1
|
Gugel I, Marchetti F, Costa S, Gugel I, Baldini E, Vertuani S, Manfredini S. 2G-lactic acid from olive oil supply chain waste: olive leaves upcycling via Lactobacillus casei fermentation. Appl Microbiol Biotechnol 2024; 108:379. [PMID: 38888798 PMCID: PMC11189319 DOI: 10.1007/s00253-024-13217-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 05/10/2024] [Accepted: 06/02/2024] [Indexed: 06/20/2024]
Abstract
The transition towards a sustainable model, particularly the circular economy, emphasizes the importance of redefining waste as a valuable resource, paving the way for innovative upcycling strategies. The olive oil industry, with its significant output of agricultural waste, offers a promising avenue for high-value biomass conversion into useful products through microbial processes. This study focuses on exploring new, high-value applications for olive leaves waste, utilizing a biotechnological approach with Lactobacillus casei for the production of second-generation lactic acid. Contrary to initial expectations, the inherent high polyphenol content and low fermentable glucose levels in olive leaves posed challenges for fermentation. Addressing this, an enzymatic hydrolysis step, following a preliminary extraction process, was implemented to increase glucose availability. Subsequent small-scale fermentation tests were conducted with and without nutrient supplements, identifying the medium that yielded the highest lactic acid production for scale-up. The scaled-up batch fermentation process achieved an enhanced conversion rate (83.58%) and specific productivity (0.26 g/L·h). This research confirms the feasibility of repurposing olive waste leaves for the production of lactic acid, contributing to the advancement of a greener economy through the valorization of agricultural waste. KEY POINTS: • Olive leaves slurry as it did not allow L. casei to ferment. • High concentrations of polyphenols inhibit fermentation of L. casei. • Enzymatic hydrolysis combined to organosolv extraction is the best pretreatment for lactic acid production starting from leaves and olive pruning waste.
Collapse
Affiliation(s)
- Irene Gugel
- Department of Life Sciences and Biotechnology, University of Ferrara, Via L. Borsari 46, 44121, Ferrara, Italy
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, Via L. Borsari 46, 44121, Ferrara, Italy
| | - Filippo Marchetti
- Department of Life Sciences and Biotechnology, University of Ferrara, Via L. Borsari 46, 44121, Ferrara, Italy
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, Via L. Borsari 46, 44121, Ferrara, Italy
| | - Stefania Costa
- Department of Life Sciences and Biotechnology, University of Ferrara, Via L. Borsari 46, 44121, Ferrara, Italy.
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, Via L. Borsari 46, 44121, Ferrara, Italy.
| | - Ilenia Gugel
- Department of Life Sciences and Biotechnology, University of Ferrara, Via L. Borsari 46, 44121, Ferrara, Italy
| | - Erika Baldini
- Department of Life Sciences and Biotechnology, University of Ferrara, Via L. Borsari 46, 44121, Ferrara, Italy
| | - Silvia Vertuani
- Department of Life Sciences and Biotechnology, University of Ferrara, Via L. Borsari 46, 44121, Ferrara, Italy
| | - Stefano Manfredini
- Department of Life Sciences and Biotechnology, University of Ferrara, Via L. Borsari 46, 44121, Ferrara, Italy
| |
Collapse
|
2
|
López-Salas L, Díaz-Moreno J, Ciulu M, Borrás-Linares I, Quirantes-Piné R, Lozano-Sánchez J. Monitoring the Phenolic and Terpenic Profile of Olives, Olive Oils and By-Products throughout the Production Process. Foods 2024; 13:1555. [PMID: 38790855 PMCID: PMC11121151 DOI: 10.3390/foods13101555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 05/06/2024] [Accepted: 05/14/2024] [Indexed: 05/26/2024] Open
Abstract
Olive oil is a food of great importance in the Mediterranean diet and culture. However, during its production, the olive oil industry generates a large amount of waste by-products that can be an important source of bioactive compounds, such as phenolic compounds and terpenes, revalorizing them in the context of the circular economy. Therefore, it is of great interest to study the distribution and abundance of these bioactive compounds in the different by-products. This research is a screening focused on phytochemical analysis, with particular emphasis on the identification and quantification of the phenolic and terpenic fractions. Both the main products of the olive industry (olives, olive paste and produced oil) and the by-products generated throughout the oil production process (leaf, "alpeorujo", liquid and solid residues generated during decanting commonly named "borras" and washing water) were analyzed. For this purpose, different optimized extraction procedures were performed for each matrix, followed by high-performance liquid chromatography coupled with electrospray time-of-flight mass spectrometry (HPLC-ESI-TOF/MS) analysis. Although no phenolic alcohols were quantified in the leaf and the presence of secoiridoids was low, this by-product was notable for its flavonoid (720 ± 20 µg/g) and terpene (5000 ± 300 µg/g) contents. "Alpeorujo" presented a complete profile of compounds of interest, being abundant in phenolic alcohols (900 ± 100 µg/g), secoiridoids (4500 ± 500 µg/g) and terpenes (1200 ± 100 µg/g), among others. On the other hand, while the solid residue of the borras was the most abundant in phenolic alcohols (3700 ± 200 µg/g) and secoiridoids (680 ± 20 µg/g), the liquid fraction of this waste was notable for its content of elenolic acid derivatives (1700 ± 100 µg/mL) and phenolic alcohols (3000 ± 300 µg/mL). Furthermore, to our knowledge, this is the first time that the terpene content of this by-product has been monitored, demonstrating that it is an important source of these compounds, especially maslinic acid (120 ± 20 µg/g). Finally, the phytochemical content in wash water was lower than expected, and only elenolic acid derivatives were detected (6 ± 1 µg/mL). The results highlighted the potential of the olive by-products as possible alternative sources of a wide variety of olive bioactive compounds for their revalorization into value-added products.
Collapse
Affiliation(s)
- Lucía López-Salas
- Department of Food Science and Nutrition, Faculty of Farmacy, University of Granada, Campus Universitario Cartuja s/n, 18071 Granada, Spain; (L.L.-S.); (J.D.-M.); (J.L.-S.)
| | - Javier Díaz-Moreno
- Department of Food Science and Nutrition, Faculty of Farmacy, University of Granada, Campus Universitario Cartuja s/n, 18071 Granada, Spain; (L.L.-S.); (J.D.-M.); (J.L.-S.)
| | - Marco Ciulu
- Department of Biotechnology, University of Verona, Strada le Grazie 15, Cà Vignal 1, 37134 Verona, Italy;
| | - Isabel Borrás-Linares
- Department of Analytical Chemistry, Faculty of Sciences, University of Granada, Avda Fuentenueva s/n, 18071 Granada, Spain;
| | - Rosa Quirantes-Piné
- Department of Analytical Chemistry, Faculty of Sciences, University of Granada, Avda Fuentenueva s/n, 18071 Granada, Spain;
| | - Jesús Lozano-Sánchez
- Department of Food Science and Nutrition, Faculty of Farmacy, University of Granada, Campus Universitario Cartuja s/n, 18071 Granada, Spain; (L.L.-S.); (J.D.-M.); (J.L.-S.)
| |
Collapse
|
3
|
Souissi A, Dhehibi B, Oumer AM, Mejri R, Frija A, Zlaoui M, Dhraief MZ. Linking farmers' perceptions and management decision toward sustainable agroecological transition: evidence from rural Tunisia. Front Nutr 2024; 11:1389007. [PMID: 38803450 PMCID: PMC11128687 DOI: 10.3389/fnut.2024.1389007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 04/25/2024] [Indexed: 05/29/2024] Open
Abstract
Global food systems face sustainability challenges like undernourishment, inequity, resource degradation, and pollution. Food production and consumption drive environmental change with greenhouse gas emissions, biodiversity loss, and land-system shifts. The climate change crisis has intensified concerns about the ecological impact of these systems. Sustainable food networks, such as community-supported agriculture, are promoting sustainable production and consumption through short supply chains. International bodies like the Food and Agriculture Organization (FAO) and the Consultative Group for International Agricultural Research (CGIAR) are also spearheading initiatives for more equitable and sustainable food systems. In Tunisia, where dryland areas predominate, the ongoing implementation of the Agroecology Initiative provides the context for this study, which explores the drivers and barriers of agroecological transformation in this challenging environment. The research focuses on stakeholder engagement, with a gender perspective to explore farmer perceptions. The study, conducted in the northwest of Tunisia in 2022-2023, involved focus groups, workshops, surveys, and questionnaires with various stakeholders. Findings highlight farmer organizations' potential in promoting sustainable farming, with clear goals, diversified systems, and collaborations. However, challenges such as input scarcity, water shortage, low income, and marketing must be addressed. Results also indicate that over 90% of farmers who received assistance with agroecological practices reported a change in their ideas and practices. Fifty seven percent of the workshops participants identified the olive oil value chain as having the greatest potential for agroecological transformation, but it faces constraints such as climate, lack of policy incentives, training, funding, and difficulty in adopting technical innovations. Women's inclusion in agriculture, environmental, social, and economic challenges were also highlighted. Despite these obstacles, key drivers for agroecological transition were identified. These include the compatibility of many agroecological practices with existing farmer capabilities, their cultural and economic benefits, and the positive outcomes for environmental sustainability and health. The study advocates for a socio-technical systems analysis to address the root causes hindering Tunisia's agroecological transformation. A participatory approach is crucial to understanding priorities and developing a sustainable and resilient food system. Furthermore, the research underscores the importance of considering diverse farmer perspectives and tailoring strategies to support this critical transition effectively.
Collapse
Affiliation(s)
- Asma Souissi
- International Center for Agricultural Research in The Dry Areas (ICARDA), Tunisia, Tunisia
| | - Boubaker Dhehibi
- International Center for Agricultural Research in The Dry Areas (ICARDA), Tunisia, Tunisia
| | - Ali M Oumer
- International Center for Agricultural Research in The Dry Areas (ICARDA), Tunisia, Tunisia
| | - Rihab Mejri
- Institut National de la Recherche Agronomique de Tunisie (INRAT), Ariana, Tunisia
| | - Aymen Frija
- International Center for Agricultural Research in The Dry Areas (ICARDA), Tunisia, Tunisia
| | - Meriem Zlaoui
- Institut National de la Recherche Agronomique de Tunisie (INRAT), Ariana, Tunisia
| | - Mohamed Zied Dhraief
- Institut National de la Recherche Agronomique de Tunisie (INRAT), Ariana, Tunisia
| |
Collapse
|
4
|
Dahdah P, Cabizza R, Farbo MG, Fadda C, Mara A, Hassoun G, Piga A. Improving the Rheological Properties of Dough Obtained by Partial Substitution of Wheat Flour with Freeze-Dried Olive Pomace. Foods 2024; 13:478. [PMID: 38338613 PMCID: PMC10855632 DOI: 10.3390/foods13030478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 01/28/2024] [Accepted: 01/29/2024] [Indexed: 02/12/2024] Open
Abstract
Mediterranean countries are known for their high-quality olives and the production and consumption of olive oil. Olive pomace (OP), the major by-product of olive oil extraction, is receiving attention for its potential as a functional compound in food products, reflecting its physiology- and health-promoting attributes. This study assessed the physico-chemical characteristics of OP obtained from two Sardinian olive cultivars, Bosana and Semidana, and the effect of OP incorporation on the baking performance of wheat dough. We assessed the rheological parameters, pasting profile, and fermentation of doughs obtained through the partial substitution of wheat flour with OP at 0 (control), 1, 2, 3, and 5%. OP inclusion resulted in significant differences in the studied parameters compared with control samples. Positive effects included a decrease in development time, improved dough stability and storage, and superior loss modulus and gas retention capacity. Negative effects comprised an increase in dough resistance and a decrease in dough development height, gas production, gas retention, pasting profile, stickiness, and elasticity. These differences in the OP dough were due to the interactions between polyphenols and fibre with water and the starch-gluten matrix. This study found improvements in dough characteristics following the substitution of wheat flour with low percentages of OP, especially Semidana at 1%. Although higher percentages of OP would be associated with greater nutritional and health benefits, they resulted in a degradation of the dough's attributes, producing a gluten-free-like matrix in the final product.
Collapse
Affiliation(s)
- Patricia Dahdah
- Dipartimento di Agraria, Università degli Studi di Sassari, Viale Italia 39, 07100 Sassari, Italy; (P.D.); (R.C.); (M.G.F.); (C.F.)
| | - Roberto Cabizza
- Dipartimento di Agraria, Università degli Studi di Sassari, Viale Italia 39, 07100 Sassari, Italy; (P.D.); (R.C.); (M.G.F.); (C.F.)
| | - Maria Grazia Farbo
- Dipartimento di Agraria, Università degli Studi di Sassari, Viale Italia 39, 07100 Sassari, Italy; (P.D.); (R.C.); (M.G.F.); (C.F.)
| | - Costantino Fadda
- Dipartimento di Agraria, Università degli Studi di Sassari, Viale Italia 39, 07100 Sassari, Italy; (P.D.); (R.C.); (M.G.F.); (C.F.)
| | - Andrea Mara
- Dipartimento di Scienze Chimiche, Fisiche, Matematiche e Naturali, Università degli Studi di Sassari, Via Vienna 2, 07100 Sassari, Italy;
| | - Georges Hassoun
- Department of Environment and Natural Resources, Lebanese University, Beirut P.O. Box 6573/14, Lebanon;
| | - Antonio Piga
- Dipartimento di Agraria, Università degli Studi di Sassari, Viale Italia 39, 07100 Sassari, Italy; (P.D.); (R.C.); (M.G.F.); (C.F.)
| |
Collapse
|
5
|
Falcone G, Stillitano T, Iofrida N, Spada E, Bernardi B, Gulisano G, De Luca AI. Life cycle and circularity metrics to measure the sustainability of closed-loop agri-food pathways. FRONTIERS IN SUSTAINABLE FOOD SYSTEMS 2022. [DOI: 10.3389/fsufs.2022.1014228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
This work aims to present a methodological proposal based on Life Cycle (LC) methodologies, and circularity performance indicators, to assess closed-loop pathways by providing comprehensive results on economic and environmental impacts generated by agri-food production systems. The methodological approach will be tested on olive oil production systems, one of the most important agri-food chains for Mediterranean countries, whose import and export significance is set to grow in light of the shrinking market supply of seed oils. Some insights for the co-products valorization are provided through the evaluation of the reuse of by-products as a possible resource capable to improve the sustainability of the olive oil farms. The integrated application of three different methodologies, Life Cycle Assessment (LCA), Environmental Life Cycle Costing (ELCC) and Material Circularity Indicator (MCI), enabled comparative evaluation of Extra Virgin Olive Oil (EVOO) production under a linear production model with production under a circular model. The circular scenario was better in most environmental impact categories, registering an improvement in Global Warming Potential (GWP) of nearly 30%. In economic terms, there was a lower production cost for the circular scenario and a lower environmental cost by reducing the use of synthetic products through the reuse of waste products. The circular scenario recorded a higher degree of circularity due to a reduction in virgin raw materials used in the production process and a reduction in non-recoverable waste. The implementation of circular strategies represents one of the possible trajectories to guide the ecological transition, and the proposed methodological framework can support the decisions of both producers and public decision-makers toward more sustainable and efficient production patterns.
Collapse
|
6
|
Stempfle S, Roselli L, Carlucci D, Leone A, de Gennaro BC, Giannoccaro G. Toward the circular economy into the olive oil supply chain: A case study analysis of a vertically integrated firm. FRONTIERS IN SUSTAINABLE FOOD SYSTEMS 2022. [DOI: 10.3389/fsufs.2022.1005604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
While the paradigm of circular economy (CE) and the processes of socio-technical transition have been broadly investigated at the theoretical level, understanding how the transition toward circular models can be implemented in practice is still limited. This contribution aims to provide in-depth and evidence-based insights on an emerging pathway for the operability of CE into the olive oil supply chain. A case study from the Apulia region (the leading olive oil producing area in Italy) is presented to show how an existing business model can be transformed into a circular one, and to what extent it can be replicated. The study focuses on a vertically integrated firm, in which a new industrial process has been introduced to manage olive pomace, which is one of the most important by-products obtained from olive oil extraction. The empirical analysis is built on the Circular Business Model Canvas (CBMC), which is conceived as a suitable theoretical and methodological tool to speed up the transition process toward CE at a micro-economic level. This analytical framework allows us to identify the interplaying elements that the firm combines to capture, create, and deliver value, as well as the relationships with the broader economic system. Particular attention is paid to two distinctive components of CBMC: material loops and adoption factors. Also, internal and external factors affecting the adoption of the new circular business model have been discussed by separating drivers and barriers of the transition process.
Collapse
|
7
|
Selim S, Albqmi M, Al-Sanea MM, Alnusaire TS, Almuhayawi MS, AbdElgawad H, Al Jaouni SK, Elkelish A, Hussein S, Warrad M, El-Saadony MT. Valorizing the usage of olive leaves, bioactive compounds, biological activities, and food applications: A comprehensive review. Front Nutr 2022; 9:1008349. [PMID: 36424930 PMCID: PMC9678927 DOI: 10.3389/fnut.2022.1008349] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Accepted: 10/04/2022] [Indexed: 11/10/2022] Open
Abstract
Olive oil production is a significant source of economic profit for Mediterranean nations, accounting for around 98 percent of global output. Olive oil usage has increased dramatically in recent years, owing to its organoleptic characteristics and rising knowledge of its health advantages. The culture of olive trees and the manufacture of industrial and table olive oil produces enormous volumes of solid waste and dark liquid effluents, involving olive leaves, pomace, and olive oil mill wastewaters. These by-products cause an economic issue for manufacturers and pose major environmental concerns. As a result, partial reuse, like other agronomical production wastes, is a goal to be achieved. Because these by-products are high in bioactive chemicals, which, if isolated, might denote components with significant added value for the food, cosmetic, and nutraceutical sectors, indeed, they include significant amounts of beneficial organic acids, carbohydrates, proteins, fibers, and phenolic materials, which are distributed differently between the various wastes depending on the olive oil production method and table olive agronomical techniques. However, the extraction and recovery of bioactive materials from chosen by-products is a significant problem of their reasonable value, and rigorous detection and quantification are required. The primary aims of this review in this context are to outline the vital bioactive chemicals in olive by-products, evaluate the main developments in extraction, purification, and identification, and study their uses in food packaging systems and safety problems.
Collapse
Affiliation(s)
- Samy Selim
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Jouf University, Sakaka, Saudi Arabia
- Olive Research Center, Jouf University, Sakaka, Saudi Arabia
- *Correspondence: Samy Selim,
| | - Mha Albqmi
- Olive Research Center, Jouf University, Sakaka, Saudi Arabia
- Department of Chemistry, College of Science and Arts, Jouf University, Al Qurayyat, Saudi Arabia
| | - Mohammad M. Al-Sanea
- Department of Pharmaceutical Chemistry, College of Pharmacy, Jouf University, Sakaka, Saudi Arabia
| | | | - Mohammed S. Almuhayawi
- Department of Medical Microbiology and Parasitology, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Hamada AbdElgawad
- Department of Botany and Microbiology, Faculty of Science, Beni-Suef University, Beni-Suef, Egypt
| | - Soad K. Al Jaouni
- Department of Hematology and Oncology, Yousef Abdulatif Jameel Scientific Chair of Prophetic Medicine Application, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Amr Elkelish
- Department of Botany and Microbiology, Faculty of Science, Suez Canal University, Ismailia, Egypt
| | - Shaimaa Hussein
- Department of Pharmacology, College of Pharmacy, Jouf University, Sakaka, Saudi Arabia
| | - Mona Warrad
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences at Al-Quriat, Jouf University, Al Qurayyat, Saudi Arabia
| | - Mohamed T. El-Saadony
- Department of Agricultural Microbiology, Faculty of Agriculture, Zagazig University, Zagazig, Egypt
- Mohamed T. El-Saadony,
| |
Collapse
|
8
|
Donner M, Erraach Y, López-I-Gelats F, Manuel-I-Martin J, Yatribi T, Radić I, El Hadad-Gauthier F. Circular bioeconomy for olive oil waste and by-product valorisation: Actors' strategies and conditions in the Mediterranean area. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 321:115836. [PMID: 35994966 DOI: 10.1016/j.jenvman.2022.115836] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 07/18/2022] [Accepted: 07/20/2022] [Indexed: 06/15/2023]
Abstract
The circular economy and bioeconomy can contribute to transitioning towards more sustainable production and consumption in the olive oil sector. This article is the first to analyse multi-actor strategies and multi-level socio-economic conditions for olive oil waste and by-product valorisation in the Mediterranean area using circular bioeconomy principles. Government policies, the strategies of corporations and farmers and consumers' perceptions are discussed, and various methods are applied, such as desk reviews, case studies and quantitative and qualitative surveys. The findings show strong aspirations for improved sustainability in the olive industry. Furthermore, waste and by-product valorisation strategies foster the creation of innovative practices. However, a common regulatory framework, public financial measures, new circular business models using innovative technologies, multi-actor collaboration and increased consumer awareness of the circular economy and new olive oil waste-based products are necessary for more efficient and sustainable use of olive resources. The policy and management recommendations presented in this study may aid in improving and innovating frameworks and practices for better sustainable management of valuable olive resources.
Collapse
Affiliation(s)
- Mechthild Donner
- INRAE - French National Research Institute for Agriculture, Food and Environment, UMR MOISA (INRAE, CIRAD, CIHEAM-IAMM, Montpellier SupAgro, Univ. Montpellier), 2 Place Pierre Viala, 34060, Montpellier, France.
| | - Yamna Erraach
- Laboratory of Rural Economy, INAT, University of Carthage, 43 Avenue Charles Nicolle, Tunis-Mahrajène, 1082, Tunisia
| | | | | | | | - Ivana Radić
- INRAE - French National Research Institute for Agriculture, Food and Environment, UMR MOISA (INRAE, CIRAD, CIHEAM-IAMM, Montpellier SupAgro, Univ. Montpellier), 2 Place Pierre Viala, 34060, Montpellier, France
| | | |
Collapse
|
9
|
Criado-Navarro I, Ledesma-Escobar CA, Parrado-Martínez MJ, Marchal-López RM, Olmo-Peinado JM, Espejo-Calvo JA, Priego-Capote F. Monitoring the partition of bioactive compounds in the extraction of extra virgin olive oil. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.113433] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
10
|
Sustainable vs. Conventional Approach for Olive Oil Wastewater Management: A Review of the State of the Art. WATER 2022. [DOI: 10.3390/w14111695] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The main goal of this review is to collect and analyze the recently published research concerning the conventional and sustainable treatment processes for olive mill wastewater (OMW). In the conventional treatment processes, it is noticed that the main objective is to meet the environmental regulations for remediated wastewater without considering the economical values of its valuable constituents such as polyphenols. These substances have many important environmental values and could be used in many vital applications. Conversely, sustainable treatment processes aim to recover the valuable constituents through different processes and then treat the residual wastewater. Both approaches’ operational and design parameters were analyzed to generalize their advantages and possible applications. A valorization-treatment approach for OMW is expected to make it a sustainable resource for ingredients of high economical value that could lead to a profitable business. In addition, inclusion of a recovery process will detoxify the residual OMW, simplify its management treatment, and allow the possible reuse of the vast amounts of processed water. In a nutshell, the proposed approach led to zero waste with a closed water cycle development.
Collapse
|
11
|
Khwaldia K, Attour N, Matthes J, Beck L, Schmid M. Olive byproducts and their bioactive compounds as a valuable source for food packaging applications. Compr Rev Food Sci Food Saf 2022; 21:1218-1253. [DOI: 10.1111/1541-4337.12882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 10/25/2021] [Accepted: 11/08/2021] [Indexed: 11/28/2022]
Affiliation(s)
- Khaoula Khwaldia
- Laboratoire des Substances Naturelles, Institut National de Recherche et d'Analyse Physico‐chimique (INRAP) BiotechPole Sidi Thabet Ariana Tunisia
| | - Nouha Attour
- Laboratoire des Substances Naturelles, Institut National de Recherche et d'Analyse Physico‐chimique (INRAP) BiotechPole Sidi Thabet Ariana Tunisia
| | - Julia Matthes
- Faculty of Life Sciences Albstadt‐Sigmaringen University Sigmaringen Germany
| | - Luisa Beck
- Faculty of Life Sciences Albstadt‐Sigmaringen University Sigmaringen Germany
| | - Markus Schmid
- Faculty of Life Sciences Albstadt‐Sigmaringen University Sigmaringen Germany
| |
Collapse
|