1
|
Śniatała B, Al-Hazmi HE, Sobotka D, Zhai J, Mąkinia J. Advancing sustainable wastewater management: A comprehensive review of nutrient recovery products and their applications. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 937:173446. [PMID: 38788940 DOI: 10.1016/j.scitotenv.2024.173446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 04/25/2024] [Accepted: 05/20/2024] [Indexed: 05/26/2024]
Abstract
Wastewater serves as a vital resource for sustainable fertilizer production, particularly in the recovery of nitrogen (N) and phosphorus (P). This comprehensive study explores the recovery chain, from technology to final product reuse. Biomass growth is the most cost-effective method, valorizing up to 95 % of nutrients, although facing safety concerns. Various techniques enable the recovery of 100 % P and up to 99 % N, but challenges arise during the final product crystallization due to the high solubility of ammonium salts. Among these techniques, chemical precipitation and ammonia stripping/ absorption have achieved full commercialization, with estimated recovery costs of 6.0-10.0 EUR kgP-1 and 4.4-4.8 £ kgN-1, respectively. Multiple technologies integrating biomass thermo-chemical processing and P and/or N have also reached technology readiness level TRL = 9. However, due to maturing regulatory of waste-derived products, not all of their products are commercially available. The non-homogenous nature of wastewater introduces impurities into nutrient recovery products. While calcium and iron impurities may impact product bioavailability, some full-scale P recovery technologies deliver products containing this admixture. Recovered mineral nutrient forms have shown up to 60 % higher yield biomass growth compared to synthetic fertilizers. Life cycle assessment studies confirm the positive environmental outcomes of nutrient recycling from wastewater to agricultural applications. Integration of novel technologies may increase wastewater treatment costs by a few percent, but this can be offset through renewable energy utilization and the sale of recovered products. Moreover, simultaneous nutrient recovery and energy production via bio-electrochemical processes contributes to carbon neutrality achieving. Interdisciplinary cooperation is essential to offset both energy and chemicals inputs, increase their cos-efficiency and optimize technologies and understand the nutrient release patterns of wastewater-derived products on various crops. Addressing non-technological factors, such as legal and financial support, infrastructure redesign, and market-readiness, is crucial for successfully implementation and securing the global food production.
Collapse
Affiliation(s)
- Bogna Śniatała
- Faculty of Civil and Environmental Engineering, Gdansk University of Technology, Narutowicza 11/12, Gdańsk, Poland.
| | - Hussein E Al-Hazmi
- Faculty of Civil and Environmental Engineering, Gdansk University of Technology, Narutowicza 11/12, Gdańsk, Poland
| | - Dominika Sobotka
- Faculty of Civil and Environmental Engineering, Gdansk University of Technology, Narutowicza 11/12, Gdańsk, Poland
| | - Jun Zhai
- Institute for Smart City of Chongqing University in Liyang, Chongqing University, Jiangsu 213300, China
| | - Jacek Mąkinia
- Faculty of Civil and Environmental Engineering, Gdansk University of Technology, Narutowicza 11/12, Gdańsk, Poland.
| |
Collapse
|
2
|
Zin MMT, Hussain M, Kim DJ, Yang JE, Choi YJ, Park YK. Circular economy approach: Nutrient recovery and economical struvite production from wastewater sources by using modified biochars. CHEMOSPHERE 2024; 362:142589. [PMID: 38866334 DOI: 10.1016/j.chemosphere.2024.142589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 06/08/2024] [Accepted: 06/10/2024] [Indexed: 06/14/2024]
Abstract
The enrichment of phosphorus (P) and nitrogen (N) in aquatic systems can cause eutrophication. Moreover, P rocks may become exhausted in the next 100 years. A slow-release fertilizer called struvite (MgNH4PO4.6H2O) can reduce surface runoff. However, the high cost of raw material or chemicals is a bottleneck in their economical production. Therefore, incinerated sewage sludge ash, food wastewater, and bittern were combined as the sources of P, N, and Mg, respectively. Sawdust biochar was used to enhance the adsorptive recovery of nutrients. First, recovery kinetics was studied by comparing bittern-impregnated biochar (BtB) with the Mg-impregnated biochar (MgB). Subsequently, the synergistic physical and chemical interactions were observed for P and N recovery. Almost complete PO43-P recoveries were achieved within 10 min for both biochars. However, NH4+-N recovery was stable after 2 h, with 26% recovery by MgB and 20% recovery by BtB. Biochars activated with steam (steam-activated biochar) and KOH (KOH-activated biochar) gave superior activities to those of unactivated biochars and activated carbon (AC) nutrient recovery and struvite purity. Moreover, the activated biochars showed a lower risk of surface runoff, similar to that of AC. Therefore, activated biochars can be used as an alternative to AC for economical struvite production from a combination of wastewater sources.
Collapse
Affiliation(s)
- Moh Moh Thant Zin
- School of Environmental Engineering, University of Seoul, Seoul, 02504, Republic of Korea
| | - Murid Hussain
- Department of Chemical Engineering, COMSATS University Islamabad, Lahore Campus, Defence Road, Off Raiwind Road, Lahore, Pakistan
| | - Dong-Jin Kim
- Department of Environmental Science and Biotechnology, Hallym University, Republic of Korea
| | - Jung Eun Yang
- Technology Innovation Research Division, World Institute of Kimchi, Gwangju, 61755, Republic of Korea.
| | - Yong Jun Choi
- School of Environmental Engineering, University of Seoul, Seoul, 02504, Republic of Korea.
| | - Young-Kwon Park
- School of Environmental Engineering, University of Seoul, Seoul, 02504, Republic of Korea.
| |
Collapse
|
3
|
Deng L, Dhar BR. Phosphorus recovery from wastewater via calcium phosphate precipitation: A critical review of methods, progress, and insights. CHEMOSPHERE 2023; 330:138685. [PMID: 37060960 DOI: 10.1016/j.chemosphere.2023.138685] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Revised: 04/06/2023] [Accepted: 04/11/2023] [Indexed: 05/14/2023]
Abstract
Phosphorus (P) is one of the important elements for human, animal, and plant life. Due to the development of the circular economy in recent years, the recovery of P from wastewater has received more attention. Recovery of P from domestic, industrial, and agricultural wastewater in the form of calcium phosphate (CaP) by precipitation/crystallization process presents a low-cost and effective method. Recovered CaP could be used as P fertilizer and for other industrial applications. This review summarizes the effects of supersaturation, pH, seed materials, calcium (Ca) source, and wastewater composition, on the precipitation/crystallization process. The recovery efficiency and value proposition of recovered CaP were assessed. This in-depth analysis of the literature reports identified the process parameters that are worth further optimization. The review also provides perspectives on future research needs on expanding the application field of recovered CaP and finding other more economical and environmentally friendly Ca sources.
Collapse
Affiliation(s)
- Linyu Deng
- Key Laboratory of Northwest Water Resources, Environment and Ecology, Ministry of Education, Xi'an University of Architecture and Technology, Xi'an, 710055, China; Civil and Environmental Engineering, University of Alberta, 116 Street NW, Edmonton, AB, T6G 1H9, Canada.
| | - Bipro Ranjan Dhar
- Civil and Environmental Engineering, University of Alberta, 116 Street NW, Edmonton, AB, T6G 1H9, Canada
| |
Collapse
|
4
|
Processing of Phosphoric Solid Waste by Humic Acid Leaching Method. INORGANICS 2023. [DOI: 10.3390/inorganics11030090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2023] Open
Abstract
This article presents the results of research on the leaching of solid phosphorus-containing waste with humic acid. Such waste includes the by-products of the electrothermal processing of phosphate raw materials—phosphorus sludge and cottrel dust. Chemical and X-ray diffraction analyses have been used to study their composition and phase structure, according to which these substances have an amorphous structure. The leaching of phosphoric sludge and cottrel dust was investigated by varying the main parameters. The obtained data were processed using the method of formal kinetics to study the features of the process. The reaction rate constants and the apparent activation energy were calculated, and the values found made it possible to determine that the process under study is limited by diffusion. The scientific novelty of the article is the use of humic acid for leaching phosphoric solid waste as opposed to traditional methods. This new method may offer improved efficiency, reduced environmental impact, and a potential alternative solution for the processing of phosphoric waste.
Collapse
|
5
|
Hollas CE, Rodrigues HC, Oyadomari VMA, Bolsan AC, Venturin B, Bonassa G, Tápparo DC, Abilhôa HCZ, da Silva JFF, Michelon W, Cavaler JP, Antes FG, Steinmetz RLR, Treichel H, Kunz A. The potential of animal manure management pathways toward a circular economy: a bibliometric analysis. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:73599-73621. [PMID: 36071358 DOI: 10.1007/s11356-022-22799-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 08/26/2022] [Indexed: 06/15/2023]
Abstract
Improper disposal of animal waste is responsible for several environmental problems, causing eutrophication of lakes and rivers, nutrient overload in the soil, and the spread of pathogenic organisms. Despite the potential to cause adverse ecological damage, animal waste can be a valuable source of resources if incorporated into a circular concept. In this sense, new approaches focused on recovery and reuse as substitutes for traditional processes based on removing contaminants in animal manure have gained attention from the scientific community. Based on this, the present work reviewed the literature on the subject, performing a bibliometric and scientometric analysis of articles published in peer-reviewed journals between 1991 and 2021. Of the articles analyzed, the main issues addressed were nitrogen and phosphorus recovery, energy generation, high-value-added products, and water reuse. The energy use of livestock waste stands out since it is characterized as a consolidated solution, unlike other routes still being developed, presenting the economic barrier as the main limiting factor. Analyzing the trend of technological development through the S curve, it was possible to verify that the circular economy in the management of animal waste will enter the maturation phase as of 2036 and decline in 2056, which demonstrates opportunities for the sector's development, where animal waste can be an economic agent, promoting a cleaner and more viable product for a sustainable future.
Collapse
Affiliation(s)
- Camila Ester Hollas
- UNIOESTE/CCET/PGEAGRI, Universidade Estadual Do Oeste Do Paraná, Cascavel, PR, Brazil
| | | | | | | | - Bruno Venturin
- UNIOESTE/CCET/PGEAGRI, Universidade Estadual Do Oeste Do Paraná, Cascavel, PR, Brazil
| | - Gabriela Bonassa
- UNIOESTE/CCET/PGEAGRI, Universidade Estadual Do Oeste Do Paraná, Cascavel, PR, Brazil
| | | | | | | | | | - Jadiane Paola Cavaler
- UNIOESTE/CCET/PGEAGRI, Universidade Estadual Do Oeste Do Paraná, Cascavel, PR, Brazil
| | | | | | - Helen Treichel
- Universidade Federal da Fronteira Sul, Erechim, RS, 99700-970, Brazil
| | - Airton Kunz
- UNIOESTE/CCET/PGEAGRI, Universidade Estadual Do Oeste Do Paraná, Cascavel, PR, Brazil.
- Embrapa Suínos E Aves, Concórdia, SC, 89715-899, Brazil.
| |
Collapse
|
6
|
Issaka E, Fapohunda FO, Amu-Darko JNO, Yeboah L, Yakubu S, Varjani S, Ali N, Bilal M. Biochar-based composites for remediation of polluted wastewater and soil environments: Challenges and prospects. CHEMOSPHERE 2022; 297:134163. [PMID: 35240157 DOI: 10.1016/j.chemosphere.2022.134163] [Citation(s) in RCA: 39] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Revised: 02/13/2022] [Accepted: 02/26/2022] [Indexed: 06/14/2023]
Abstract
Pharmaceuticals, heavy metals, pesticides, and dyes are the main environmental contaminants that have serious effects on both land and aquatic lives and necessitate the development of effective methods to mitigate these issues. Although some conventional methods are in use to tackle soil contamination, but biochar and biochar-based composites represent a reliable and sustainable means to deal with a spectrum of toxic organic and inorganic pollutants from contaminated environments. The capacity of biochars and derived constructs to remediate inorganic dyes, pesticides, insecticides, heavy metals, and pharmaceuticals from environmental matrices is attributed to their extensive surface area, surface functional groups, pore size distribution, and high sorption capability of these pollutants in water and soil environments. Application conditions, biochar feedstock, pyrolysis conditions and precursor materials are the factors that influence the capacity and functionality of biochar to adsorb pollutants from wastewater and soil. These factors, when improved, can benefit biochar in agrochemical and heavy metal remediation from various environments. However, the processes involved in biochar production and their influence in enhancing pollutant sequestration remain unclear. Therefore, this paper throws light on the current strategies, operational conditions, and sequestration performance of biochar and biochar-based composites for agrochemical and heavy metal in soil and water environments. The main challenges associated with biochar preparation and exploitation, toxicity evaluation, research directions and future prospects for biochar in environmental remediation are also outlined.
Collapse
Affiliation(s)
- Eliasu Issaka
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212013, PR China
| | | | | | - Linda Yeboah
- School of Biological Sciences, University of Ghana, Legon, 00233, Accra, Ghana
| | - Salome Yakubu
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212013, PR China
| | - Sunita Varjani
- Gujarat Pollution Control Board, Gandhinagar, 382 010, Gujarat, India
| | - Nisar Ali
- Key Laboratory for Palygorskite Science and Applied Technology of Jiangsu Province, National & Local Joint Engineering Research Center for Deep Utilization Technology of Rock-salt Resource, Faculty of Chemical Engineering, Huaiyin Institute of Technology, Huaian, 223003, China.
| | - Muhammad Bilal
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian, 223003, China.
| |
Collapse
|
7
|
Nardis BO, Franca JR, Carneiro JSDS, Soares JR, Guilherme LRG, Silva CA, Melo LCA. Production of engineered-biochar under different pyrolysis conditions for phosphorus removal from aqueous solution. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 816:151559. [PMID: 34785233 DOI: 10.1016/j.scitotenv.2021.151559] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 10/26/2021] [Accepted: 11/05/2021] [Indexed: 06/13/2023]
Abstract
Phosphorus (P) recovery from wastewater through biochar is an alternative to build a sustainable circular economy and save non-renewable P reservoirs. The efficiency of cations in removing P from wastewater under different pyrolysis conditions is still lacking. We aimed at studying P adsorption and release from biochar enriched with Al3+ and Mg2+, prepared under air-limited and N2-flow pyrolysis conditions. Biochar samples were produced from pig manure (PMB) and impregnated, separately, with 20% of AlCl3 and MgCl2 solutions on both pyrolysis conditions. The materials were characterized for pH, electrical conductivity (EC), total nutrient content, ash, specific surface area (SSA), pore-volume, FTIR, XRD, and SEM-EDX. Phosphorus adsorption was studied by kinetics and adsorption isotherms, as well as desorption. The biochar impregnated with Mg2+ and produced in the muffle furnace achieved the maximum P adsorption (231 mg g-1), and 100% of the adsorbed P was released in solutions of Mehlich-1 and citric acid 2%. The pyrolysis conditions had a small or no influence on the biochar properties governing P adsorption, such as chemical functional groups, surface area, quantity and size of pores, and formation of synthetic minerals. Therefore, it is possible to produce biochar without using N2 as a carrier gas when it comes to P adsorption studies. Mechanisms of P removal comprise precipitation with cations, surface complexation, ligand exchange reactions, and electrostatic attraction on the biochar surface. Overall, Mg-impregnated biochar is a suitable matrix to remove P from aqueous media and to add value to organic residues while producing an environmentally friendly material for reuse in soils.
Collapse
Affiliation(s)
- Bárbara Olinda Nardis
- Department of Soil Science, School of Agricultural Sciences, Federal University of Lavras, 37200-900 Lavras, Minas Gerais, Brazil
| | - José Romão Franca
- Department of Physics, Institute of Natural Sciences, Federal University of Lavras, 37200-900 Lavras, Minas Gerais, Brazil
| | | | - Jenaina Ribeiro Soares
- Department of Physics, Institute of Natural Sciences, Federal University of Lavras, 37200-900 Lavras, Minas Gerais, Brazil
| | - Luiz Roberto Guimarães Guilherme
- Department of Soil Science, School of Agricultural Sciences, Federal University of Lavras, 37200-900 Lavras, Minas Gerais, Brazil
| | - Carlos Alberto Silva
- Department of Soil Science, School of Agricultural Sciences, Federal University of Lavras, 37200-900 Lavras, Minas Gerais, Brazil
| | - Leônidas Carrijo Azevedo Melo
- Department of Soil Science, School of Agricultural Sciences, Federal University of Lavras, 37200-900 Lavras, Minas Gerais, Brazil.
| |
Collapse
|
8
|
Zhang C, Li S, Ho SH. Converting nitrogen and phosphorus wastewater into bioenergy using microalgae-bacteria consortia: A critical review. BIORESOURCE TECHNOLOGY 2021; 342:126056. [PMID: 34601027 DOI: 10.1016/j.biortech.2021.126056] [Citation(s) in RCA: 67] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2021] [Revised: 09/23/2021] [Accepted: 09/27/2021] [Indexed: 06/13/2023]
Abstract
Conventional wastewater treatment using activated sludge cannot efficiently eliminate nitrogen and phosphorus, thus engendering the risk of water eutrophication and ecosystem disruption. Fortunately, a new wastewater treatment process applying microalgae-bacteria consortia has attracted considerable interests due to its excellent performance of nutrients removal. Moreover, some bacteria facilitate the harvest of microalgal biomass through bio-flocculation. Additionally, while stimulating the functional bacteria, the improved biomass and enriched components also brighten bioenergy production from the perspective of practical applications. Thus, this review first summarizes the current development of nutrients removal and mutualistic interaction using microalgae-bacteria consortia. Then, advancements in bio-flocculation are completely described and the corresponding mechanisms are thoroughly revealed. Eventually, the recent advances of bioenergy production (i.e., biodiesel, biohydrogen, bioethanol, and bioelectricity) using microalgae-bacteria consortia are comprehensively discussed. Together, this review will provide the ongoing challenges and future developmental directions for better converting nitrogen and phosphorus wastewater into bioenergy using microalgae-bacteria consortia.
Collapse
Affiliation(s)
- Chaofan Zhang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, PR China
| | - Shengnan Li
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, PR China
| | - Shih-Hsin Ho
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, PR China.
| |
Collapse
|