1
|
Ben Khadda Z, Bungau SG, El Balkhi S, Ezrari S, Radu AF, Houssaini TS, Achour S. Urinary biomonitoring of exposure to glyphosate and its metabolite amino-methyl phosphonic acid among farmers and non-farmers in Morocco. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2024; 113:104620. [PMID: 39716525 DOI: 10.1016/j.etap.2024.104620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Revised: 12/18/2024] [Accepted: 12/19/2024] [Indexed: 12/25/2024]
Abstract
Glyphosate, a widely used herbicide in global agriculture, poses potential health risks due to environmental and dietary exposure. This study evaluated urinary concentrations of glyphosate and its metabolite, amino-methyl phosphonic acid (AMPA), among farmers and non-farmers in Morocco's Fez-Meknes region, using liquid chromatography-tandem mass spectrometry. Glyphosate was detected in 57.14 % of farmers, 35.41 % of indirectly exposed residents, and 24 % of controls, while AMPA was present in 5.35 % of farmers only. Average glyphosate levels were 0.176 μg/L in farmers, 0.098 μg/L in indirectly exposed individuals, and 0.069 μg/L in controls, with AMPA averaging 0.253 μg/L in farmers. Sociodemographic factors, such as education level, farm residence, and herbicide storage, significantly influenced glyphosate levels, while reusing pesticide containers strongly correlated with elevated glyphosate and AMPA concentrations. Estimated daily intakes (EDIs), hazard quotients (HQs), and a hazard index (HI) were calculated to analyze the obtained data from a health risk perspective. Farmers had higher EDIGM values for AMPA (0.303 µg/d/kg) and Glyphosate (0.140 µg/d/kg) compared to the control group, which had significantly lower values of 0.110 µg/d/kg for AMPA and 0.080 µg/d/kg for Glyphosate. The HQs were calculated considering 0.5 mg/kg BW/day as an acceptable daily intake (ADI), which EFSA has established as a health-based reference value for both analytes. The values obtained were lower than 1, indicating that the health risk from Glyphosate and AMPA exposure was considered acceptable for the studied population.
Collapse
Affiliation(s)
- Zineb Ben Khadda
- Laboratory of Epidemiology and Research in Health Sciences, Faculty of Medicine and Pharmacy, Sidi Mohammed Ben Abdellah University, Fez 30070, Morocco.
| | - Simona Gabriela Bungau
- Doctoral School of Biomedical Sciences, University of Oradea, Oradea 410087, Romania; Department of Pharmacy, University of Oradea, Oradea 410028, Romania.
| | - Souleiman El Balkhi
- Department of Pharmacology, toxicology and pharmacovigilance, CHU Limoges, France.
| | - Said Ezrari
- Microbiology Unit, Laboratory of Bioresources, Biotechnology, Ethnopharmacology and Health, Faculty of Medicine and Pharmacy Oujda, University Mohammed Premier, Oujda 60000, Morocco.
| | - Andrei-Flavius Radu
- Doctoral School of Biomedical Sciences, University of Oradea, Oradea 410087, Romania; Department of Preclinical Disciplines, University of Oradea, Oradea 410073, Romania.
| | - Tarik Sqalli Houssaini
- Laboratory of Epidemiology and Research in Health Sciences, Faculty of Medicine and Pharmacy, Sidi Mohammed Ben Abdellah University, Fez 30070, Morocco; Department of Nephrology, University of Hospital Hassan II, Fez, Morocco.
| | - Sanae Achour
- Laboratory of Pharmacology and Toxicology, University Hospital Hassan II, Fez, Morocco; Biomedical and Translational Research Laboratory, Faculty of Medicine and Pharmacy of the Fez, University of Sidi Mohamed Ben Abdellah, Fez, Morocco.
| |
Collapse
|
2
|
Mellor E, Trasande L, Albergamo V, Kannan K, Li Z, Ghassabian A, Afanasyeva Y, Liu M, Cowell W. Sociodemographic and dietary determinants of glyphosate exposure in a NYC-based pregnancy cohort. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 363:125083. [PMID: 39374760 PMCID: PMC11602357 DOI: 10.1016/j.envpol.2024.125083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 10/03/2024] [Accepted: 10/04/2024] [Indexed: 10/09/2024]
Abstract
Previous studies have provided evidence for associations between glyphosate and aminomethylphosphonic acid (AMPA) exposure and adverse birth outcomes. However, few pregnancy cohort studies have investigated dietary and other determinants of glyphosate and AMPA exposure. We aimed to identify dietary and sociodemographic factors that predict glyphosate and AMPA exposure in a contemporary, urban pregnancy cohort in the US. The study included 725 pregnant participants from the New York University Children's Health and Environment Study (NYU CHES) in New York City. Urinary concentrations of glyphosate and AMPA, determined by high-performance liquid chromatography and tandem mass spectrometry, were analyzed in urine collected from NYU CHES participants across three prenatal time points. The Diet Health Questionnaire II was completed to capture dietary intake during the prenatal period. Descriptive statistics and bivariate linear models were used to assess determinants of urinary glyphosate and AMPA concentrations. Median urinary glyphosate and AMPA levels were 0.36 ng/mL and 0.37 ng/mL, respectively. Lower glyphosate levels were associated with younger age, obesity, public insurance, being single, and lower educational attainment. Nuts, seeds and whole grain intake was associated with increased urinary glyphosate concentrations. Urinary glyphosate concentrations were lower in summer than in winter. The study findings highlight widespread exposure to glyphosate and AMPA in this pregnancy cohort, with nuts/seeds and whole grains identified as possible dietary sources of exposure. High detection rates in the study population necessitate further research on dietary exposure patterns and perinatal outcomes to inform targeted interventions and reduce exposure in vulnerable populations.
Collapse
Affiliation(s)
- Ellison Mellor
- Department of Rehabilitation Medicine, NYU Grossman School of Medicine, New York, NY, USA; CUNY Graduate School of Public Health and Health Policy, New York, NY, USA
| | - Leonardo Trasande
- Division of Environmental Pediatrics, Department of Pediatrics, NYU Grossman School of Medicine, New York, NY, USA; Division of Epidemiology, Department of Population Health, NYU Grossman School of Medicine, New York, NY, USA
| | - Vittorio Albergamo
- Division of Environmental Pediatrics, Department of Pediatrics, NYU Grossman School of Medicine, New York, NY, USA
| | - Kurunthachalam Kannan
- Division of Environmental Pediatrics, Department of Pediatrics, NYU Grossman School of Medicine, New York, NY, USA
| | - Zhongmin Li
- Division of Environmental Pediatrics, Department of Pediatrics, NYU Grossman School of Medicine, New York, NY, USA
| | - Akhgar Ghassabian
- Division of Environmental Pediatrics, Department of Pediatrics, NYU Grossman School of Medicine, New York, NY, USA; Division of Epidemiology, Department of Population Health, NYU Grossman School of Medicine, New York, NY, USA
| | - Yelena Afanasyeva
- Division of Environmental Pediatrics, Department of Pediatrics, NYU Grossman School of Medicine, New York, NY, USA; Division of Epidemiology, Department of Population Health, NYU Grossman School of Medicine, New York, NY, USA
| | - Mengling Liu
- Division of Biostatistics, Department of Population Health, NYU Grossman School of Medicine, New York, NY, USA
| | - Whitney Cowell
- Division of Environmental Pediatrics, Department of Pediatrics, NYU Grossman School of Medicine, New York, NY, USA; Division of Epidemiology, Department of Population Health, NYU Grossman School of Medicine, New York, NY, USA.
| |
Collapse
|
3
|
Galli FS, Mollari M, Tassinari V, Alimonti C, Ubaldi A, Cuva C, Marcoccia D. Overview of human health effects related to glyphosate exposure. FRONTIERS IN TOXICOLOGY 2024; 6:1474792. [PMID: 39359637 PMCID: PMC11445186 DOI: 10.3389/ftox.2024.1474792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Accepted: 09/06/2024] [Indexed: 10/04/2024] Open
Abstract
Glyphosate is a chemical compound derived from glycine, marketed as a broad-spectrum herbicide, and represents one of the most widely used pesticides in the world. For a long time, it was assumed that glyphosate was harmless, either due to its selective enzymatic acting method on plants, and because commercial formulations were believed to contain only inert chemicals. Glyphosate is widely spread in the environment, the general population is daily exposed to it via different routes, including the consumption of both plant, and non-plant based foods. Glyphosate has been detected in high amounts in workers' urine, but has been detected likewise in bodily fluids, such as blood and maternal milk, and also in 60%-80% of general population, including children. Considering its massive presence, daily exposure to glyphosate could be considered a health risk for humans. Indeed, in 2015, the IARC (International Agency for Research on Cancer) classified glyphosate and its derivatives in Group 2A, as probable human carcinogens. In 2022, nevertheless, EFSA (European Food Safety Authority) stated that the available data did not provide sufficient evidence to prove the mutagenic/carcinogenic effects of glyphosate. Therefore, the European Commission (EC) decided to renew the approval of glyphosate for another 10 years. The purpose of this review is to examine the scientific literature, focusing on potential risks to human health arising from exposure to glyphosate, its metabolites and its commercial products (e.g., Roundup®), with particular regard to its mutagenic and carcinogenic potential and its effects as endocrine disrupter (ED) especially in the human reproductive system.
Collapse
Affiliation(s)
- Flavia Silvia Galli
- Istituto Zooprofilattico Sperimentale del Lazio e della Toscana "M. Aleandri", Rome, Italy
| | - Marta Mollari
- Istituto Zooprofilattico Sperimentale del Lazio e della Toscana "M. Aleandri", Rome, Italy
| | - Valentina Tassinari
- Department of Experimental Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Cristian Alimonti
- Istituto Zooprofilattico Sperimentale del Lazio e della Toscana "M. Aleandri", Rome, Italy
| | - Alessandro Ubaldi
- Istituto Zooprofilattico Sperimentale del Lazio e della Toscana "M. Aleandri", Rome, Italy
| | - Camilla Cuva
- Istituto Zooprofilattico Sperimentale del Lazio e della Toscana "M. Aleandri", Rome, Italy
| | - Daniele Marcoccia
- Istituto Zooprofilattico Sperimentale del Lazio e della Toscana "M. Aleandri", Rome, Italy
| |
Collapse
|
4
|
Pawlak R, Wooten A, Selim M, Kew K. Reassuring Quantitative Analysis of Glyphosate and Aminomethylphosphonic Acid Levels in Breast Milk Using Liquid Chromatography Mass Spectrometry. Breastfeed Med 2024; 19:742-745. [PMID: 38900678 DOI: 10.1089/bfm.2024.0118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 06/22/2024]
Abstract
Purpose: The World Health Organization's International Agency on Research for Cancer has determined that glyphosate is "probably carcinogenic to humans." There is a great public interest to investigate whether glyphosate are detected in breast milk. Thus, the goal of this study was to assess the concentration of glyphosate and its main metabolite in breast milk. Materials and Methods: Liquid chromatography was performed at 25°C using a Luna NH2, 50 × 2 mm, 3⎛ m (Phenomenex) analytical column. Electrospray ionization mass spectrometry was collected using negative ionization mode. The calibration curve for glyphosate ranged from 10 to 250 ng/mL. The detection limit was 1 ng/mL. Results: Breast milk samples were collected from 74 women, which included vegans (n = 26), vegetarians (n = 22), and nonvegetarians (n = 26). One of the 74 milk samples contained a detectable concentration of glyphosate and an additional 7 were found to contain aminomethylphosphonic acid. Conclusions: In breast milk samples collected mainly from women residing in urban regions of the United States, glyphosate detection was rare. Consistently, breastfed infants have a low or minimal risk of being exposed to glyphosate through ingestion of mother's milk. It is possible that the presence/absence and/or level of concentration of milk glyphosate depend on a place of residency and time of breastfeeding vis-à-vis time of its agricultural application.
Collapse
Affiliation(s)
- Roman Pawlak
- East Carolina University, Greenville, North Carolina, USA
| | - Ashley Wooten
- Brody School of Medicine, East Carolina University, Greenville, North Carolina, USA
| | - Mustafa Selim
- East Carolina University, Greenville, North Carolina, USA
| | - Kimberly Kew
- Brody School of Medicine, East Carolina University, Greenville, North Carolina, USA
| |
Collapse
|
5
|
Santovito A, Nota A, Pastorino P, Gendusa C, Mirone E, Prearo M, Schleicherová D. In vitro genomic damage caused by glyphosate and its metabolite AMPA. CHEMOSPHERE 2024; 363:142888. [PMID: 39032731 DOI: 10.1016/j.chemosphere.2024.142888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 07/02/2024] [Accepted: 07/16/2024] [Indexed: 07/23/2024]
Abstract
Glyphosate is the most widely used systemic herbicide. There is ample scientific literature on the effects of this compound and its metabolite aminomethylphosphonic acid (AMPA), whereas their possible combined genotoxic action has not yet been studied. With the present study, we aimed to determine the level of genomic damage caused by glyphosate and AMPA in cultured human lymphocytes and to investigate the possible genotoxic action when both compounds were present at the same concentrations in the cultures. We used a micronuclei assay to test the genotoxicity of glyphosate and AMPA at six concentrations (0.0125, 0.025, 0.050, 0.100, 0.250, 0.500 μg/mL), which are more realistic than the highest concentrations used in previous published studies. Our data showed an increase in micronuclei frequency after treatment with both glyphosate and AMPA starting from 0.050 μg/mL up to 0.500 μg/mL. Similarly, a genomic damage was observed also in the cultures treated with the same concentrations of both compounds, except for exposure to 0.0065 and 0.0125 μg/mL. No synergistic action was observed. Finally, a significant increase in apoptotic cells was observed in cultures treated with the highest concentration of tested xenobiotics, while a significant increase in necrotic cells was observed also at the concentration of 0.250 μg/mL of both glyphosate and AMPA alone and in combination (0.125 + 0.125 μg/mL). Results of our study indicate that both glyphosate and its metabolite AMPA are able to cause genomic damage in human lymphocyte cultures, both alone and when present in equal concentrations.
Collapse
Affiliation(s)
- Alfredo Santovito
- Department of Life Sciences and Systems Biology, University of Torino, Via Accademia, Albertina, 13, 10124, Torino, Italy.
| | - Alessandro Nota
- Department of Life Sciences and Systems Biology, University of Torino, Via Accademia, Albertina, 13, 10124, Torino, Italy
| | - Paolo Pastorino
- IZS PLV, Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d'Aosta, Via, 148, Bologna, 10154, Torino, Italy
| | - Claudio Gendusa
- Department of Life Sciences and Systems Biology, University of Torino, Via Accademia, Albertina, 13, 10124, Torino, Italy
| | - Enrico Mirone
- Dep. Biosciences and Territory, University of Molise, I-86090, Pesche, Italy
| | - Marino Prearo
- IZS PLV, Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d'Aosta, Via, 148, Bologna, 10154, Torino, Italy
| | - Dasa Schleicherová
- Department of Life Sciences and Systems Biology, University of Torino, Via Accademia, Albertina, 13, 10124, Torino, Italy; IZS PLV, Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d'Aosta, Via, 148, Bologna, 10154, Torino, Italy
| |
Collapse
|
6
|
Porru S, Ferrian M, Mastrangelo G, Capovilla D, Corsini E, Fustinoni S, Peruzzi M, Colosio C. Short occupational exposure to glyphosate and its biomonitoring via urinary levels of glyphosate and metabolite AMPA (Amino-MethylPhosphonic acid), in Italian vineyard workers. Heliyon 2024; 10:e36407. [PMID: 39253168 PMCID: PMC11381772 DOI: 10.1016/j.heliyon.2024.e36407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 07/19/2024] [Accepted: 08/14/2024] [Indexed: 09/11/2024] Open
Abstract
Glyphosate, an herbicide largely used in various contexts, can have adverse effects on human health. Although it is currently the most applied pesticide worldwide, few studies evaluated the extent of human exposure via biomonitoring. To expand such information, biological monitoring of exposure to glyphosate was conducted. The study has a before-and-after design to demonstrate the immediate impact of short-term interventions. Accordingly, the urine concentrations of glyphosate and its main biodegradation product (amino-methylphosphonic acid- AMPA) were measured before and the day after the single herbicide application in 17 male winegrowers. Urine samples were analyzed by high performance liquid chromatography coupled with a triple quadrupole mass spectrometer equipped with an electrospray ionization source. Glyphosate and AMPA were not detectable in pre-application urine samples (limit of quantification for glyphosate (LOQG) was 0.1 μg/L; limit of quantification for AMPA (LOQAMPA) was 0.5 μg/L). After application, glyphosate urinary levels were above LOQG in all workers. The median, min, and max values were 2.30, 0.51, and 47.2 μg/L, respectively. The same values were found for 50 %, 5 % and 95 % percentiles. After assigning numerical values, such as one half the LOQ, to each of the non-detects, the "z" of Wilcoxon matched-pairs signed-ranks test was -3.62 (p = 0.0003), suggesting the pre-application values being significantly lower than the post-application urinary glyphosate concentration. A similar analysis was not feasible with AMPA urinary levels, which were detectable only in 3 workers, after application. 12 (71 %) workers were significantly exposed to glyphosate, but adherence to the adoption of personal protective equipment was good: 14 (82 %) workers used gloves, 13 (76 %) used overalls and 13 (76 %) facial masks. Our data show that glyphosate can be absorbed by the workers after a single application and confirms the usefulness of biomonitoring in exposed workers. Further studies are needed in larger working populations and with multiple glyphosate applications, as well as to evaluate the correlations of glyphosate urine levels with exposure questionnaire data, in order to assess the actual relevance of risk and protection factors.
Collapse
Affiliation(s)
- Stefano Porru
- Section of Occupational Medicine, Department of Diagnostics and Public Health, University of Verona, Italy
- MISTRAL, Interuniversity Research Centre 'Integrated Models of Study for Health Protection and Prevention in Living and Working Environments', University of Brescia, Milano Bicocca and Verona, University of Verona, Italy
| | - Melissa Ferrian
- Section of Occupational Medicine, Department of Diagnostics and Public Health, University of Verona, Italy
| | - Giuseppe Mastrangelo
- Department of Cardio-Thoraco-Vascular Sciences and Public Health, University of Padua, Italy
| | - Diego Capovilla
- Section of Occupational Medicine, Department of Diagnostics and Public Health, University of Verona, Italy
| | - Emanuela Corsini
- Department of Pharmacological and Biomolecular Sciences 'Rodolfo Paoletti', Università degli Studi di Milano, Italy
| | - Silvia Fustinoni
- Department of Clinical and Community Sciences, Università degli Studi di Milano, Italy
- Occupational Health Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Manuela Peruzzi
- Occupational Health Service, Local Health Authority 9, Verona, Italy
| | - Claudio Colosio
- Post graduate School of Occupational Health, Università degli Studi di Milano, Italy and IRCCS Don Carlo Gnocchi Foundation, Milano, Italy
| |
Collapse
|
7
|
Hakme E, Poulsen ME, Lassen AD. A Comprehensive Review on Pesticide Residues in Human Urine. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:17706-17729. [PMID: 39090814 DOI: 10.1021/acs.jafc.4c02705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/04/2024]
Abstract
Numerous studies worldwide have evaluated pesticide residues detected in urine. This review serves as a contribution to this field by presenting an overview of scientific research studies published from 2001 to 2023, including details of study characteristics and research scope. Encompassing 72 papers, the review further delves into addressing key challenges in study design and method used such as sampling and analytical approaches, results adjustments, risk assessment, estimations, and results evaluation. The review explores urinary concentrations and detection frequency of metabolites of organophosphates and pyrethroids, as well as herbicides such as 2,4-D and glyphosate and their metabolites, across various studies. The association of the results with demographic and lifestyle variables were explored. While farmers generally have higher pesticide exposure, adopting organic farming practices can reduce the levels of pesticides detected in their urine. Residence close to agricultural areas has shown high exposure in some cases. Dietary exposure is especially high among people adopting a conventionally grown plant-rich dietary pattern. A higher detection level and frequency of detection are generally found in females and children compared to males. The implications of transitioning to organic and sustainable plant-rich diets for reducing pesticide exposure and potential health benefits for both adults and children require further investigation.
Collapse
Affiliation(s)
- Elena Hakme
- Technical University of Denmark, National Food Institute, 2800 Lyngby, Denmark
| | | | - Anne Dahl Lassen
- Technical University of Denmark, National Food Institute, 2800 Lyngby, Denmark
| |
Collapse
|
8
|
Ait Bali Y, Madougou FA, Ba-M'hamed S, Giustetto M, Bennis M. Glyphosate-based herbicide exposure affects cognitive flexibility and social cognition in adult mice. Neurosci Lett 2024; 837:137912. [PMID: 39032801 DOI: 10.1016/j.neulet.2024.137912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 07/16/2024] [Accepted: 07/17/2024] [Indexed: 07/23/2024]
Abstract
Glyphosate (Gly) is the active ingredient of several widely used herbicide formulations. Studies on Gly and glyphosate-based herbicide (GBH) exposure in different experimental models have suggested that the nervous system represented a key target for its toxicity, especially the prefrontal cortex (PFC). However, it is still unknown whether exposure to GBH affects higher brain functions dependent on PFC circuitry. The present work aimed to examine the effects of subtoxic doses of GBH on social cognition and cognitive flexibility as two functions belonging to higher brain function in mice. To do so, adult male mice were exposed daily to GBH by gavage at doses of 250 or 500 mg/kg for a sub-chronic period lasting 6 weeks. Then, mice were subjected to behavioral testing using the three-chamber and the Barnes maze paradigms. Our results indicate that GBH did not affect sociability. However, we found that GBH affects social cognition expressed by a lower discrimination index in the three-chamber test. Moreover, spatial memories evaluated during the probe trial, and cognitive flexibility evaluated during the reversal probe, were affected in mice exposed to GBH. Based on these results, exposure to subtoxic doses of GBH led to neurobehavioral alterations affecting the integrity of social cognition and cognitive flexibility functions. Finally, these data urge a thorough investigation of the cellular and molecular mechanisms underlying these alterations.
Collapse
Affiliation(s)
- Yassine Ait Bali
- Lumbricidae, Improving Soil Productivity and Environment Unit, Higher Normal School, Mohammed V University in Rabat, Rabat, Morocco; Laboratory of Pharmacology, Neurobiology, Anthropobiology and Environment, Cadi Ayyad University, Marrakech, Morocco.
| | - Fatiya Alfari Madougou
- Laboratory of Pharmacology, Neurobiology, Anthropobiology and Environment, Cadi Ayyad University, Marrakech, Morocco
| | - Saadia Ba-M'hamed
- Laboratory of Pharmacology, Neurobiology, Anthropobiology and Environment, Cadi Ayyad University, Marrakech, Morocco
| | - Maurizio Giustetto
- Department of Neuroscience Rita Levi-Montalcini, University of Turin, Turin, Italy.
| | - Mohamed Bennis
- Laboratory of Pharmacology, Neurobiology, Anthropobiology and Environment, Cadi Ayyad University, Marrakech, Morocco
| |
Collapse
|
9
|
Vasseur C, Serra L, El Balkhi S, Lefort G, Ramé C, Froment P, Dupont J. Glyphosate presence in human sperm: First report and positive correlation with oxidative stress in an infertile French population. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 278:116410. [PMID: 38696871 DOI: 10.1016/j.ecoenv.2024.116410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 04/15/2024] [Accepted: 04/27/2024] [Indexed: 05/04/2024]
Abstract
Environmental exposure to endocrine disruptors, such as pesticides, could contribute to a decline of human fertility. Glyphosate (GLY) is the main component of Glyphosate Based Herbicides (GBHs), which are the most commonly herbicides used in the world. Various animal model studies demonstrated its reprotoxicity. In Europe, GLY authorization in agriculture has been extended until 2034. Meanwhile the toxicity of GLY in humans is still in debate. The aims of our study were firstly to analyse the concentration of GLY and its main metabolite, amino-methyl-phosphonic acid (AMPA) by LC/MS-MS in the seminal and blood plasma in an infertile French men population (n=128). We secondly determined Total Antioxidant Status (TAS) and Total Oxidant Status (TOS) using commercial colorimetric kits and some oxidative stress biomarkers including malondialdehyde (MDA) and 8-hydroxy-2'-deoxyguanosine (8-OHdG) by ELISA assays. We next analysed potential correlations between GLY and oxidative stress biomarkers concentration and sperm parameters (sperm concentration, progressive speed, anormal forms). Here, we detected for the first time GLY in the human seminal plasma in significant proportions and we showed that its concentration was four times higher than those observed in blood plasma. At the opposite, AMPA was undetectable. We also observed a strong positive correlation between plasma blood GLY concentrations and plasma seminal GLY and 8-OHdG concentrations, the latter reflecting DNA impact. In addition, TOS, Oxidative Stress Index (OSI) (TOS/TAS), MDA blood and seminal plasma concentrations were significantly higher in men with glyphosate in blood and seminal plasma, respectively. Taken together, our results suggest a negative impact of GLY on the human reproductive health and possibly on his progeny. A precaution principle should be applied at the time of the actual discussion of GLY and GBHs formulants uses in Europe by the authorities.
Collapse
Affiliation(s)
- Claudine Vasseur
- Centre de fertilité, Pôle Santé Léonard de Vinci, Chambray-lès-Tours, France.
| | - Loïse Serra
- CNRS, IFCE, INRAE, Université de Tours, PRC, Nouzilly F-37380, France
| | - Souleiman El Balkhi
- Service de Pharmacologie, Toxicologie et Pharmacovigilance, Limoges, CHU F-87042, France
| | - Gaëlle Lefort
- CNRS, IFCE, INRAE, Université de Tours, PRC, Nouzilly F-37380, France
| | - Christelle Ramé
- CNRS, IFCE, INRAE, Université de Tours, PRC, Nouzilly F-37380, France
| | - Pascal Froment
- CNRS, IFCE, INRAE, Université de Tours, PRC, Nouzilly F-37380, France
| | - Joëlle Dupont
- CNRS, IFCE, INRAE, Université de Tours, PRC, Nouzilly F-37380, France.
| |
Collapse
|
10
|
Chang VC, Ospina M, Xie S, Andreotti G, Parks CG, Liu D, Madrigal JM, Ward MH, Rothman N, Silverman DT, Sandler DP, Friesen MC, Beane Freeman LE, Calafat AM, Hofmann JN. Urinary biomonitoring of glyphosate exposure among male farmers and nonfarmers in the Biomarkers of Exposure and Effect in Agriculture (BEEA) study. ENVIRONMENT INTERNATIONAL 2024; 187:108644. [PMID: 38636272 DOI: 10.1016/j.envint.2024.108644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 04/04/2024] [Accepted: 04/08/2024] [Indexed: 04/20/2024]
Abstract
Glyphosate is the most widely applied herbicide worldwide. Glyphosate biomonitoring data are limited for agricultural settings. We measured urinary glyphosate concentrations and assessed exposure determinants in the Biomarkers of Exposure and Effect in Agriculture (BEEA) study. We selected four groups of BEEA participants based on self-reported pesticide exposure: recently exposed farmers with occupational glyphosate use in the last 7 days (n = 98), farmers with high lifetime glyphosate use (>80th percentile) but no use in the last 7 days (n = 70), farming controls with minimal lifetime use (n = 100), and nonfarming controls with no occupational pesticide exposures and no recent home/garden glyphosate use (n = 100). Glyphosate was quantified in first morning void urine using ion chromatography isotope-dilution tandem mass spectrometry. We estimated associations between urinary glyphosate concentrations and potential determinants using multivariable linear regression. Glyphosate was detected (≥0.2 µg/L) in urine of most farmers with recent (91 %) and high lifetime (93 %) use, as well as farming (88 %) and nonfarming (81 %) controls; geometric mean concentrations were 0.89, 0.59, 0.46, and 0.39 µg/L (0.79, 0.51, 0.42, and 0.37 µg/g creatinine), respectively. Compared with both control groups, urinary glyphosate concentrations were significantly elevated among recently exposed farmers (P < 0.0001), particularly those who used glyphosate in the previous day [vs. nonfarming controls; geometric mean ratio (GMR) = 5.46; 95 % confidence interval (CI): 3.75, 7.93]. Concentrations among high lifetime exposed farmers were also elevated (P < 0.01 vs. nonfarming controls). Among recently exposed farmers, glyphosate concentrations were higher among those not wearing gloves when applying glyphosate (GMR = 1.91; 95 % CI: 1.17, 3.11), not wearing long-sleeved shirts when mixing/loading glyphosate (GMR = 2.00; 95 % CI: 1.04, 3.86), applying glyphosate exclusively using broadcast/boom sprayers (vs. hand sprayer only; GMR = 1.70; 95 % CI: 1.00, 2.92), and applying glyphosate to crops (vs. non-crop; GMR = 1.72; 95 % CI: 1.04, 2.84). Both farmers and nonfarmers are exposed to glyphosate, with recency of occupational glyphosate use being the strongest determinant of urinary glyphosate concentrations. Continued biomonitoring of glyphosate in various settings is warranted.
Collapse
Affiliation(s)
- Vicky C Chang
- Occupational and Environmental Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA.
| | - Maria Ospina
- Division of Laboratory Sciences, National Center for Environmental Health, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Shuai Xie
- Occupational and Environmental Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Gabriella Andreotti
- Occupational and Environmental Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Christine G Parks
- Epidemiology Branch, National Institute of Environmental Health Sciences, National Institutes of Health, Durham, NC, USA
| | - Danping Liu
- Biostatistics Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Jessica M Madrigal
- Occupational and Environmental Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Mary H Ward
- Occupational and Environmental Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Nathaniel Rothman
- Occupational and Environmental Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Debra T Silverman
- Occupational and Environmental Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Dale P Sandler
- Epidemiology Branch, National Institute of Environmental Health Sciences, National Institutes of Health, Durham, NC, USA
| | - Melissa C Friesen
- Occupational and Environmental Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Laura E Beane Freeman
- Occupational and Environmental Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Antonia M Calafat
- Division of Laboratory Sciences, National Center for Environmental Health, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Jonathan N Hofmann
- Occupational and Environmental Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
11
|
Sun H, He Z, Gao Y, Yang Y, Wang Y, Gu A, Xu J, Quan Y, Yang Y. Polyoxyethylene tallow amine and glyphosate exert different developmental toxicities on human pluripotent stem cells-derived heart organoid model. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 918:170675. [PMID: 38316312 DOI: 10.1016/j.scitotenv.2024.170675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 01/27/2024] [Accepted: 02/02/2024] [Indexed: 02/07/2024]
Abstract
The early stage of heart development is highly susceptible to various environmental factors. While the use of animal models has aided in identifying numerous environmental risk factors, the variability between species and the low throughput limit their translational potential. Recently, a type of self-assembling cardiac structures, known as human heart organoids (hHOs), exhibits a remarkable biological consistency with human heart. However, the feasibility of hHOs for assessing cardiac developmental risk factors remains unexplored. Here, we focused on the cardiac developmental effects of core components of Glyphosate-based herbicides (GBHs), the most widely used herbicides, to evaluate the reliability of hHOs for the prediction of possible cardiogenesis toxicity. GBHs have been proven toxic to cardiac development based on multiple animal models, with the mechanism remaining unknown. We found that polyoxyethylene tallow amine (POEA), the most common surfactant in GBHs formulations, played a dominant role in GBHs' heart developmental toxicity. Though there were a few differences in transcriptive features, hHOs exposed to sole POEA and combined POEA and Glyphosate would suffer from both disruption of heart contraction and disturbance of commitment in cardiomyocyte isoforms. By contrast, Glyphosate only caused mild epicardial hyperplasia. This study not only sheds light on the toxic mechanism of GBHs, but also serves as a methodological demonstration, showcasing its effectiveness in recognizing and evaluating environmental risk factors, and deciphering toxic mechanisms.
Collapse
Affiliation(s)
- Hao Sun
- State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing 211166, China
| | - Zhazheng He
- Department of Epidemiology and Biostatistics, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Yao Gao
- Department of Epidemiology and Biostatistics, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Yanhan Yang
- State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing 211166, China
| | - Yachang Wang
- State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing 211166, China
| | - Aihua Gu
- State Key Laboratory of Reproductive Medicine and Offspring Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Jin Xu
- State Key Laboratory of Reproductive Medicine and Offspring Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Yingyi Quan
- State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing 211166, China
| | - Yang Yang
- State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing 211166, China.
| |
Collapse
|
12
|
Buchenauer L, Haange SB, Bauer M, Rolle-Kampczyk UE, Wagner M, Stucke J, Elter E, Fink B, Vass M, von Bergen M, Schulz A, Zenclussen AC, Junge KM, Stangl GI, Polte T. Maternal exposure of mice to glyphosate induces depression- and anxiety-like behavior in the offspring via alterations of the gut-brain axis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 905:167034. [PMID: 37709081 DOI: 10.1016/j.scitotenv.2023.167034] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 08/24/2023] [Accepted: 09/11/2023] [Indexed: 09/16/2023]
Abstract
The past decade has been characterized by increased awareness and de-stigmatization of mental health issues, in particular the most common neuropsychiatric disorders depression and anxiety. Further, with growing understanding of neurodevelopmental disorders such as attention deficit and hyperactivity disorder and autism spectrum disorder, the number of diagnosed patients has increased. The pathogenesis of these behavioral disorders is multifactorial and early-life exposure to environmental chemicals has been proposed to be a relevant risk factor that might mediate these effects by disturbances on the gut-brain-axis. However, for glyphosate, the most widely used pesticide worldwide, there are only limited and inconsistent findings that link chronic low-dose exposure in particular during early life to neurobehavioral disorders. Here, we explored the impact of maternal oral glyphosate exposure (0.5 and 50 mg/kg body weight/day) during pregnancy and the lactational period on offspring's behavior, brain gene expression and gut microbiota using a cross-generational mouse model. Behavioral analyses revealed a depression- and anxiety-like behavior as well as social deficits most notably in adult female offspring of glyphosate-exposed dams. Furthermore, the expression of tryptophan hydroxylase 2, an enzyme discussed to be linked to behavioral problems, was reduced in the hippocampus of female offspring and correlated to a glyphosate-induced DNA hypermethylation of the gene. Moreover, maternal glyphosate exposure significantly altered the gut microbiota in the female offspring including a decreased abundance of Akkermansia and increased abundance of Alistipes and Blautia, bacteria involved in tryptophan metabolism and associated with depression- and anxiety-like disorders. Our results suggest that glyphosate might influence the gut-brain axis crosstalk following in-utero and lactational exposure. This study underlines the importance of understanding the impact of exposure to pesticides on the gut-brain axis and further emphasizes the need for microbiome analyses to be compulsorily included in health risk assessments of pesticides.
Collapse
Affiliation(s)
- Lisa Buchenauer
- Helmholtz Centre for Environmental Research - UFZ, Department of Environmental Immunology, Leipzig, Germany; University of Leipzig, Leipzig University Medical Center, Department of Dermatology, Venerology and Allergology, Leipzig, Germany
| | - Sven-Bastiaan Haange
- Helmholtz Centre for Environmental Research - UFZ, Department of Molecular Systems Biology, Leipzig, Germany
| | - Mario Bauer
- Helmholtz Centre for Environmental Research - UFZ, Department of Environmental Immunology, Leipzig, Germany
| | - Ulrike E Rolle-Kampczyk
- Helmholtz Centre for Environmental Research - UFZ, Department of Molecular Systems Biology, Leipzig, Germany
| | - Marita Wagner
- Helmholtz Centre for Environmental Research - UFZ, Department of Environmental Immunology, Leipzig, Germany; University of Leipzig, Leipzig University Medical Center, Department of Dermatology, Venerology and Allergology, Leipzig, Germany
| | - Johanna Stucke
- Helmholtz Centre for Environmental Research - UFZ, Department of Environmental Immunology, Leipzig, Germany; University of Leipzig, Leipzig University Medical Center, Department of Dermatology, Venerology and Allergology, Leipzig, Germany
| | - Elena Elter
- Helmholtz Centre for Environmental Research - UFZ, Department of Environmental Immunology, Leipzig, Germany; University of Leipzig, Leipzig University Medical Center, Department of Dermatology, Venerology and Allergology, Leipzig, Germany
| | - Beate Fink
- Helmholtz Centre for Environmental Research - UFZ, Department of Environmental Immunology, Leipzig, Germany
| | - Maren Vass
- University of Leipzig, Leipzig University Medical Center, Department of Dermatology, Venerology and Allergology, Leipzig, Germany
| | - Martin von Bergen
- Helmholtz Centre for Environmental Research - UFZ, Department of Molecular Systems Biology, Leipzig, Germany; University of Leipzig, Faculty of Life Sciences, Institute of Biochemistry, Leipzig, Germany; German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
| | - Angela Schulz
- University of Leipzig, Medical Faculty, Rudolf Schönheimer Institute of Biochemistry, Leipzig, Germany
| | - Ana C Zenclussen
- Helmholtz Centre for Environmental Research - UFZ, Department of Environmental Immunology, Leipzig, Germany; Perinatal Immunology, Saxonian Incubator for Clinical Translation (SIKT), Medical Faculty, University Leipzig, 04103 Leipzig, Germany
| | - Kristin M Junge
- Helmholtz Centre for Environmental Research - UFZ, Department of Environmental Immunology, Leipzig, Germany; AKAD University Stuttgart, School of Health and Social Sciences, Stuttgart, Germany
| | - Gabriele I Stangl
- Institute of Agricultural and Nutritional Sciences, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Tobias Polte
- Helmholtz Centre for Environmental Research - UFZ, Department of Environmental Immunology, Leipzig, Germany; University of Leipzig, Leipzig University Medical Center, Department of Dermatology, Venerology and Allergology, Leipzig, Germany.
| |
Collapse
|
13
|
Ferreira NGC, da Silva KA, Guimarães ATB, de Oliveira CMR. Hotspots of soil pollution: Possible glyphosate and aminomethylphosphonic acid risks on terrestrial ecosystems and human health. ENVIRONMENT INTERNATIONAL 2023; 179:108135. [PMID: 37647703 DOI: 10.1016/j.envint.2023.108135] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 04/13/2023] [Accepted: 08/07/2023] [Indexed: 09/01/2023]
Abstract
The study presents a literature review of glyphosate (GLY) occurrence and its breakdown product, aminomethylphosphonic acid (AMPA), in soils worldwide, but with a specific focus on South America. In addition, an ecological risk approach based on the ecotoxicological endpoints for key soil biota (e.g., collembolans, and earthworms) assessed the impact of GLY and AMPA on these organisms. A generic probabilistic model for human health risk was also calculated for the different world regions. For what reports the risk for edaphic species and the level of pollution under the worst-case scenario, the South American continent was identified as the region of most concern. Nonetheless, other areas may also be in danger, but no risk could be calculated due to the lack of data. Since tropical countries are the top food exporters worldwide, the results obtained in this study must be carefully examined for their implications on a global scale. Some of the factors behind the high levels of these two chemicals in soils are debated (e.g., permissive protection policies, the extensive use of genetically modified crops), and some possible guidelines are presented that include, for example, further environmental characterisation and management of pesticide residues. The present review integrates data that can be used as a base by policymakers and decision-makers to develop and implement environmental policies.
Collapse
Affiliation(s)
- Nuno G C Ferreira
- CIIMAR - Interdisciplinary Centre of Marine and Environmental Research, Terminal de Cruzeiros de Leixões, Av. General Norton de Matos s/n, 4450-208 Matosinhos, Portugal; School of Biosciences - Cardiff University, Museum Avenue, Cardiff CF10 3AX, United Kingdom.
| | - Karlo Alves da Silva
- Graduate Program in Environmental Management (PPGAmb), Universidade Positivo (UP) and Centro de Pesquisa da Universidade Positivo (CPUP), Professor Pedro Viriato Parigot de Souza, 81280-330 Curitiba, Brazil
| | - Ana Tereza Bittencourt Guimarães
- Laboratory of Biological Investigations, Universidade Estadual do Oeste do Paraná, Rua Universitária, Cascavel 2069, Paraná, Brazil; Graduate Program in Biosciences and Health, Universidade Estadual do Oeste do Paraná, Rua Universitária, Cascavel 2069, Paraná, Brazil
| | - Cíntia Mara Ribas de Oliveira
- Graduate Program in Environmental Management (PPGAmb), Universidade Positivo (UP) and Centro de Pesquisa da Universidade Positivo (CPUP), Professor Pedro Viriato Parigot de Souza, 81280-330 Curitiba, Brazil.
| |
Collapse
|
14
|
Gois MFB, Fernández-Pato A, Huss A, Gacesa R, Wijmenga C, Weersma RK, Fu J, Vermeulen RCH, Zhernakova A, Lenters VC, Kurilshikov A. Impact of occupational pesticide exposure on the human gut microbiome. Front Microbiol 2023; 14:1223120. [PMID: 37637104 PMCID: PMC10448898 DOI: 10.3389/fmicb.2023.1223120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 07/24/2023] [Indexed: 08/29/2023] Open
Abstract
The rising use of pesticides in modern agriculture has led to a shift in disease burden in which exposure to these chemicals plays an increasingly important role. The human gut microbiome, which is partially responsible for the biotransformation of xenobiotics, is also known to promote biotransformation of environmental pollutants. Understanding the effects of occupational pesticide exposure on the gut microbiome can thus provide valuable insights into the mechanisms underlying the impact of pesticide exposure on health. Here we investigate the impact of occupational pesticide exposure on human gut microbiome composition in 7198 participants from the Dutch Microbiome Project of the Lifelines Study. We used job-exposure matrices in combination with occupational codes to retrieve categorical and cumulative estimates of occupational exposures to general pesticides, herbicides, insecticides and fungicides. Approximately 4% of our cohort was occupationally exposed to at least one class of pesticides, with predominant exposure to multiple pesticide classes. Most participants reported long-term employment, suggesting a cumulative profile of exposure. We demonstrate that contact with insecticides, fungicides and a general "all pesticides" class was consistently associated with changes in the gut microbiome, showing significant associations with decreased alpha diversity and a differing beta diversity. We also report changes in the abundance of 39 different bacterial taxa upon exposure to the different pesticide classes included in this study. Together, the extent of statistically relevant associations between gut microbial changes and pesticide exposure in our findings highlights the impact of these compounds on the human gut microbiome.
Collapse
Affiliation(s)
- Milla F. Brandao Gois
- Department of Genetics and Department of Gastroenterology and Hepatology University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| | - Asier Fernández-Pato
- Department of Genetics and Department of Gastroenterology and Hepatology University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| | - Anke Huss
- Department of Population Health Sciences, Institute for Risk Assessment Sciences (IRAS), Utrecht University, Utrecht, Netherlands
| | - Ranko Gacesa
- Department of Genetics and Department of Gastroenterology and Hepatology University of Groningen, University Medical Center Groningen, Groningen, Netherlands
- Department of Gastroenterology and Hepatology, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| | - Cisca Wijmenga
- Department of Genetics and Department of Gastroenterology and Hepatology University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| | - Rinse K. Weersma
- Department of Genetics and Department of Gastroenterology and Hepatology University of Groningen, University Medical Center Groningen, Groningen, Netherlands
- Department of Gastroenterology and Hepatology, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| | - Jingyuan Fu
- Department of Genetics and Department of Gastroenterology and Hepatology University of Groningen, University Medical Center Groningen, Groningen, Netherlands
- Department of Pediatrics, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| | - Roel C. H. Vermeulen
- Department of Population Health Sciences, Institute for Risk Assessment Sciences (IRAS), Utrecht University, Utrecht, Netherlands
| | - Alexandra Zhernakova
- Department of Genetics and Department of Gastroenterology and Hepatology University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| | - Virissa C. Lenters
- Department of Population Health Sciences, Institute for Risk Assessment Sciences (IRAS), Utrecht University, Utrecht, Netherlands
| | - Alexander Kurilshikov
- Department of Genetics and Department of Gastroenterology and Hepatology University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| |
Collapse
|