1
|
Zheng L, Wen Y, Lin Y, Tian J, Shaobai J, Hao Z, Wang C, Sun T, Wang L, Chen C. Phytohormonal dynamics in the abscission zone of Korla fragrant pear during calyx abscission: a visual study. FRONTIERS IN PLANT SCIENCE 2024; 15:1452072. [PMID: 39439514 PMCID: PMC11493647 DOI: 10.3389/fpls.2024.1452072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Accepted: 09/05/2024] [Indexed: 10/25/2024]
Abstract
Introduction Phytohormones play a crucial role in regulating the abscission of plant organs and tissues. Methods In this study, the ultrastructure of the sepals of Korla fragrant pears was observed using a transmission electron microscope, and high-performance liquid and gas chromatography were used to analyze the dynamic changes of phytohormones in the abscission zone during the calyx abscission process of Korla fragrant pears, and mass spectrometry imaging was applied to ascertain the spatial distribution of phytohormones. Results The results revealed that the mitochondria in the abscission zone of the decalyx fruits were regularly distributed around the cell wall, and the chloroplasts were moderately present. In contrast, in the persistent calyx fruit, the corresponding parts of the abscission zone showed a scattered distribution of mitochondria within the cells, and there was a higher number of chloroplasts, which also contained starch granules inside. Mass spectrometry imaging revealed that ABA was enriched in the abscission zone of the decalyx fruit, and their ionic signal intensities were significantly stronger than those of the persistent calyx fruit. However, the ionic signal intensities of Indole-3-acetic acid (IAA) and Gibberellin A3 (GA3) of the persistent calyx fruit were significantly stronger than those in the abscission zone of the decalyx fruit and were concentrated in the persistent calyx fruit. 1-Aminocyclopropanecarboxylic Acid (ACC) did not show distinct regional distribution in both the decalyx and persistent calyx fruits. Furthermore, before the formation of the abscission zone, the levels of IAA, GA3, and zeatin (ZT) in the abscission zone of the decalyx fruits were significantly lower than those in the persistent calyx fruits by 37.9%, 57.7%, and 33.0%, respectively, while the levels of abscisic acid (ABA) and ethylene (ETH) were significantly higher by 21.9% and 25.0%, respectively. During the formation of the abscission zone, the levels of IAA, GA3, and ZT in the abscission zone of the decalyx fruits were significantly lower than those in the persistent calyx fruits by 41.7%, 71.7%, and 24.6%, respectively, while the levels of ABA and ETH were significantly higher by 15.2% and 80.0%, respectively. After the formation of the abscission zone, the levels of IAA and GA3 in the abscission zone of the decalyx fruits were lower than those in the persistent calyx fruits by 20.8% and 47.8%, respectively, while the levels of ABA and ETH were higher by 271.8% and 26.9%, respectively. In summary, during the calyx abscission process of Korla fragrant pears, IAA and GA3 in the abscission zone inhibited abscission, while ABA and ETH promoted calyx abscission. These research findings enrich the understanding of the regulatory mechanism of plant hormones on calyx abscission and provide a theoretical basis for the study of exogenous plant growth regulators for regulating calyx abscission in Korla fragrant pear.
Collapse
Affiliation(s)
- Lingling Zheng
- College of Horticulture, Xinjiang Agricultural University, Urumqi, Xinjiang, China
| | - Yue Wen
- College of Horticulture, Xinjiang Agricultural University, Urumqi, Xinjiang, China
| | - Yan Lin
- College of Horticulture, Xinjiang Agricultural University, Urumqi, Xinjiang, China
| | - Jia Tian
- College of Horticulture, Xinjiang Agricultural University, Urumqi, Xinjiang, China
| | - Junjie Shaobai
- College of Horticulture, Xinjiang Agricultural University, Urumqi, Xinjiang, China
| | - Zhichao Hao
- College of Horticulture, Xinjiang Agricultural University, Urumqi, Xinjiang, China
| | - Chunfeng Wang
- Korla Fragrant Pear Research Centre, Korla, Xinjiang, China
| | - Tianyu Sun
- College of Horticulture, Xinjiang Agricultural University, Urumqi, Xinjiang, China
| | - Lei Wang
- College of Horticulture, Xinjiang Agricultural University, Urumqi, Xinjiang, China
| | - Chen Chen
- College of Horticulture, Xinjiang Agricultural University, Urumqi, Xinjiang, China
| |
Collapse
|
2
|
Moeinfar M, Ghiasvand A, Khaleghi E. Chemical bonding of cross-linked glutaraldehyde/chitosan on the surface of a titanium wire to prepare a robust biocompatible SPME fiber for analysis of phytohormones in plants. Food Chem 2024; 449:139168. [PMID: 38574521 DOI: 10.1016/j.foodchem.2024.139168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 03/09/2024] [Accepted: 03/26/2024] [Indexed: 04/06/2024]
Abstract
A robust biocompatible solid-phase microextraction (SPME) fiber, so-called Ti/APTS/GA/CS, was prepared by chemical bonding of cross-linked glutaraldehyde-chitosan to the surface of a titanium wire using APTS. The fiber was applied for sampling of phytohormones in plant tissues, followed by HPLC-UV analysis. The structure and morphology of the fiber coating was investigated by FT-IR, SEM, EDX, XRD, and TGA techniques. A Box-Behnken design was implemented to optimize the experimental variables. The calibration graphs were linear over a wide linear range (0.5-200 μg L-1) with LODs over the range of 0.01-0.06 μg L-1. The intra-day and inter-day precisions were found to be 1.3-6.3% and 4.3-7.3%, respectively. The matrix effect values ranged from 86.5% to 111.7%, indicating that the complex sample matrices had an insignificant effect on the determination of phytohormones. The fiber was successfully employed for the direct-immersion SPME (DI-SPME-HPLC) analysis of the phytohormones in cucumber, tomato, date palm, and calendula samples.
Collapse
Affiliation(s)
- Marjan Moeinfar
- Department of Chemistry, Faculty of Science, Lorestan University, Khorramabad, Iran
| | - Alireza Ghiasvand
- Department of Chemistry, Faculty of Science, Lorestan University, Khorramabad, Iran.
| | - Esmaeil Khaleghi
- Department of Horticultural Science, Faculty of Agriculture, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| |
Collapse
|
3
|
Tang L, Zhang Z, Sun L, Gao X, Zhao X, Chen X, Zhu X, Li A, Sun L. In Vivo Detection of Abscisic Acid in Tomato Leaves Based on a Disposable Stainless Steel Electrochemical Immunosensor. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:17666-17674. [PMID: 39051566 DOI: 10.1021/acs.jafc.4c03594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/27/2024]
Abstract
Abscisic acid (ABA) plays an important regulatory role in plants. It is very critical to obtain the dynamic changes of ABA in situ for botanical research. Herein, coupled with paper-based analysis devices, electrochemical immunoelectrodes based on disposable stainless steels sheet were developed for ABA detection in plants in situ. The stainless steel sheets were modified with carbon cement, ferrocene-graphene oxide-multi walled carbon nanotubes nanocomposites, and ABA antibodies. The system can detect the ABA in the range of 1 nM to 100 μM, with a limit of detection of 100 pM. The ABA content in tomato leaves under high salinity was detected in situ. The trend of ABA changes was similar to the expression of SlNCED1 and SlNCED2. Overall, this study offers an approach for in situ detection of ABA in plants, which will help to study the regulation mechanism of ABA in plants and to promote the development of precision agriculture.
Collapse
Affiliation(s)
- Lingjuan Tang
- School of Life Sciences, Nantong University, Nantong, Jiangsu 226019, China
- Analysis and Testing Center, Nantong University, Nantong, Jiangsu 226019, China
| | - Zhiyao Zhang
- School of Life Sciences, Nantong University, Nantong, Jiangsu 226019, China
| | - Ling Sun
- School of Life Sciences, Nantong University, Nantong, Jiangsu 226019, China
| | - Xu Gao
- School of Chemistry and Materials Science, East China University of Technology, Nanchang, Jiangxi 330013, China
| | - Xinyue Zhao
- School of Life Sciences, Nantong University, Nantong, Jiangsu 226019, China
| | - Xinru Chen
- School of Life Sciences, Nantong University, Nantong, Jiangsu 226019, China
| | - Xingyu Zhu
- School of Life Sciences, Nantong University, Nantong, Jiangsu 226019, China
| | - Aixue Li
- Research Center of Intelligent Equipment, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Lijun Sun
- School of Life Sciences, Nantong University, Nantong, Jiangsu 226019, China
| |
Collapse
|
4
|
Wu J, Zheng L, Huang X. Fabrication and evaluation of a molecular-imprinted-polymer functionalized electrode for selective electric field-assisted solid-phase microextraction of phytohormones. Talanta 2024; 270:125572. [PMID: 38157736 DOI: 10.1016/j.talanta.2023.125572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 12/10/2023] [Accepted: 12/18/2023] [Indexed: 01/03/2024]
Abstract
Specific extraction and separation plays a pivotal role in the accurate quantification of trace phytohormones (PHs). However, due to their high polarity, specific capture of PHs is challenging. In this study, under the assistance of electric field, a molecular-imprinted-polymer functionalized electrode (MIP@ED) was in-situ prepared using 3-indoleacetic acid (IAA) as template and employed as the adsorbent of electric field-assisted solid-phase microextraction (EA-SPME) for specific capture of PHs. Results showed that the implementation of electric field during the preparation of MIP@ED and EA-SPME procedures improved the extraction selectivity, the selective factors towards IAA and its structural analogues increased from 2.09 to 2.45 to 2.88-3.51. Under the optimum conditions, the proposed MIP@ED/EA-SPME was combined with HPLC technique to monitor trace PHs in water and agricultural products. The achieved limits of detection were in the ranges of 0.0053-0.011 μg/L and 0.048-0.12 μg/kg for water and agricultural product, respectively. The established approach was successfully applied to quantify trace PHs in real samples, and the spiked recoveries varied from 84.0 % to 118 % with good repeatability (RSDs blow 10 %). The obtained results provided clear evidence that the developed approach employing the MIP@ED/EA-SPME technique demonstrated high sensitivity, good selectivity, satisfactory reproducibility and environmental friendliness in the quantification of trace PHs in complex samples. In addition, the current study supplied a new strategy to enhance the specific recognition performance of MIP-based SPME.
Collapse
Affiliation(s)
- Jiangyi Wu
- Fujian Provincial Key Laboratory for Coastal Ecology and Environmental Studies, Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen, 361005, China
| | - Lingxin Zheng
- Fujian Provincial Key Laboratory for Coastal Ecology and Environmental Studies, Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen, 361005, China
| | - Xiaojia Huang
- Fujian Provincial Key Laboratory for Coastal Ecology and Environmental Studies, Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen, 361005, China.
| |
Collapse
|
5
|
Yar A, Ansari TM, Rehman F, Raza A, Riaz U, Iqbal R, Al-Mohaimeed AM, Al-Onazi WA, Rizwan M. Simultaneous determination of bromoxynil and MCPA in commercial samples and raw materials using reversed phase high performance liquid chromatography. BMC Chem 2024; 18:53. [PMID: 38493163 PMCID: PMC10943769 DOI: 10.1186/s13065-024-01154-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 02/29/2024] [Indexed: 03/18/2024] Open
Abstract
This study encompasses a quick, efficient, repeatable and reproducible analytical method for simultaneous determination of Bromoxynil (3, 5-Dibromo-4-hydroxybenzonitrile) and MCPA (2-methyl-4-chlorophenoxyacetic acid) using RP-HPLC with UV-Detector. Bromoxynil + MCPA is one of the most selective post emergent herbicide formulations for the control of important broad leaf weeds infesting small grains (wheat, barley, oats, rye), conservation reserve program areas and grass grown for seed. Optimum weed control is achieved when Bromoxynil + MCPA is applied to actively growing weed seedlings. So, a simple, repeatable, reproducible and efficient simultaneous analytical method was developed for Bromoxynil + MCPA. The developed method was applied for the detection and quantitation of these pesticides in formulations and raw materials with excellent recoveries. It was validated according to ICH Guidelines with excellent linearity R2 = 0.992 for Bromoxynil and 0.998 for MCPA. For Bromoxynil, LOD = 1.57 mg/L and LOQ = 5.22 mg/L while for MCPA the LOD = 1.08 mg/L and LOQ = 3.62 mg/L was found. The proposed method has shown high precision (RSD %) 0.06% and 0.11% for Bromoxynil and MCPA respectively while the trueness has been calculated in terms of recovery percentage obtained as "mean value of Bromoxynil 99.53% and MCPA 100.10%" which is excellent under optimized conditions. For repeatability and reproducibility, five replicate readings of standard and sample were taken and had found within acceptable limits of relative standard deviation (RSD ≤ ± 2%). Finally, the robustness of the developed method was determined by changing flow rate and mobile phase ratios that has found within the permissible limits (% RSD NMT 1.5). So, the proposed analytical method has found to be more precise, valid and accurate at commercial scale.
Collapse
Affiliation(s)
- Ahmed Yar
- Institute of Chemical Sciences, Bahauddin Zakariya University, Multan, 68000, Pakistan.
| | - Tariq Mahmood Ansari
- Institute of Chemical Sciences, Bahauddin Zakariya University, Multan, 68000, Pakistan
| | - Faariah Rehman
- Institute of Chemical Sciences, Bahauddin Zakariya University, Multan, 68000, Pakistan
| | - Asad Raza
- Department of Chemistry, Govt. Post Graduate College Civil Lines, Multan, Punjab, 68000, Pakistan
| | - Umair Riaz
- Department of Soil & Environmental Sciences, MNS-University of Agriculture, Multan, 66000, Pakistan.
| | - Rashid Iqbal
- Department of Agronomy, The Islamia University of Bahawalpur, Bahwalpur, 63100, Pakistan.
| | - Amal M Al-Mohaimeed
- Department of Chemistry, College of Science, King Saud University, P.O. Box 22452, 11495, Riyadh, Saudi Arabia
| | - Wedad A Al-Onazi
- Department of Chemistry, College of Science, King Saud University, P.O. Box 22452, 11495, Riyadh, Saudi Arabia
| | - Muhammad Rizwan
- Institute of Crop Science and Resource Conservation (INRES), University of Bonn, 53115, Bonn, Germany.
| |
Collapse
|
6
|
Bustos D, Guzmán L, Valdés O, Muñoz-Vera M, Morales-Quintana L, Castro RI. Development and Evaluation of Cross-Linked Alginate-Chitosan-Abscisic Acid Blend Gel. Polymers (Basel) 2023; 15:3217. [PMID: 37571107 PMCID: PMC10420979 DOI: 10.3390/polym15153217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 07/17/2023] [Accepted: 07/21/2023] [Indexed: 08/13/2023] Open
Abstract
Abscisic acid (ABA) has been proposed to play a significant role in the ripening of nonclimacteric fruit, stomatal opening, and response to abiotic stresses in plants, which can adversely affect crop growth and productivity. The biological effects of ABA are dependent on its concentration and signal transduction pathways. However, due to its susceptibility to the environment, it is essential to find a suitable biotechnological approach to coat ABA for its application. One promising approach is to utilize alginate and chitosan, two natural polysaccharides known for their strong affinity for water and their ability to act as coating agents. In this study, an alginate-chitosan blend was employed to develop an ABA cover. To achieve this, an alginate-chitosan-abscisic acid (ALG-CS-ABA) blend was prepared by forming ionic bonds or complexes with calcium ions, or through dual cross-linking. This was done by dripping a homogeneous solution of alginate-chitosan and ABA into a calcium chloride solution, resulting in the formation of the blend. By combining the unique properties of alginate, chitosan, and ABA, the resulting ALG-CS-ABA blend can potentially offer enhanced stability, controlled release, and improved protection of ABA. These characteristics make it a promising biotechnological approach for various applications, including the targeted delivery of ABA in agricultural practices or in the development of innovative plant-based products. Further evaluation and characterization of the ALG-CS-ABA blend will provide valuable insights into its potential applications in the fields of biomedicine, agriculture, and tissue engineering.
Collapse
Affiliation(s)
- Daniel Bustos
- Centro de Investigación de Estudios Avanzados del Maule (CIEAM), Vicerrectoría de Investigación y Postgrado, Universidad Católica del Maule, Talca 3460000, Chile; (D.B.); (O.V.)
- Laboratorio de Bioinformática y Química Computacional (LBQC), Escuela de Bioingeniería Médica, Facultad de Medicina, Universidad Católica del Maule, Talca 3460000, Chile
| | - Luis Guzmán
- Departamento de Bioquímica Clínica e Inmunohematología, Facultad de Ciencias de la Salud, Universidad de Talca, Avenida Lircay, s/n, Casilla 747–721, Talca 3460000, Chile;
| | - Oscar Valdés
- Centro de Investigación de Estudios Avanzados del Maule (CIEAM), Vicerrectoría de Investigación y Postgrado, Universidad Católica del Maule, Talca 3460000, Chile; (D.B.); (O.V.)
| | - Marcelo Muñoz-Vera
- Multidisciplinary Agroindustry Research Laboratory, Universidad Autónoma de Chile, Cinco Pte. N°1670, Talca 3467987, Chile;
| | - Luis Morales-Quintana
- Multidisciplinary Agroindustry Research Laboratory, Instituto de Ciencias Biomédicas, Facultad de Ciencias de la Salud, Universidad Autónoma de Chile, Cinco Pte. N°1670, Talca 3467987, Chile
| | - Ricardo I. Castro
- Multidisciplinary Agroindustry Research Laboratory, Instituto de Ciencias Aplicadas, Facultad de Arquitectura, Construcción y Medio Ambiente, Universidad Autónoma de Chile, Cinco Pte. N°1670, Talca 3467987, Chile
| |
Collapse
|
7
|
Wang YH, Lin XY, Cheng Y, Wang H, Liu W, Zhuge XK, Huo XL, Bao N. Vibration for enhancement of electrochemical analysis of biomolecules in a droplet on the rough surface of a disposable working electrode. Anal Chim Acta 2023; 1256:341158. [PMID: 37037634 DOI: 10.1016/j.aca.2023.341158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 03/20/2023] [Accepted: 03/28/2023] [Indexed: 04/03/2023]
Abstract
Although electrochemical detection of microliters-level solutions is attractive for analysis of low-amount biological samples, its performance could be weakened by limited mass transfer due to low Reynolds number and laminar flow. Herein we designed a 3D-printed electroanalytical device to apply vibration for improvement of mass transfer during electrochemical detection. In our approach, the droplet-size sample solution containing Indole-3-acetic acid (IAA, as a model) was directly applied on the effective surface of a disposable working electrode. We demonstrated that vibration could enhance electrochemical responses of IAA more on the rough surface than on the smooth surface of the working electrodes. After optimization, the sensitivity for electrochemical detection of a 20-μL droplet under vibration with the voltage of 7 V increased more than 100% compared with the static condition. The enhanced electrochemical responses brought by vibration could be achieved reproducibly, which could be ascribed to improved mass transfer. Our strategy could be practically applied for differentiation of IAA in different tissues of Marchantia polymorpha with enhanced responses. This study suggested that vibration might become a simple and effective method to improve mass transfer in analysis of microliter-volume solutions, which might be extended for more biochemical assays.
Collapse
Affiliation(s)
- Ya-Hong Wang
- School of Public Health, Nantong University, 9 Seyuan Rd., Nantong, Jiangsu, 226019, China
| | - Xiang-Yun Lin
- School of Public Health, Nantong University, 9 Seyuan Rd., Nantong, Jiangsu, 226019, China
| | - Ye Cheng
- School of Public Health, Nantong University, 9 Seyuan Rd., Nantong, Jiangsu, 226019, China
| | - Hua Wang
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, 300 Fenglin Road, Shanghai, 200032, China
| | - Wu Liu
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, 300 Fenglin Road, Shanghai, 200032, China.
| | - Xiang-Kai Zhuge
- School of Public Health, Nantong University, 9 Seyuan Rd., Nantong, Jiangsu, 226019, China.
| | - Xiao-Lei Huo
- School of Public Health, Nantong University, 9 Seyuan Rd., Nantong, Jiangsu, 226019, China.
| | - Ning Bao
- School of Public Health, Nantong University, 9 Seyuan Rd., Nantong, Jiangsu, 226019, China.
| |
Collapse
|
8
|
Kuang Y, Li M, Hu S, Yang L, Liang Z, Wang J, Jiang H, Zhou X, Su Z. One-Step Co-Electrodeposition of Copper Nanoparticles-Chitosan Film-Carbon Nanoparticles-Multiwalled Carbon Nanotubes Composite for Electroanalysis of Indole-3-Acetic Acid and Salicylic Acid. SENSORS (BASEL, SWITZERLAND) 2022; 22:4476. [PMID: 35746260 PMCID: PMC9228024 DOI: 10.3390/s22124476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 06/07/2022] [Accepted: 06/10/2022] [Indexed: 06/15/2023]
Abstract
A sensitive simultaneous electroanalysis of phytohormones indole-3-acetic acid (IAA) and salicylic acid (SA) based on a novel copper nanoparticles-chitosan film-carbon nanoparticles-multiwalled carbon nanotubes (CuNPs-CSF-CNPs-MWCNTs) composite was reported. CNPs were prepared by hydrothermal reaction of chitosan. Then the CuNPs-CSF-CNPs-MWCNTs composite was facilely prepared by one-step co-electrodeposition of CuNPs and CNPs fixed chitosan residues on modified electrode. Scanning electron microscope (SEM), transmission electron microscopy (TEM), selected area electron diffraction (SAED), energy dispersive spectroscopy (EDS), X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS), and linear sweep voltammetry (LSV) were used to characterize the properties of the composite. Under optimal conditions, the composite modified electrode had a good linear relationship with IAA in the range of 0.01-50 μM, and a good linear relationship with SA in the range of 4-30 μM. The detection limits were 0.0086 μM and 0.7 μM (S/N = 3), respectively. In addition, the sensor could also be used for the simultaneous detection of IAA and SA in real leaf samples with satisfactory recovery.
Collapse
Affiliation(s)
- Yiwen Kuang
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China;
| | - Mengxue Li
- College of Chemistry and Materials Science, Hunan Agricultural University, Changsha 410128, China; (M.L.); (S.H.); (L.Y.); (Z.L.); (J.W.); (H.J.)
| | - Shiyu Hu
- College of Chemistry and Materials Science, Hunan Agricultural University, Changsha 410128, China; (M.L.); (S.H.); (L.Y.); (Z.L.); (J.W.); (H.J.)
| | - Lu Yang
- College of Chemistry and Materials Science, Hunan Agricultural University, Changsha 410128, China; (M.L.); (S.H.); (L.Y.); (Z.L.); (J.W.); (H.J.)
| | - Zhanning Liang
- College of Chemistry and Materials Science, Hunan Agricultural University, Changsha 410128, China; (M.L.); (S.H.); (L.Y.); (Z.L.); (J.W.); (H.J.)
| | - Jiaqi Wang
- College of Chemistry and Materials Science, Hunan Agricultural University, Changsha 410128, China; (M.L.); (S.H.); (L.Y.); (Z.L.); (J.W.); (H.J.)
| | - Hongmei Jiang
- College of Chemistry and Materials Science, Hunan Agricultural University, Changsha 410128, China; (M.L.); (S.H.); (L.Y.); (Z.L.); (J.W.); (H.J.)
| | - Xiaoyun Zhou
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China;
| | - Zhaohong Su
- College of Chemistry and Materials Science, Hunan Agricultural University, Changsha 410128, China; (M.L.); (S.H.); (L.Y.); (Z.L.); (J.W.); (H.J.)
| |
Collapse
|
9
|
Zhang Y, Li L, Zhang H, Shang J, Li C, Naqvi SMZA, Birech Z, Hu J. Ultrasensitive detection of plant hormone abscisic acid-based surface-enhanced Raman spectroscopy aptamer sensor. Anal Bioanal Chem 2022; 414:2757-2766. [PMID: 35141764 DOI: 10.1007/s00216-022-03923-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 01/09/2022] [Accepted: 01/24/2022] [Indexed: 12/25/2022]
Abstract
Abscisic acid (ABA), as the most common plant hormone in the growth of wheat, can greatly affect the yield when its levels deviate from normal. Therefore, highly sensitive and selective detection of this hormone is greatly needed. In this work, we developed an aptamer sensor based on surface-enhanced Raman spectroscopy (SERS) and applied it for the high sensitivity detection of ABA. Biotin-modified ABA aptamer complement chains were modified on ferrosoferric oxide magnetic nanoparticles (Fe3O4MNPs) and acted as capture probes, and sulfhydryl aptamer (SH-Apt)-modified silver-coated gold nanospheres (Au@Ag NPs) were used as signal probes. Through the recognition of the ABA aptamer and its complementary chains, an aptamer sensor based on SERS was constructed. As SERS internal standard molecules of 4-mercaptobenzoic acid (4-MBA) were encapsulated between the gold core and silver shell of the signal probes; the constructed aptamer sensor generated a strong SERS signal of 4-MBA after magnetic separation. When there were ABA molecules in the detection system, with the preferential binding of ABA aptamer and ABA molecule, the signal probes were released from the capture probes, after magnetic separation, leading to a linear decrease in SERS intensity of 4-MBA. Thus, the detection response was linear over a logarithmic concentration range, with an ultra-low detection limit of 0.67 fM. In addition, the practical use of this assay method was demonstrated in ABA detection from fresh wheat leaves, with a relative error (RE) of 5.43-8.94% when compared with results from enzyme-linked immunosorbent assay (ELISA). The low RE value proves that the aptamer sensor will be a promising method for ABA detection.
Collapse
Affiliation(s)
- Yanyan Zhang
- College of Mechanical and Electrical Engineering, Henan Agricultural University, Zhengzhou, 450002, China
- Henan International Joint Laboratory of Laser Technology in Agricultural Sciences, Zhengzhou, 450002, China
| | - Linze Li
- College of Mechanical and Electrical Engineering, Henan Agricultural University, Zhengzhou, 450002, China
- Henan International Joint Laboratory of Laser Technology in Agricultural Sciences, Zhengzhou, 450002, China
| | - Hao Zhang
- College of Mechanical and Electrical Engineering, Henan Agricultural University, Zhengzhou, 450002, China
- Henan International Joint Laboratory of Laser Technology in Agricultural Sciences, Zhengzhou, 450002, China
| | - Junjian Shang
- College of Mechanical and Electrical Engineering, Henan Agricultural University, Zhengzhou, 450002, China
- Henan International Joint Laboratory of Laser Technology in Agricultural Sciences, Zhengzhou, 450002, China
| | - Can Li
- College of Mechanical and Electrical Engineering, Henan Agricultural University, Zhengzhou, 450002, China
- Henan International Joint Laboratory of Laser Technology in Agricultural Sciences, Zhengzhou, 450002, China
| | - Syed Muhammad Zaigham Abbas Naqvi
- College of Mechanical and Electrical Engineering, Henan Agricultural University, Zhengzhou, 450002, China
- Henan International Joint Laboratory of Laser Technology in Agricultural Sciences, Zhengzhou, 450002, China
| | - Zephania Birech
- Department of Physics, University of Nairobi, Nairobi, 30197, Kenya
| | - Jiandong Hu
- College of Mechanical and Electrical Engineering, Henan Agricultural University, Zhengzhou, 450002, China.
- Henan International Joint Laboratory of Laser Technology in Agricultural Sciences, Zhengzhou, 450002, China.
- State Key Laboratory of Wheat and Maize Crop Science, Zhengzhou, 45002, China.
| |
Collapse
|