, Canada
- Department of Physical and Environmental Sciences, University of Toronto Scarborough, Toronto, Canada
| |
Collapse
|
5
|
Anderson V, Gough WA. Enabling Nature-Based Solutions to Build Back Better—An Environmental Regulatory Impact Analysis of Green Infrastructure in Ontario, Canada. BUILDINGS 2022; 12:61. [PMID: 35911631 PMCID: PMC9015653 DOI: 10.3390/buildings12010061] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Accepted: 12/10/2021] [Indexed: 02/05/2023]
Abstract
The application of green infrastructure in the built environment delivers a nature-based solution to address the impacts of climate change. This study presents a qualitative evidence synthesis that evaluates policy instruments which enable the use and implementation of green infrastructure, using Ontario, Canada as a case study. Unpacking the elements of the policy landscape that govern green infrastructure through environmental regulatory impact analysis can inform effective implementation of this nature-based solution and support decision-making in public policy. This environmental regulatory impact analysis is based on a systematic review of existing policy instruments, contextual framing in a continuum of coercion, and identification of alignment with relevant UN SDGs. Enabling widespread usage of green infrastructure in the built environment could be a viable strategy to build back better, localize the UN SDGs, and address multiple climate change impacts.
Collapse
Affiliation(s)
- Vidya Anderson
- Climate Lab, Department of Physical and Environmental Sciences, University of Toronto Scarborough, Toronto, ON M1C 1A4, Canada
- Correspondence:
| | - William A. Gough
- Department of Physical and Environmental Sciences, University of Toronto Scarborough, Toronto, ON M1C 1A4, Canada;
| |
Collapse
|
6
|
Nature-Based Resilience: A Multi-Type Evaluation of Productive Green Infrastructure in Agricultural Settings in Ontario, Canada. ATMOSPHERE 2021. [DOI: 10.3390/atmos12091183] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Nature-based solutions such as green infrastructure present an opportunity to reduce air pollutant concentrations and greenhouse gas emissions. This paper presents new findings from a controlled field study in Ontario, Canada, evaluating the impact of productive applications of green infrastructure on air pollution and carbon dioxide concentrations across different agricultural morphologies compared to other non-productive applications. This study demonstrates that productive green infrastructure applications are as beneficial as non-productive applications in reducing ozone, nitrogen dioxide, and carbon dioxide concentrations. Nature-based solutions present an opportunity to build climate resilience into agricultural systems through supply-side mitigation and adaptation. The implementation of productive green infrastructure could be a viable agricultural practice to address multiple climate change impacts.
Collapse
|