1
|
Ferdigg A, Hopp AK, Wolf G, Superti-Furga G. Membrane transporters modulating the toxicity of arsenic, cadmium, and mercury in human cells. Life Sci Alliance 2025; 8:e202402866. [PMID: 39578074 PMCID: PMC11584324 DOI: 10.26508/lsa.202402866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 11/07/2024] [Accepted: 11/08/2024] [Indexed: 11/24/2024] Open
Abstract
Non-essential metals are extremely toxic to living organisms, posing significant health risks, particularly in developing nations where they are a major contributor to illness and death. Although their toxicity is widely acknowledged, the mechanisms by which they are regulated within human cells remain incompletely understood. Specifically, the role of membrane transporters in mediating heavy metal toxicity is not well comprehended. Our study demonstrates how specific transporters can modulate the toxicity of cadmium, mercury, and the metalloid arsenic in human cells. Using CRISPR/Cas9 loss-of-function screens, we found that the multidrug resistance protein MRP1/ABCC1 provided protection against toxicity induced by arsenic and mercury. In addition, we found that SLC39A14 and SLC30A1 increased cellular sensitivity to cadmium. Using a reporter cell line to monitor cellular metal accumulation and performing a cDNA gain-of-function screen, we were able to clarify the function of SLC30A1 in controlling cadmium toxicity through the modulation of intracellular zinc levels. This transporter-wide approach provides new insights into the complex roles of membrane transporters in influencing the toxicity of arsenic, cadmium, and mercury in human cell lines.
Collapse
Affiliation(s)
- Andrè Ferdigg
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Ann-Katrin Hopp
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Gernot Wolf
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Giulio Superti-Furga
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
- Center for Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
2
|
Lazarus M, Sergiel A, Orct T, Ferenčaković M, Tariba Lovaković B, Žunec S, Rašić D, Oster E, Reljić S, Macur J, Huber Đ. Apex carnivores coping with metal(loid) pollution and oxidative stress: Biological and environmental drivers of variation in kidney of European brown bear. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 363:125285. [PMID: 39522638 DOI: 10.1016/j.envpol.2024.125285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 11/07/2024] [Accepted: 11/08/2024] [Indexed: 11/16/2024]
Abstract
Induction of oxidative stress and the associated lipid peroxidation is a prevalent mechanism through which certain metal(loid)s exert nephrotoxic effects in mammals. Research on the toxic impacts of metal(loid)s in free-ranging large mammals at high trophic positions is exceedingly rare, yet crucial for understanding environmental exposure scenarios relevant to both human and animal risk assessment. Renal cortex tissues (N = 457) of free-ranging brown bears (Ursus arctos) from the Dinara-Pindos population sampled in Croatia were analysed herein for toxic metal(loid)s and the underlying biological and environmental drivers of variation, with their time trend monitored during the 2009-2022 period. In 28 individuals from the 2021-2022 period, we additionally investigated associations between metal(loid)s and oxidative stress and damage biomarkers in renal cortex cells. The principal generalized linear models used to approximate variations in biomarkers of oxidative stress and damage included non-essential As, Cd, Pb, Tl and U, and essential Co, Cu, Fe and Zn. Age class and season of sampling had no impact on biomarker levels, except for lipid peroxidation, LP (April ↑). Age, sex (females ↑), body condition index (↓) and season of sampling significantly influenced metal(loid)s levels. Non-specific mammalian thresholds were crossed for Cd and Pb toxicity in 1-16% and 2% of population, respectively. Renal levels of metal(loid)s did not exhibit a clear trend over the 13-year period. The levels found in this study were higher than in sympatric carnivorous and herbivorous species, but in line with findings in ursids worldwide. Potential adverse health effects from environmental exposure in brown bears may arise from disruption of oxidative balance, as evidence clearly indicated associated changes in catalase activity (↑), glutathione content (↑), LP (↓), reactive oxygen species (↓), total antioxidant capacity (↑) in the renal cortex due to the presence of the most toxicologically relevant Cd and Pb.
Collapse
Affiliation(s)
- Maja Lazarus
- Institute for Medical Research and Occupational Health, Zagreb, Croatia
| | - Agnieszka Sergiel
- Institute of Nature Conservation of Polish Academy of Sciences, Kraków, Poland.
| | - Tatjana Orct
- Institute for Medical Research and Occupational Health, Zagreb, Croatia
| | | | | | - Suzana Žunec
- Institute for Medical Research and Occupational Health, Zagreb, Croatia
| | - Dubravka Rašić
- Institute for Medical Research and Occupational Health, Zagreb, Croatia
| | - Ena Oster
- University of Zagreb Faculty of Veterinary Medicine, Zagreb, Croatia
| | - Slaven Reljić
- University of Zagreb Faculty of Veterinary Medicine, Zagreb, Croatia
| | - Joanna Macur
- Institute of Nature Conservation of Polish Academy of Sciences, Kraków, Poland
| | - Đuro Huber
- University of Zagreb Faculty of Veterinary Medicine, Zagreb, Croatia
| |
Collapse
|
3
|
Singh LK, Kumar A, Siddiqi NJ, Sharma B. Heavy metals altered the xenobiotic metabolism of rats by targeting the GST enzyme: An in vitro and in silico study. Toxicology 2024; 509:153946. [PMID: 39270966 DOI: 10.1016/j.tox.2024.153946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 08/24/2024] [Accepted: 09/05/2024] [Indexed: 09/15/2024]
Abstract
Among all the heavy metals, Pb, Cd, and As are the most harmful pollutants in the environment. They reach into the organisms via various levels of food chains i.e. air and water. Glutathione-s-transferase (GST, E.C. 2.5.1.18), a key enzyme of xenobiotics metabolism, plays an important role in the removal of several toxicants. The present study aimed to evaluate any inhibitory action of these heavy metals on the GST enzyme isolated from the hepatic tissues of rats. A 10 % (w/v) homogenate of rat liver was prepared in cold and centrifuged at 4 °C at 9000xg for 30 min. The supernatant was collected and kept frozen at -20 °C or used fresh for carrying out different experiments. The activity of GST was monitored spectrophotometrically at 340 nm using 220 μg of soluble protein with varying equal substrate concentrations (0.125-2 mM) in phosphate buffer (50 mM, pH 6.5). To assess the impact of heavy metals on the enzyme activity, different concentrations of Cd (0-0.6 mM) and Pb (0-2 mM) were added to the reaction mixture followed by monitoring the residual activity. The optimum temperature and pH of rat liver GST were found to be 37 °C and 6.5, respectively. The Km value for GST was 0.69 mM and the Vmax was found to be 78.67 U/mg. The Cd and Pb significantly altered the kinetic behaviour of the enzyme. The Vmax and Kcat/Km parameters of GST were recorded to be decreased after interaction with Cd and Pb individually and showed a mixed type of inhibition pattern suggesting that these inhibitors may have a greater binding affinity either for the free enzyme or the substrate-enzyme complex. These metals showed a time-dependent enzyme inhibition profile. Cd was found to be the most potent inhibitor when compared to other treated metals; the order of inhibitory effect of metal ions was Cd>Pb>As. The in silico ion docking analysis for determining the probable interactions of Cd and Pb with fragmented GST validated that Cd exhibited higher inhibition potential for the enzyme as compared to Pb. The results of the present study indicated that exposure of both the Cd and Pb may cause significant inhibition of hepatic GST; the former with higher inhibitory potential than the later. However, As proved to be least effective against the enzyme under the aforesaid experimental conditions.
Collapse
Affiliation(s)
- Lalit Kumar Singh
- Department of Biochemistry, University of Allahabad, Prayagraj 211002, India
| | - Abhishek Kumar
- Department of Biochemistry, University of Allahabad, Prayagraj 211002, India
| | - Nikhat Jamal Siddiqi
- Department of Internal Surgical Nursing, College of Nursing, King Saud University, Riyadh 11421 Saudi Arabia
| | - Bechan Sharma
- Department of Biochemistry, University of Allahabad, Prayagraj 211002, India.
| |
Collapse
|
4
|
Lu X, Zhang L, Lin GM, Lu JG, Cui ZB. Analysis of Differential Gene Expression under Acute Lead or Mercury Exposure in Larval Zebrafish Using RNA-Seq. Animals (Basel) 2024; 14:2877. [PMID: 39409826 PMCID: PMC11475140 DOI: 10.3390/ani14192877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 09/23/2024] [Accepted: 10/04/2024] [Indexed: 10/20/2024] Open
Abstract
This study was first conducted to investigate the effects of acute lead exposure on developing zebrafish embryos or larvae from 24 to 120 h post-fertilization (hpf). Our data showed that treatment with 50-200 μM lead significantly affected larval survivability and morphology compared to the respective control. Second, we chose 120 hpf larvae treated with 12.5 μM lead for RNA sequencing due to its exposure level being sufficient to produce toxic effects with minimum death and lead bioaccumulation in developing zebrafish. A total of 137.45 million raw reads were obtained, and more than 86% of clean data were mapped to the zebrafish reference genome. Differential expression profiles generated 116 up- and 34 down-regulated genes upon lead exposure. The most enriched GO terms for representative DEGs were ion transport and lipid metabolism. Third, a comparison with the dataset of mercury-regulated gene expression identified 94 genes (64 up-regulated and 30 down-regulated) for exposure specific to lead, as well as 422 genes (338 up-regulated and 84 down-regulated) for exposure specific to mercury. In addition, 56 genes were co-regulated by micromolar mercury and lead treatment, and the expression of thirteen genes, including mt2, ctssb.1, prdx1, txn, sqrdl, tmprss13a, socs3a, trpv6, abcb6a, gsr, hbz, fads2, and zgc:92590 were validated by qRT-PCR. These genes were mainly associated with metal ion binding, proteolysis, antioxidant activity, signal transduction, calcium ion or oxygen transport, the fatty acid biosynthetic process, and protein metabolism. Taken together, these findings help better understand the genome-wide responses of developing zebrafish to lead or mercury and provide potential biomarkers for acute exposure to toxic metals.
Collapse
Affiliation(s)
- Xing Lu
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China
| | - Lang Zhang
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, China;
| | - Gen-Mei Lin
- School of Marine Sciences, Sun Yat-sen University, Zhuhai 519082, China; (G.-M.L.); (J.-G.L.)
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519080, China
| | - Jian-Guo Lu
- School of Marine Sciences, Sun Yat-sen University, Zhuhai 519082, China; (G.-M.L.); (J.-G.L.)
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519080, China
| | - Zong-Bin Cui
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China
| |
Collapse
|
5
|
Ooko E, Ali NT, Efferth T. Identification of Cuproptosis-Associated Prognostic Gene Expression Signatures from 20 Tumor Types. BIOLOGY 2024; 13:793. [PMID: 39452102 PMCID: PMC11505359 DOI: 10.3390/biology13100793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 09/25/2024] [Accepted: 09/29/2024] [Indexed: 10/26/2024]
Abstract
We investigated the mRNA expression of 124 cuproptosis-associated genes in 7489 biopsies from 20 different tumor types of The Cancer Genome Atlas (TCGA). The KM plotter algorithm has been used to calculate Kaplan-Meier statistics and false discovery rate (FDR) corrections. Interaction networks have been generated using Ingenuity Pathway Analysis (IPA). High mRNA expression of 63 out of 124 genes significantly correlated with shorter survival times of cancer patients across all 20 tumor types. IPA analyses revealed that their gene products were interconnected in canonical pathways (e.g., cancer, cell death, cell cycle, cell signaling). Four tumor entities showed a higher accumulation of genes than the other cancer types, i.e., renal clear cell carcinoma (n = 21), renal papillary carcinoma (n = 13), kidney hepatocellular carcinoma (n = 13), and lung adenocarcinoma (n = 9). These gene clusters may serve as prognostic signatures for patient survival. These signatures were also of prognostic value for tumors with high mutational rates and neoantigen loads. Cuproptosis is of prognostic significance for the survival of cancer patients. The identification of specific gene signatures deserves further exploration for their clinical utility in routine diagnostics.
Collapse
Affiliation(s)
- Ednah Ooko
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA;
- Department of Biological Sciences, School of Natural and Applied Sciences, Masinde Muliro University of Science and Technology, Kakamega 190-50100, Kenya
| | - Nadeen T. Ali
- Department of Pharmaceutical Biology, Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University, Staudinger Weg 5, 55128 Mainz, Germany;
| | - Thomas Efferth
- Department of Pharmaceutical Biology, Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University, Staudinger Weg 5, 55128 Mainz, Germany;
| |
Collapse
|
6
|
Espitia-Pérez L, Brango H, Peñata-Taborda A, Galeano-Páez C, Jaramillo-García M, Espitia-Pérez P, Pastor-Sierra K, Bru-Cordero O, Hoyos-Giraldo LS, Reyes-Carvajal I, Saavedra-Trujillo D, Ricardo-Caldera D, Coneo-Pretelt A. Influence of genetic polymorphisms of Hg metabolism and DNA repair on the frequencies of micronuclei, nucleoplasmic bridges, and nuclear buds in communities living in gold mining areas. MUTATION RESEARCH. GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2024; 897:503790. [PMID: 39054006 DOI: 10.1016/j.mrgentox.2024.503790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 06/07/2024] [Accepted: 06/12/2024] [Indexed: 07/27/2024]
Abstract
Fishing communities living near gold mining areas are at increased risk of mercury (Hg) exposure via bioaccumulation of methylmercury (MeHg) in fish. This exposure has been linked to health effects that may be triggered by genotoxic events. Genetic polymorphisms play a role in the risk associated with Hg exposure. This study evaluated the effect of single nucleotide polymorphisms (SNPs) in metabolic and DNA repair genes on genetic instability and total hair Hg (T-Hg) levels in 78 individuals from "La Mojana" in northern Colombia and 34 individuals from a reference area. Genetic instability was assessed by the frequency of micronuclei (MNBN), nuclear buds (NBUDS), and nucleoplasmic bridges (NPB). We used a Poisson regression to assess the influence of SNPs on T-Hg levels and genetic instability, and a Bayesian regression to examine the interaction between Hg detoxification and DNA repair. Among exposed individuals, carriers of XRCC1Arg399Gln had a significantly higher frequency of MNBN. Conversely, the XRCC1Arg194Trp and OGG1Ser326Cys polymorphisms were associated with lower frequencies of MNBN. XRCC1Arg399Gln, XRCC1Arg280His, and GSTM1Null carriers showed lower NPB frequencies. Our results also indicated that individuals with the GSTM1Nulland GSTT1null polymorphisms had a 1.6-fold risk for higher T-Hg levels. The Bayesian model showed increased MNBN frequencies in carriers of the GSTM1Null polymorphism in combination with XRCC1Arg399Gln and increased NBUDS frequencies in the GSTM1Null carriers with the XRCC3Thr241Met and OGG1Ser326Cys alleles. The GSTM1+ variant was found to be a protective factor in individuals carrying OGG1Ser326Cys (MNBN) and XRCC1Arg280His (NPB); the GSTT1+ polymorphism combined with XRCCArg194Trp also modulated lower MNBN frequencies, while GSTT1+ carriers with the XRCC1Arg399Gln allele showed lower NPB frequencies. Consistent with GSTM1, GSTT1Null carriers with XRCC3Thr241Met showed increased NBUDS frequency. With the rise of gold mining activities, these approaches are vital to identify and safeguard populations vulnerable to Hg's toxic effects.
Collapse
Affiliation(s)
- Lyda Espitia-Pérez
- Facultad de Ciencias de la Salud, Laboratorio de Investigación Biomédica y Biología Molecular, Universidad del Sinú, Montería, Córdoba, Colombia.
| | - Hugo Brango
- Departamento de Matemáticas y Estadística, Universidad del Norte, Barranquilla, Colombia
| | - Ana Peñata-Taborda
- Facultad de Ciencias de la Salud, Laboratorio de Investigación Biomédica y Biología Molecular, Universidad del Sinú, Montería, Córdoba, Colombia
| | - Claudia Galeano-Páez
- Facultad de Ciencias de la Salud, Laboratorio de Investigación Biomédica y Biología Molecular, Universidad del Sinú, Montería, Córdoba, Colombia
| | - Manolo Jaramillo-García
- Facultad de Ciencias de la Salud, Laboratorio de Investigación Biomédica y Biología Molecular, Universidad del Sinú, Montería, Córdoba, Colombia (Postmorten)
| | - Pedro Espitia-Pérez
- Facultad de Ciencias de la Salud, Laboratorio de Investigación Biomédica y Biología Molecular, Universidad del Sinú, Montería, Córdoba, Colombia
| | - Karina Pastor-Sierra
- Facultad de Ciencias de la Salud, Laboratorio de Investigación Biomédica y Biología Molecular, Universidad del Sinú, Montería, Córdoba, Colombia
| | - Osnamir Bru-Cordero
- Universidad Nacional de Colombia, Dirección académica, kilómetro 9, vía Valledupar-La Paz, La Paz, Cesar, Colombia
| | - Luz Stella Hoyos-Giraldo
- Department of Biology, Research Group Genetic Toxicology and Cytogenetics, Faculty of Natural Sciences and Education, Universidad del Cauca, Popayán, Cauca, Colombia
| | - Ingrid Reyes-Carvajal
- Department of Biology, Research Group Genetic Toxicology and Cytogenetics, Faculty of Natural Sciences and Education, Universidad del Cauca, Popayán, Cauca, Colombia
| | - Diana Saavedra-Trujillo
- Department of Biology, Research Group Genetic Toxicology and Cytogenetics, Faculty of Natural Sciences and Education, Universidad del Cauca, Popayán, Cauca, Colombia
| | - Dina Ricardo-Caldera
- Grupo de Investigación Enfermedades Tropicales y Resistencia Bacteriana, Universidad del Sinú, Montería, Córdoba, Colombia
| | - Andrés Coneo-Pretelt
- Facultad de Ciencias de la Salud, Laboratorio de Investigación Biomédica y Biología Molecular, Universidad del Sinú, Montería, Córdoba, Colombia
| |
Collapse
|
7
|
Jócsák I, Csima F, Somfalvi-Tóth K. Alterations of Photosynthetic and Oxidative Processes Influenced by the Presence of Different Zinc and Cadmium Concentrations in Maize Seedlings: Transition from Essential to Toxic Functions. PLANTS (BASEL, SWITZERLAND) 2024; 13:1150. [PMID: 38674559 PMCID: PMC11055138 DOI: 10.3390/plants13081150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 04/16/2024] [Accepted: 04/17/2024] [Indexed: 04/28/2024]
Abstract
BACKGROUND The study examined the impact of varying the concentrations of zinc (Zn) on plant responses, particularly on photosynthetic and oxidative metabolic processes. This investigation aimed to distinguish between the beneficial and harmful effects of Zn on plants, highlighting significant nutrient supply concerns. METHODS The investigation methods were centered around non-invasive methods, such as biophoton emission (delayed fluorescence-DF, ultra-weak bioluminescence-UWLE), fluorescence induction (Fv/Fm) measurements, chlorophyll content estimation (SPAD) and vegetation index (NDVI) determination. Furthermore, the analytical determination of lipid oxidation (MDA level) and antioxidant capacity (FRAP) as well as gene expression studies of the antioxidative enzymes glutathione reductase (GR), glutathione S-transferase (GST) and lipoxygenase (LOX) for essential Zn and nonessential cadmium (Cd) were also carried out in order to clarify toxic symptoms through different Zn investigation approaches. RESULTS It was possible to identify a metabolic enhancement from 1000 µM; however, stress symptoms from the 2000 µM Zn treatment were noted for both the investigated photosynthetic and oxidative processes. The outcomes of this research contribute to the improvement of Zn mineral-supplementation technology, which is essential for maize growth, and the optimization of agricultural practices.
Collapse
Affiliation(s)
- Ildikó Jócsák
- Institute of Agronomy, Hungarian University of Agriculture and Life Sciences, 7400 Kaposvár, Hungary; (F.C.); (K.S.-T.)
| | | | | |
Collapse
|
8
|
Sári D, Ferroudj A, Semsey D, El-Ramady H, Brevik EC, Prokisch J. Tellurium and Nano-Tellurium: Medicine or Poison? NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:670. [PMID: 38668165 PMCID: PMC11053935 DOI: 10.3390/nano14080670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 04/07/2024] [Accepted: 04/10/2024] [Indexed: 04/29/2024]
Abstract
Tellurium (Te) is the heaviest stable chalcogen and is a rare element in Earth's crust (one to five ppb). It was discovered in gold ore from mines in Kleinschlatten near the present-day city of Zlatna, Romania. Industrial and other applications of Te focus on its inorganic forms. Tellurium can be toxic to animals and humans at low doses. Chronic tellurium poisoning endangers the kidney, liver, and nervous system. However, Te can be effective against bacteria and is able to destroy cancer cells. Tellurium can also be used to develop redox modulators and enzyme inhibitors. Soluble salts that contain Te had a role as therapeutic and antimicrobial agents before the advent of antibiotics. The pharmaceutical use of Te is not widespread due to the narrow margin between beneficial and toxic doses, but there are differences between the measure of toxicity based on the Te form. Nano-tellurium (Te-NPs) has several applications: it can act as an adsorptive agent to remove pollutants, and it can be used in antibacterial coating, photo-catalysis for the degradation of dyes, and conductive electronic materials. Nano-sized Te particles are the most promising and can be produced in both chemical and biological ways. Safety assessments are essential to determine the potential risks and benefits of using Te compounds in various applications. Future challenges and directions in developing nano-materials, nano-alloys, and nano-structures based on Te are still open to debate.
Collapse
Affiliation(s)
- Daniella Sári
- Nano-Food Laboratory, Department of Animal Husbandry, Institute of Animal Science, Biotechnology and Nature Conservation, Faculty of Agricultural and Food Sciences and Environmental Management, University of Debrecen, 138 Böszörményi Street, 4032 Debrecen, Hungary; (A.F.); (D.S.); (J.P.)
| | - Aya Ferroudj
- Nano-Food Laboratory, Department of Animal Husbandry, Institute of Animal Science, Biotechnology and Nature Conservation, Faculty of Agricultural and Food Sciences and Environmental Management, University of Debrecen, 138 Böszörményi Street, 4032 Debrecen, Hungary; (A.F.); (D.S.); (J.P.)
| | - Dávid Semsey
- Nano-Food Laboratory, Department of Animal Husbandry, Institute of Animal Science, Biotechnology and Nature Conservation, Faculty of Agricultural and Food Sciences and Environmental Management, University of Debrecen, 138 Böszörményi Street, 4032 Debrecen, Hungary; (A.F.); (D.S.); (J.P.)
| | - Hassan El-Ramady
- Nano-Food Laboratory, Department of Animal Husbandry, Institute of Animal Science, Biotechnology and Nature Conservation, Faculty of Agricultural and Food Sciences and Environmental Management, University of Debrecen, 138 Böszörményi Street, 4032 Debrecen, Hungary; (A.F.); (D.S.); (J.P.)
- Soil and Water Department, Faculty of Agriculture, Kafrelsheikh University, Kafr El-Sheikh 33516, Egypt
| | - Eric C. Brevik
- College of Agricultural, Life, and Physical Sciences, Southern Illinois University, Carbondale, IL 62901, USA;
| | - József Prokisch
- Nano-Food Laboratory, Department of Animal Husbandry, Institute of Animal Science, Biotechnology and Nature Conservation, Faculty of Agricultural and Food Sciences and Environmental Management, University of Debrecen, 138 Böszörményi Street, 4032 Debrecen, Hungary; (A.F.); (D.S.); (J.P.)
| |
Collapse
|
9
|
Khandelia R, Hodgkinson T, Crean D, Brougham DF, Scholz D, Ibrahim H, Quinn SJ, Rodriguez BJ, Kennedy OD, O’Byrne JM, Brayden DJ. Reproducible Synthesis of Biocompatible Albumin Nanoparticles Designed for Intra-articular Administration of Celecoxib to Treat Osteoarthritis. ACS APPLIED MATERIALS & INTERFACES 2024; 16:14633-14644. [PMID: 38483312 PMCID: PMC10982941 DOI: 10.1021/acsami.4c02243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 02/27/2024] [Accepted: 02/27/2024] [Indexed: 04/04/2024]
Abstract
Osteoarthritis (OA) is the most common form of arthritis, with intra-articular (IA) delivery of therapeutics being the current best option to treat pain and inflammation. However, IA delivery is challenging due to the rapid clearance of therapeutics from the joint and the need for repeated injections. Thus, there is a need for long-acting delivery systems that increase the drug retention time in joints with the capacity to penetrate OA cartilage. As pharmaceutical utility also demands that this is achieved using biocompatible materials that provide colloidal stability, our aim was to develop a nanoparticle (NP) delivery system loaded with the COX-2 inhibitor celecoxib that can meet these criteria. We devised a reproducible and economical method to synthesize the colloidally stable albumin NPs loaded with celecoxib without the use of any of the following conditions: high temperatures at which albumin denaturation occurs, polymer coatings, oils, Class 1/2 solvents, and chemical protein cross-linkers. The spherical NP suspensions were biocompatible, monodisperse with average diameters of 72 nm (ideal for OA cartilage penetration), and they were stable over 6 months at 4 °C. Moreover, the NPs loaded celecoxib at higher levels than those required for the therapeutic response in arthritic joints. For these reasons, they are the first of their kind. Labeled NPs were internalized by primary human articular chondrocytes cultured from the knee joints of OA patients. The NPs reduced the concentration of inflammatory mediator prostaglandin E2 released by the primaries, an indication of retained bioactivity following NP synthesis. Similar results were observed in lipopolysaccharide-stimulated human THP-1 monocytes. The IA administration of these NPs is expected to avoid side-effects associated with oral administration of celecoxib and to maintain a high local concentration in the knee joint over a sustained period. They are now ready for evaluation by IA administration in animal models of OA.
Collapse
Affiliation(s)
- Rumi Khandelia
- UCD
School of Veterinary Medicine, University
College Dublin, Belfield, Dublin D04 V1W8, Ireland
- UCD
Conway Institute, University College Dublin, Belfield, Dublin D04 V1W8, Ireland
| | - Tom Hodgkinson
- Department
of Anatomy and Regenerative Medicine, Royal
College of Surgeons in Ireland, 123 St. Stephen’s Green, Dublin D02 YN77, Ireland
| | - Daniel Crean
- UCD
School of Veterinary Medicine, University
College Dublin, Belfield, Dublin D04 V1W8, Ireland
- UCD
Conway Institute, University College Dublin, Belfield, Dublin D04 V1W8, Ireland
| | - Dermot F. Brougham
- UCD
School of Chemistry, University College
Dublin, Belfield, Dublin D04 V1W8, Ireland
| | - Dimitri Scholz
- UCD
Conway Institute, University College Dublin, Belfield, Dublin D04 V1W8, Ireland
| | - Hossam Ibrahim
- UCD
Conway Institute, University College Dublin, Belfield, Dublin D04 V1W8, Ireland
- UCD
School of Physics, University College Dublin, Belfield, Dublin D04 V1W8, Ireland
| | - Susan J. Quinn
- UCD
School of Chemistry, University College
Dublin, Belfield, Dublin D04 V1W8, Ireland
| | - Brian J. Rodriguez
- UCD
Conway Institute, University College Dublin, Belfield, Dublin D04 V1W8, Ireland
- UCD
School of Physics, University College Dublin, Belfield, Dublin D04 V1W8, Ireland
| | - Oran D. Kennedy
- Department
of Anatomy and Regenerative Medicine, Royal
College of Surgeons in Ireland, 123 St. Stephen’s Green, Dublin D02 YN77, Ireland
| | - John M. O’Byrne
- National
Orthopaedics Hospital Cappagh, Dublin D11 EV29, Ireland
| | - David J. Brayden
- UCD
School of Veterinary Medicine, University
College Dublin, Belfield, Dublin D04 V1W8, Ireland
- UCD
Conway Institute, University College Dublin, Belfield, Dublin D04 V1W8, Ireland
| |
Collapse
|
10
|
Benhalima H, Sbartai H, Sbartai I. Evaluation the Toxicity of Heavy Metal Mixtures in Anecic Earthworms (Aporrectodea giardi). ARCHIVES OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2024; 86:13-24. [PMID: 37971513 DOI: 10.1007/s00244-023-01034-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 09/12/2023] [Indexed: 11/19/2023]
Abstract
Using earthworms as bioindicators of heavy metal contamination in soils is a relevant tool for environmental risk monitoring. This study examines the combined effects of four distinct concentrations mixtures (M1, M2, M3 and M4) containing Cd, Cr, Cu, Ni, Fe and Mn on Aporrectodea giardi earthworms after 12 and 24 days (12 D/24 D) of exposure via the monitoring of certain biomarkers of stress including total protein content, glutathione (GSH), metallothionein (MT), catalase and lipoxygenase (LOX) activities. The results show a decrease in the total protein level for the M3 mixture after 24 D, whereas it increases for all other treatments regardless of exposure time. Glutathione and metallothionine levels increased for M2 and M3 and decreased for M1 and M4 after 12 D; they increased after 24 D for all the mixtures. Regarding enzyme activities, catalase activity was decreased for all the treatments unless for M3 (P > 0.05). However, LOX increased for M1, M2 and M4 except for M3 after 12 D, when inhibition of this biomarker was observed. LOX activity was inhibited for all the mixtures at the end of the treatment. All the mixtures generated oxidative stress in Aporrectodea giardi, which is minimized by increasing MT levels to remove the metal ions and triggering the antioxidant system, composed primarily of GSH and LOX to restore cellular homeostasis. These findings suggest that the species Aporrectodea giardi could be an excellent candidate for ecotoxicological risk assessment of soils contaminated by metal mixtures and it can be used in bioremediation for its fitness which allows it to tolerate high concentrations of metal mixtures.
Collapse
Affiliation(s)
- Hadia Benhalima
- Laboratory of Cellular Toxicology, Department of Biology, Faculty of Sciences, Badji Mokhtar University, Annaba, Algeria
| | - Hana Sbartai
- Laboratory of Cellular Toxicology, Department of Biology, Faculty of Sciences, Badji Mokhtar University, Annaba, Algeria.
| | - Ibtissem Sbartai
- Laboratory of Cellular Toxicology, Department of Biology, Faculty of Sciences, Badji Mokhtar University, Annaba, Algeria
| |
Collapse
|
11
|
Elgendy MY, Ali SE, Abbas WT, Algammal AM, Abdelsalam M. The role of marine pollution on the emergence of fish bacterial diseases. CHEMOSPHERE 2023; 344:140366. [PMID: 37806325 DOI: 10.1016/j.chemosphere.2023.140366] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 10/02/2023] [Accepted: 10/03/2023] [Indexed: 10/10/2023]
Abstract
Marine pollution and bacterial disease outbreaks are two closely related dilemmas that impact marine fish production from fisheries and mariculture. Oil, heavy metals, agrochemicals, sewage, medical wastes, plastics, algal blooms, atmospheric pollutants, mariculture-related pollutants, as well as thermal and noise pollution are the most threatening marine pollutants. The release of these pollutants into the marine aquatic environment leads to significant ecological degradation and a range of non-infectious disorders in fish. Marine pollutants trigger numerous fish bacterial diseases by increasing microbial multiplication in the aquatic environment and suppressing fish immune defense mechanisms. The greater part of these microorganisms is naturally occurring in the aquatic environment. Most disease outbreaks are caused by opportunistic bacterial agents that attack stressed fish. Some infections are more serious and occur in the absence of environmental stressors. Gram-negative bacteria are the most frequent causes of these epizootics, while gram-positive bacterial agents rank second on the critical pathogens list. Vibrio spp., Photobacterium damselae subsp. Piscicida, Tenacibaculum maritimum, Edwardsiella spp., Streptococcus spp., Renibacterium salmoninarum, Pseudomonas spp., Aeromonas spp., and Mycobacterium spp. Are the most dangerous pathogens that attack fish in polluted marine aquatic environments. Effective management strategies and stringent regulations are required to prevent or mitigate the impacts of marine pollutants on aquatic animal health. This review will increase stakeholder awareness about marine pollutants and their impacts on aquatic animal health. It will support competent authorities in developing effective management strategies to mitigate marine pollution, promote the sustainability of commercial marine fisheries, and protect aquatic animal health.
Collapse
Affiliation(s)
- Mamdouh Y Elgendy
- Department of Hydrobiology, Veterinary Research Institute, National Research Centre, Dokki, Cairo 12622, Egypt.
| | - Shimaa E Ali
- Department of Hydrobiology, Veterinary Research Institute, National Research Centre, Dokki, Cairo 12622, Egypt; WorldFish, Abbassa, Sharkia, Egypt
| | - Wafaa T Abbas
- Department of Hydrobiology, Veterinary Research Institute, National Research Centre, Dokki, Cairo 12622, Egypt
| | - Abdelazeem M Algammal
- Department of Bacteriology, Immunology, and Mycology, Faculty of Veterinary Medicine, Suez Canal University, Ismailia 41522, Egypt
| | - Mohamed Abdelsalam
- Department of Aquatic Animal Medicine and Management, Faculty of Veterinary Medicine, Cairo University, Giza 12211, Egypt
| |
Collapse
|
12
|
Ghasemi F, Nili-Ahmadabadi A, Omidifar N, Nili-Ahmadabadi M. Protective potential of thymoquinone against cadmium, arsenic, and lead toxicity: A short review with emphasis on oxidative pathways. J Appl Toxicol 2023; 43:1764-1777. [PMID: 36872630 DOI: 10.1002/jat.4459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 02/13/2023] [Accepted: 02/27/2023] [Indexed: 03/07/2023]
Abstract
Heavy metals are among the most important environmental pollutions used in various industries. Their extensive use has increased human susceptibility to different chronic diseases. Toxic metal exposure, especially cadmium, arsenic, and lead, causes oxidative damages, mitochondrial dysfunction, and genetic and epigenetic modifications. Meanwhile, thymoquinone (TQ) is an effective component of Nigella sativa oil that plays an important role in preventing the destructive effects of heavy metals. The present review discusses how TQ can protect various tissues against oxidative damage of heavy metals. This review is based on the research reported about the protective effects of TQ in the toxicity of heavy metals, approximately the last 10 years (2010-2021). Scientific databases, including Scopus, Web of Science, and PubMed, were searched using the following keywords either alone or in combination: cadmium, arsenic, lead, TQ, and oxidative stress. TQ, as a potent antioxidant, can distribute to cellular compartments and prevent oxidative damage of toxic metals. However, depending on the type of toxic metal and the carrier system used to release TQ in biological systems, its therapeutic dosage range may be varied.
Collapse
Affiliation(s)
- Farzad Ghasemi
- Faculty of Pharmacy, Eastern Mediterranean University, Famagusta, North Cyprus, Turkey
| | - Amir Nili-Ahmadabadi
- Medicinal Plants and Natural Products Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
- Department of Pharmacology and Toxicology, School of Pharmacy, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Navid Omidifar
- Medical Education Research Center, Department of Pathology, Medical School, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Maryam Nili-Ahmadabadi
- Department of Pharmaceutical Chemistry, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
13
|
Pastor-Sierra K, Espitia-Pérez L, Espitia-Pérez P, Peñata-Taborda A, Brango H, Galeano-Páez C, Bru-Cordero OE, Palma-Parra M, Díaz SM, Trillos C, Briceño L, Idrovo ÁJ, Miranda-Pacheco J, Téllez E, Jiménez-Vidal L, Coneo-Pretelt A, Álvarez AH, Arteaga-Arroyo G, Ricardo-Caldera D, Salcedo-Arteaga S, Porras-Ramírez A, Varona-Uribe M. Micronuclei frequency and exposure to chemical mixtures in three Colombian mining populations. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 901:165789. [PMID: 37499817 DOI: 10.1016/j.scitotenv.2023.165789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 07/12/2023] [Accepted: 07/23/2023] [Indexed: 07/29/2023]
Abstract
The Colombian mining industry has witnessed significant growth. Depending on the scale and mineral extracted, complex chemical mixtures are generated, impacting the health of occupationally exposed populations and communities near mining projects. Increasing evidence suggests that chromosomal instability (CIN) is an important link between the development of certain diseases and exposure to complex mixtures. To better understand the effects of exposure to complex mixtures we performed a biomonitoring study on 407 healthy individuals from four areas: three located in municipalities exploiting different-scale mining systems and a reference area with no mining activity. Large, medium, and small-scale mining systems were analyzed in Montelibano (Córdoba), artisanal and small-scale mining (ASGM) in Nechí (Antioquia), and a closed mining system in Aranzazu (Caldas). The reference area with no mining activity was established in Montería (Córdoba). ICP-MS measured multi-elemental exposure in hair, and CIN was evaluated using the cytokinesis-block micronucleus technique (MNBN). Exposure to mixtures of chemical elements was comparable in workers and residents of the mining areas but significantly higher compared to reference individuals. In Montelibano, increased MNBN frequencies were associated with combined exposure to Se, Hg, Mn, Pb, and Mg. This distinct pattern significantly differed from other areas. Specifically, in Nechí, Cr, Ni, Hg, Se, and Mg emerged as the primary contributors to elevated frequencies of MNBN. In contrast, a combination of Hg and Ni played a role in increasing MNBN in Aranzazu. Interestingly, Se consistently correlated with increased MNBN frequencies across all active mining areas. Chemical elements in Montelibano exhibit a broader range compared to other mining zones, reflecting the characteristics of the high-impact and large-scale mining in the area. This research provides valuable insights into the effects of exposure to chemical mixtures, underscoring the importance of employing this approach in the risk assessment of communities, especially those from residential areas.
Collapse
Affiliation(s)
- Karina Pastor-Sierra
- Grupo de Investigación Biomédica y Biología Molecular, Universidad del Sinú, Montería, Córdoba, Colombia; Programa de doctorado en Salud Pública, Universidad El Bosque, Bogotá, Colombia
| | - Lyda Espitia-Pérez
- Grupo de Investigación Biomédica y Biología Molecular, Universidad del Sinú, Montería, Córdoba, Colombia.
| | - Pedro Espitia-Pérez
- Grupo de Investigación Biomédica y Biología Molecular, Universidad del Sinú, Montería, Córdoba, Colombia
| | - Ana Peñata-Taborda
- Grupo de Investigación Biomédica y Biología Molecular, Universidad del Sinú, Montería, Córdoba, Colombia
| | - Hugo Brango
- Departamento de Matemáticas y Estadística, Universidad del Norte, Barranquilla, Colombia
| | - Claudia Galeano-Páez
- Grupo de Investigación Biomédica y Biología Molecular, Universidad del Sinú, Montería, Córdoba, Colombia
| | | | - Marien Palma-Parra
- Dirección de Investigación en Salud Pública, Grupo de Salud Ambiental y Laboral, Instituto Nacional de Salud, Bogotá, Colombia
| | - Sonia M Díaz
- Escuela de Medicina y Ciencias de la Salud, Universidad del Rosario, Bogotá, Colombia
| | - Carlos Trillos
- Escuela de Medicina y Ciencias de la Salud, Universidad del Rosario, Bogotá, Colombia
| | - Leonardo Briceño
- Escuela de Medicina y Ciencias de la Salud, Universidad del Rosario, Bogotá, Colombia
| | - Álvaro J Idrovo
- Departamento de Salud Pública, Escuela de Medicina, Universidad Industrial de Santander, Bucaramanga, Colombia
| | - Juan Miranda-Pacheco
- Grupo de Investigación Biomédica y Biología Molecular, Universidad del Sinú, Montería, Córdoba, Colombia
| | - Eliana Téllez
- Dirección de Investigación en Salud Pública, Grupo de Salud Ambiental y Laboral, Instituto Nacional de Salud, Bogotá, Colombia
| | - Luisa Jiménez-Vidal
- Grupo de Investigación Biomédica y Biología Molecular, Universidad del Sinú, Montería, Córdoba, Colombia
| | - Andrés Coneo-Pretelt
- Grupo de Investigación Biomédica y Biología Molecular, Universidad del Sinú, Montería, Córdoba, Colombia
| | - Alicia Humanez Álvarez
- Grupo de Investigación Biomédica y Biología Molecular, Universidad del Sinú, Montería, Córdoba, Colombia
| | - Gean Arteaga-Arroyo
- Grupo de Investigación Biomédica y Biología Molecular, Universidad del Sinú, Montería, Córdoba, Colombia
| | - Dina Ricardo-Caldera
- Grupo de Investigación en Enfermedades Tropicales y Resistencia Bacteriana, Universidad del Sinú, Montería, Córdoba, Colombia
| | - Shirley Salcedo-Arteaga
- Grupo de Investigación Biomédica y Biología Molecular, Universidad del Sinú, Montería, Córdoba, Colombia
| | | | - Marcela Varona-Uribe
- Escuela de Medicina y Ciencias de la Salud, Universidad del Rosario, Bogotá, Colombia
| |
Collapse
|
14
|
Huang M, Shen S, Meng Z, Si G, Wu X, Feng T, Liu C, Chen J, Duan C. Mechanisms involved in the sequestration and resistance of cadmium for a plant-associated Pseudomonas strain. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 266:115527. [PMID: 37806135 DOI: 10.1016/j.ecoenv.2023.115527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 09/07/2023] [Accepted: 09/24/2023] [Indexed: 10/10/2023]
Abstract
Understanding Cd-resistant bacterial cadmium (Cd) resistance systems is crucial for improving microremediation in Cd-contaminated environments. However, these mechanisms are not fully understood in plant-associated bacteria. In the present study, we investigated the mechanisms underlying Cd sequestration and resistance in the strain AN-B15. These results showed that extracellular Cd sequestration by complexation in strain AN-B15 was primarily responsible for the removal of Cd from the solution. Transcriptome analyses have shown that the mechanisms of Cd resistance at the transcriptional level involve collaborative processes involving multiple metabolic pathways. The AN-B15 strain upregulated the expression of genes related to exopolymeric substance synthesis, metal transport, Fe-S cluster biogenesis, iron recruitment, reactive oxygen species oxidative stress defense, and DNA and protein repair to resist Cd-induced stress. Furthermore, inoculation with AN-B15 alleviated Cd-induced toxicity and reduced Cd uptake in the shoots of wheat seedlings, indicating its potential for remediation. Overall, the results improve our understanding of the mechanisms involved in Cd resistance in bacteria and thus have important implications for improving microremediation.
Collapse
Affiliation(s)
- Mingyu Huang
- Yunnan Key Laboratory for Plateau Mountain Ecology and Restoration of Degraded Environments, School of Ecology and Environmental Science, Yunnan University, Kunming 650091, China
| | - Shili Shen
- Yunnan Key Laboratory for Plateau Mountain Ecology and Restoration of Degraded Environments, School of Ecology and Environmental Science, Yunnan University, Kunming 650091, China
| | - Zhuang Meng
- School of Agriculture, Yunnan University, Kunming 650091, China
| | - Guangzheng Si
- Yunnan Key Laboratory for Plateau Mountain Ecology and Restoration of Degraded Environments, School of Ecology and Environmental Science, Yunnan University, Kunming 650091, China
| | - Xinni Wu
- Yunnan Key Laboratory for Plateau Mountain Ecology and Restoration of Degraded Environments, School of Ecology and Environmental Science, Yunnan University, Kunming 650091, China
| | - Tingting Feng
- Yunnan Key Laboratory for Plateau Mountain Ecology and Restoration of Degraded Environments, School of Ecology and Environmental Science, Yunnan University, Kunming 650091, China
| | - Chang'e Liu
- Yunnan Key Laboratory for Plateau Mountain Ecology and Restoration of Degraded Environments, School of Ecology and Environmental Science, Yunnan University, Kunming 650091, China
| | - Jinquan Chen
- Yunnan Key Laboratory for Plateau Mountain Ecology and Restoration of Degraded Environments, School of Ecology and Environmental Science, Yunnan University, Kunming 650091, China.
| | - Changqun Duan
- Yunnan Key Laboratory for Plateau Mountain Ecology and Restoration of Degraded Environments, School of Ecology and Environmental Science, Yunnan University, Kunming 650091, China; School of Agriculture, Yunnan University, Kunming 650091, China.
| |
Collapse
|
15
|
Shoaib SM, Afzal S, Feezan A, Akash MSH, Nadeem A, Mir TM. Metabolomics Analysis and Biochemical Profiling of Arsenic-Induced Metabolic Impairment and Disease Susceptibility. Biomolecules 2023; 13:1424. [PMID: 37759824 PMCID: PMC10526798 DOI: 10.3390/biom13091424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 09/17/2023] [Accepted: 09/17/2023] [Indexed: 09/29/2023] Open
Abstract
Our study aimed to conduct a comprehensive biochemical profiling and metabolomics analysis to investigate the effects of arsenic-induced metabolic disorders, with a specific focus on disruptions in lipid metabolism, amino acid metabolism, and carbohydrate metabolism. Additionally, we sought to assess the therapeutic potential of resveratrol (RSV) as a remedy for arsenic-induced diabetes, using metformin (MF) as a standard drug for comparison. We measured the total arsenic content in mouse serum by employing inductively coupled plasma mass spectrometry (ICP-MS) after administering a 50-ppm solution of sodium arsenate (50 mg/L) in purified water. Our findings revealed a substantial increase in total arsenic content in the exposed group, with a mean value of 166.80 ± 8.52 ppb (p < 0.05). Furthermore, we investigated the impact of arsenic exposure on various biomarkers using enzyme-linked immunosorbent assay (ELISA) methods. Arsenic exposed mice exhibited significant hyperglycemia (p < 0.001) and elevated levels of homeostatic model assessment of insulin resistance (HOMA-IR), hemoglobin A1c (Hb1Ac), Inflammatory biomarkers as well as liver and kidney function biomarkers (p < 0.05). Additionally, the levels of crucial enzymes linked to carbohydrate metabolism, including α-glucosidase, hexokinase, and glucose-6-phosphatase (G6PS), and oxidative stress biomarkers, such as levels of glutathione (GSH), glutathione reductase (GR), glutathione peroxidase (GPx), catalase, and superoxide dismutase (SOD), were significantly reduced in the arsenic-exposed group compared to the control group (p < 0.05). However, the level of MDA was significantly increased. Molecular analysis of gene expression indicated significant upregulation of key enzymes involved in lipid metabolism, such as carnitine palmitoyl-transferase-I (CPT-I), carnitine palmitoyl-transferase-II (CPT-II), lecithin-cholesterol acyltransferase (LCAT), and others. Additionally, alterations in gene expression related to glucose transporter-2 (GLUT-2), glucose-6-phosphatase (G6PC), and glucokinase (GK), associated with carbohydrate metabolism, were observed. Amino acid analysis revealed significant decreases in nine amino acids in arsenic-exposed mice. Metabolomics analysis identified disruptions in lipid metabolomes, amino acids, and arsenic metabolites, highlighting their involvement in essential metabolic pathways. Histopathological observations revealed significant changes in liver architecture, hepatocyte degeneration, and increased Kupffer cells in the livers of arsenic-exposed mice. In conclusion, these findings enhance our comprehension of the impact of environmental toxins on metabolic health and offer potential avenues for remedies against such disruptions.
Collapse
Affiliation(s)
- Syed Muhammad Shoaib
- Department of Pharmaceutical Chemistry, Bahauddin Zakariya University, Multan 60800, Pakistan
| | - Samina Afzal
- Department of Pharmaceutical Chemistry, Bahauddin Zakariya University, Multan 60800, Pakistan
| | - Ali Feezan
- Department of Pharmaceutical Chemistry, Bahauddin Zakariya University, Multan 60800, Pakistan
| | | | - Ahmed Nadeem
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Tahir Maqbool Mir
- National Center for Natural Products Research, School of Pharmacy, University of Mississippi, Oxford, MS 38677, USA
| |
Collapse
|
16
|
Banu A, Antony AM, Sasidhar BS, Patil SA, Patil SA. Palladium Nanoparticles Grafted onto Phytochemical Functionalized Biochar: A Sustainable Nanozyme for Colorimetric Sensing of Glucose and Glutathione. Molecules 2023; 28:6676. [PMID: 37764452 PMCID: PMC10537334 DOI: 10.3390/molecules28186676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 09/13/2023] [Accepted: 09/15/2023] [Indexed: 09/29/2023] Open
Abstract
The devising and development of numerous enzyme mimics, particularly nanoparticles and nanomaterials (nanozymes), have been sparked by the inherent limitations imposed by natural enzymes. Peroxidase is one of the enzymes that is extensively utilized in commercial, medical, and biological applications because of its outstanding substrate selectivity. Herein, we present palladium nanoparticles grafted on Artocarpus heterophyllus (jackfruit) seed-derived biochar (BC-AHE@Pd) as a novel nanozyme to imitate peroxidase activity en route to the rapid and colorimetric detection of H2O2, exploiting o-phenylenediamine as a peroxidase substrate. The biogenically generated BC-AHE@Pd nanocatalyst was synthesized utilizing Artocarpus heterophyllus seed extract as the reducing agent for nanoparticle formation, while the residue became the source for biochar. Various analytical techniques like FT-IR, GC-MS, FE-SEM, EDS, TEM, SAED pattern, p-XRD, and ICP-OES, were used to characterize the BC-AHE@Pd nanocatalyst. The intrinsic peroxidase-like activity of the BC-AHE@Pd nanocatalyst was extended as a prospective nanosensor for the estimation of the biomolecules glucose and glutathione. Moreover, the BC-AHE@Pd nanocatalyst showed recyclability up to three recycles without any significant loss in activity.
Collapse
Affiliation(s)
- Aakhila Banu
- Centre for Nano and Material Sciences, Jain (Deemed-to-be University), Jain Global Campus, Kanakapura, Bangalore 562112, Karnataka, India; (A.B.); (A.M.A.)
| | - Arnet Maria Antony
- Centre for Nano and Material Sciences, Jain (Deemed-to-be University), Jain Global Campus, Kanakapura, Bangalore 562112, Karnataka, India; (A.B.); (A.M.A.)
| | - Balappa Somappa Sasidhar
- Chemical Sciences & Technology Division, National Institute for Interdisciplinary Science & Technology (CSIR-NIIST), Thiruvananthapuram 695019, Kerala, India;
| | - Shivaputra A. Patil
- Pharmaceutical Sciences Department, College of Pharmacy, Rosalind Franklin University of Medicine and Science, 3333 Green Bay Road, North Chicago, IL 60064, USA
| | - Siddappa A. Patil
- Centre for Nano and Material Sciences, Jain (Deemed-to-be University), Jain Global Campus, Kanakapura, Bangalore 562112, Karnataka, India; (A.B.); (A.M.A.)
| |
Collapse
|
17
|
Marciano MA, Pelepenko LE, Francati TM, Antunes TBM, Janini ACP, Rohwedder JJR, Shelton RM, Camilleri J. Bismuth release from endodontic materials: in vivo analysis using Wistar rats. Sci Rep 2023; 13:9738. [PMID: 37322106 PMCID: PMC10272127 DOI: 10.1038/s41598-023-36690-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Accepted: 06/08/2023] [Indexed: 06/17/2023] Open
Abstract
Calcium silicate-based materials are used to block the communication between the root canal and the periodontal ligament space. This brings the materials into contact with tissues and the potential for local and systemic elemental release and movement. The aim of the study was to evaluate the elemental release of bismuth from ProRoot MTA in contact with connective tissues after 30 and 180 days as well as any accumulation in peripheral organs using an animal model. Tricalcium silicate and hydroxyapatite containing 20% bismuth oxide (HAp-Bi) were used as controls. The null hypothesis was that bismuth migrates from tricalcium silicate-based materials when associated with silicon. The materials were examined using scanning electron microscopy, energy dispersive spectroscopy (SEM/EDS) and X-ray diffraction prior to implantation as well as using SEM/EDS, micro X-ray fluorescence and Raman spectroscopy after implantation to assess elemental presence in surrounding tissues. Histological analysis was used to evaluate the changes in tissue architecture and inductively coupled plasma mass spectrometry (ICP-MS) was used to investigate the elemental deposition. For the systemic investigation, routine blood analysis was performed and organs were obtained to evaluate the presence of bismuth and silicon using ICP-MS after acid digestion. In the histological analysis of the implantation sites, macrophages and multinucleated giant cells could be observed after 30 days which after 180 days became a chronic infiltrate; although, no major differences were identified in red and white blood cell analyses and biochemical tests. Implantation altered the materials as observed in the Raman analysis and bismuth was detected both locally and within kidney samples after both periods of analysis, indicating the potential for accumulation of bismuth in this organ. Smaller amounts of bismuth than observed in the kidney were also detected in blood, liver and brain for the ProRoot MTA and HAp-Bi after 180 days. Bismuth was released from the ProRoot MTA locally and was detected systemically and in samples without silicon; thus, the null hypothesis was rejected. The bismuth release demonstrated that this element accumulated both locally and systemically, mainly in the kidneys in comparison with brain and liver regardless of the material base.
Collapse
Affiliation(s)
- M A Marciano
- Piracicaba Dental School of Dentistry, University of Campinas, Piracicaba, Brazil
| | - L E Pelepenko
- Piracicaba Dental School of Dentistry, University of Campinas, Piracicaba, Brazil
| | - T M Francati
- Piracicaba Dental School of Dentistry, University of Campinas, Piracicaba, Brazil
| | - T B M Antunes
- Piracicaba Dental School of Dentistry, University of Campinas, Piracicaba, Brazil
| | - A C P Janini
- Piracicaba Dental School of Dentistry, University of Campinas, Piracicaba, Brazil
| | - J J R Rohwedder
- Institute of Chemistry, University of Campinas, Campinas, Brazil
| | - R M Shelton
- School of Dentistry, College of Medical and Dental Sciences, University of Birmingham, 5, Mill Pool Way, Edgbaston, Birmingham, B5 7EG, UK
| | - J Camilleri
- School of Dentistry, College of Medical and Dental Sciences, University of Birmingham, 5, Mill Pool Way, Edgbaston, Birmingham, B5 7EG, UK.
| |
Collapse
|
18
|
Rodríguez-Viso P, Domene A, Sánchez A, Vélez D, Monedero V, Devesa V, Zúñiga M. Challenges and strategies for preventing intestinal damage associated to mercury dietary exposure. Toxicology 2023; 494:153580. [PMID: 37328091 DOI: 10.1016/j.tox.2023.153580] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 06/02/2023] [Accepted: 06/12/2023] [Indexed: 06/18/2023]
Abstract
Food represents the major risk factor for exposure to mercury in most human populations. Therefore, passage through the gastrointestinal tract plays a fundamental role in its entry into the organism. Despite the intense research carried out on the toxicity of Hg, the effects at the intestinal level have received increased attention only recently. In this review we first provide a critical appraisal of the recent advances on the toxic effects of Hg at the intestinal epithelium. Next, dietary strategies aimed to diminish Hg bioavailability or modulate the epithelial and microbiota responses will be revised. Food components and additives, including probiotics, will be considered. Finally, limitations of current approaches to tackle this problem and future lines of research will be discussed.
Collapse
Affiliation(s)
| | - Adrián Domene
- Instituto de Agroquímica y Tecnología de Alimentos (IATA-CSIC), Paterna, Spain
| | - Alicia Sánchez
- Instituto de Agroquímica y Tecnología de Alimentos (IATA-CSIC), Paterna, Spain
| | - Dinoraz Vélez
- Instituto de Agroquímica y Tecnología de Alimentos (IATA-CSIC), Paterna, Spain
| | - Vicente Monedero
- Instituto de Agroquímica y Tecnología de Alimentos (IATA-CSIC), Paterna, Spain
| | - Vicenta Devesa
- Instituto de Agroquímica y Tecnología de Alimentos (IATA-CSIC), Paterna, Spain
| | - Manuel Zúñiga
- Instituto de Agroquímica y Tecnología de Alimentos (IATA-CSIC), Paterna, Spain.
| |
Collapse
|
19
|
Cho HH, Jung DH, Heo JH, Lee CY, Jeong SY, Lee JH. Gold Nanoparticles as Exquisite Colorimetric Transducers for Water Pollutant Detection. ACS APPLIED MATERIALS & INTERFACES 2023; 15:19785-19806. [PMID: 37067786 DOI: 10.1021/acsami.3c00627] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Gold nanoparticles (AuNPs) are useful nanomaterials as transducers for colorimetric sensors because of their high extinction coefficient and ability to change color depending on aggregation status. Therefore, over the past few decades, AuNP-based colorimetric sensors have been widely applied in several environmental and biological applications, including the detection of water pollutants. According to various studies, water pollutants are classified into heavy metals or cationic metal ions, toxins, and pesticides. Notably, many researchers have been interested in AuNP that detect water pollutants with high sensitivity and selectivity, while offering no adverse environmental issues in terms of AuNP use. This review provides a representative overview of AuNP-based colorimetric sensors for detecting several water pollutants. In particular, we emphasize the advantages of AuNP as colorimetric transducers for water pollutant detection in terms of their low toxicity, high stability, facile processability, and unique optical properties. Next, we discuss the status quo and future prospects of AuNP-based colorimetric sensors for the detection of water pollutants. We believe that this review will promote research and development of AuNP as next-generation colorimetric transducers for water pollutant detection.
Collapse
Affiliation(s)
- Hui Hun Cho
- School of Advanced Materials Science and Engineering, Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea
- Research Center for Advanced Materials Technology (RCAMT), Core Research Institute (CRI), Suwon 16419, Republic of Korea
| | - Do Hyeon Jung
- School of Advanced Materials Science and Engineering, Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea
| | - Jun Hyuk Heo
- School of Advanced Materials Science and Engineering, Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea
- Research Center for Advanced Materials Technology (RCAMT), Core Research Institute (CRI), Suwon 16419, Republic of Korea
| | - Chae Yeon Lee
- School of Advanced Materials Science and Engineering, Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea
| | - Sang Yun Jeong
- School of Advanced Materials Science and Engineering, Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea
| | - Jung Heon Lee
- School of Advanced Materials Science and Engineering, Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea
- Research Center for Advanced Materials Technology (RCAMT), Core Research Institute (CRI), Suwon 16419, Republic of Korea
- Department of Metabiohealth, Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea
- Biomedical Institute for Convergence at SKKU (BICS), Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea
| |
Collapse
|
20
|
Satarug S, Vesey DA, Gobe GC, Phelps KR. Estimation of health risks associated with dietary cadmium exposure. Arch Toxicol 2023; 97:329-358. [PMID: 36592197 DOI: 10.1007/s00204-022-03432-w] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 12/13/2022] [Indexed: 01/03/2023]
Abstract
In much of the world, currently employed upper limits of tolerable intake and acceptable excretion of cadmium (Cd) (ECd/Ecr) are 0.83 µg/kg body weight/day and 5.24 µg/g creatinine, respectively. These figures were derived from a risk assessment model that interpreted β2-microglobulin (β2MG) excretion > 300 μg/g creatinine as a "critical" endpoint. However, current evidence suggests that Cd accumulation reduces glomerular filtration rate at values of ECd/Ecr much lower than 5.24 µg/g creatinine. Low ECd/Ecr has also been associated with increased risks of kidney disease, type 2 diabetes, osteoporosis, cancer, and other disorders. These associations have cast considerable doubt on conventional guidelines. The goals of this paper are to evaluate whether these guidelines are low enough to minimize associated health risks reliably, and indeed whether permissible intake of a cumulative toxin like Cd is a valid concept. We highlight sources and levels of Cd in the human diet and review absorption, distribution, kidney accumulation, and excretion of the metal. We present evidence for the following propositions: excreted Cd emanates from injured tubular epithelial cells of the kidney; Cd excretion is a manifestation of current tissue injury; reduction of present and future exposure to environmental Cd cannot mitigate injury in progress; and Cd excretion is optimally expressed as a function of creatinine clearance rather than creatinine excretion. We comprehensively review the adverse health effects of Cd and urine and blood Cd levels at which adverse effects have been observed. The cumulative nature of Cd toxicity and the susceptibility of multiple organs to toxicity at low body burdens raise serious doubt that guidelines concerning permissible intake of Cd can be meaningful.
Collapse
Affiliation(s)
- Soisungwan Satarug
- Kidney Disease Research Collaborative, Level 5, Translational Research Institute, Brisbane, QLD, Australia.
| | - David A Vesey
- Kidney Disease Research Collaborative, Level 5, Translational Research Institute, Brisbane, QLD, Australia
- Department of Nephrology, Princess Alexandra Hospital, Brisbane, QLD, Australia
| | - Glenda C Gobe
- Kidney Disease Research Collaborative, Level 5, Translational Research Institute, Brisbane, QLD, Australia
- School of Biomedical Sciences, The University of Queensland, Brisbane, QLD, Australia
- NHMRC Centre of Research Excellence for CKD QLD, UQ Health Sciences, Royal Brisbane and Women's Hospital, Brisbane, QLD, Australia
| | - Kenneth R Phelps
- Stratton Veterans Affairs Medical Center and Albany Medical College, Albany, NY, USA
| |
Collapse
|
21
|
Itterheimová P, Dosedělová V, Kubáň P. Use of metal nanoparticles for preconcentration and analysis of biological thiols. Electrophoresis 2023; 44:135-157. [PMID: 35892259 DOI: 10.1002/elps.202200142] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 07/11/2022] [Accepted: 07/19/2022] [Indexed: 02/01/2023]
Abstract
Metal nanoparticles (NPs) exhibit several unique physicochemical properties, including redox activity, surface plasmon resonance, ability to quench fluorescence, biocompatibility, or a high surface-to-volume ratio. They are being increasingly used in analysis and preconcentration of thiol containing compounds, because they are able to spontaneously form a stable Au/Ag/Cu-S dative bond. They thus find wide application in environmental and particularly in medical science, especially in the analysis of biological thiols, the endogenous compounds that play a significant role in many biological systems. In this review article, we provide an overview of various types of NPs that have been applied in analysis and preconcentration of biological thiols, mainly in human biological fluids. We first discuss shortly the types of NPs and their synthesis, properties, and their ability to interact with thiol compounds. Then we outline the sample preconcentration and analysis methods that were used for this purpose with special emphasis on optical, electrochemical, and separation techniques.
Collapse
Affiliation(s)
- Petra Itterheimová
- Department of Bioanalytical Instrumentation, Institute of Analytical Chemistry, Czech Academy of Sciences, Brno, Czech Republic.,CEITEC - Central European Institute of Technology, Masaryk University, Brno, Czech Republic
| | - Věra Dosedělová
- Department of Bioanalytical Instrumentation, Institute of Analytical Chemistry, Czech Academy of Sciences, Brno, Czech Republic.,CEITEC - Central European Institute of Technology, Masaryk University, Brno, Czech Republic
| | - Petr Kubáň
- Department of Bioanalytical Instrumentation, Institute of Analytical Chemistry, Czech Academy of Sciences, Brno, Czech Republic
| |
Collapse
|
22
|
Nwaogu CJ, Amar A, Nebel C, Isaksson C, Hegemann A, Sumasgutner P. Innate immune function and antioxidant capacity of nestlings of an African raptor covary with the level of urbanisation around breeding territories. J Anim Ecol 2023; 92:124-141. [PMID: 36353782 PMCID: PMC10107107 DOI: 10.1111/1365-2656.13837] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Accepted: 10/13/2022] [Indexed: 11/11/2022]
Abstract
Urban areas provide breeding habitats for many species. However, animals raised in urban environments face challenges such as altered food availability and quality, pollution and pathogen assemblages. These challenges can affect physiological processes such as immune function and antioxidant defences which are important for fitness. Here, we explore how levels of urbanisation influence innate immune function, immune response to a mimicked bacterial infection and antioxidant capacity of nestling Black Sparrowhawks Accipiter melanoleucus in South Africa. We also explore the effect of timing of breeding and rainfall on physiology since both can influence the environmental condition under which nestlings are raised. Finally, because urbanisation can influence immune function indirectly, we use path analyses to explore direct and indirect associations between urbanisation, immune function and oxidative stress. We obtained measures of innate immunity (haptoglobin, lysis, agglutination, bactericidal capacity), indices of antioxidant capacity (total non-enzymatic antioxidant capacity (tAOX) and total glutathione from nestlings from 2015 to 2019. In addition, in 2018 and 2019, we mimicked a bacterial infection by injecting nestlings with lipopolysaccharide and quantified their immune response. Increased urban cover was associated with an increase in lysis and a decrease in tAOX, but not with any of the other physiological parameters. Furthermore, except for agglutination, no physiological parameters were associated with the timing of breeding. Lysis and bactericidal capacity, however, varied consistently with the annual rainfall pattern. Immune response to a mimicked a bacterial infection decreased with urban cover but not with the timing of breeding nor rainfall. Our path analyses suggested indirect associations between urban cover and some immune indices via tAOX but not via the timing of breeding. Our results show that early-life development in an urban environment is associated with variation in immune and antioxidant functions. The direct association between urbanisation and antioxidant capacity and their impact on immune function is likely an important factor mediating the impact of urbanisation on urban-dwelling animals. Future studies should explore how these results are linked to fitness and whether the responses are adaptive for urban-dwelling species.
Collapse
Affiliation(s)
- Chima Josiah Nwaogu
- FitzPatrick Institute of African Ornithology, DST-NRF Centre of Excellence, University of Cape Town, Cape Town, South Africa
| | - Arjun Amar
- FitzPatrick Institute of African Ornithology, DST-NRF Centre of Excellence, University of Cape Town, Cape Town, South Africa
| | - Carina Nebel
- FitzPatrick Institute of African Ornithology, DST-NRF Centre of Excellence, University of Cape Town, Cape Town, South Africa.,Department of Biology, University of Turku, Turku, Finland
| | | | - Arne Hegemann
- Department of Biology, Lund University, Lund, Sweden
| | - Petra Sumasgutner
- FitzPatrick Institute of African Ornithology, DST-NRF Centre of Excellence, University of Cape Town, Cape Town, South Africa.,Konrad Lorenz Research Centre, Core Facility for Behaviour and Cognition, University of Vienna, Grünau/Almtal, Austria.,Department of Behavioural & Cognitive Biology, University of Vienna, Vienna, Austria
| |
Collapse
|
23
|
Orekhova NA, Davydova YA, Smirnov GY. Structural–functional aberrations of erythrocytes in the northern red-backed vole (Clethrionomys rutilus Pallas, 1779) that inhabits the zone of influence of the copper smelter (the Middle Ural). Biometals 2022:10.1007/s10534-022-00478-2. [PMID: 36463375 DOI: 10.1007/s10534-022-00478-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 11/28/2022] [Indexed: 12/07/2022]
Abstract
Red blood cell parameters were assessed in a natural population of the northern red-backed vole (Clethrionomys rutilus Pallas, 1779) in the zone of influence of the Kirovgrad Copper Smelter along a gradient of pollution by heavy metals (Cu, Zn, Cd, and Pb) at three catching sites (polluted [Imp] and controls [Bg-1, and Bg-2]). The difference of the smelter area (Imp group of voles) from both background groups (Bg-1 and Bg-2) was proven by means of a set of 13 parameters in univariate and multivariate analyses. Among the detected erythrocyte disturbances, we noted the following: a decrease in activities of Na+,K+-ATPase and antioxidant enzymes (SOD, GSH-Px, and CAT); an increase in the concentration of lipid peroxidation products, in osmotic fragility, and in intravascular hemolysis; interruption of carbohydrate metabolism; and lowered oxygen-carrying capacity. A higher load of Cd (p = 0.0009) and possibly Pb (p = 0.054) in the Imp animals was confirmed by quantitation of heavy metals in the liver. Most erythrocyte parameters (11 out of 13) covaried with individual Cd load by obeying a semilogarithmic dependence; such a relation was not found for Cu, Zn, and Pb. A decrease in the growth rate of structural and functional erythrocyte aberrations ("resistance improvement") with increasing cadmium load is probably due to compensatory enhancement of the synthesis of metallothioneins in the liver and kidneys and hence a greater proportion of Cd bound to metallothioneins. Problems of differences/similarities in Cd-associated reactivity among the animals are discussed too, taking into account the catching sites (polluted [Imp] and controls [Bg-1, and Bg-2]) and reproductive-age (i.e., immature underyearlings, mature underyearlings, and individuals that overwintered). The persistence of differences in erythrocyte status observed by us between the Imp and background groups after normalization to Cd load may be due to the action of other (unexamined) adverse factors and calls for further ecotoxicological studies.
Collapse
|
24
|
Rola K, Latkowska E, Ogar W, Osyczka P. Towards understanding the effect of heavy metals on mycobiont physiological condition in a widespread metal-tolerant lichen Cladonia rei. CHEMOSPHERE 2022; 308:136365. [PMID: 36087724 DOI: 10.1016/j.chemosphere.2022.136365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 09/02/2022] [Accepted: 09/04/2022] [Indexed: 06/15/2023]
Abstract
Heavy metals present in the environment can cause a variety of injury symptoms in various organisms including lichens. Most studies examined metal-induced stress under controlled laboratory conditions, and little is known about actual response of lichens in their natural habitat. This study aims to recognize the effect of heavy metal accumulation (total and intracellular) on lichen physiological and biochemical parameters specifically related to the functioning of fungal component. Cladonia rei was used as a model species due to its common occurrence both in unpolluted and extremely polluted sites. We observed a decline in the fungal metabolism which was expressed by a decrease in ergosterol content and an increase in cell membrane damage as a result of increased Zn, Cd, Cu and Ni accumulation. Additionally, the results indicated that increased accumulation of xenobiotics (Pb and As) caused reduction of glutathione (GSH) concentrations and increased membrane lipid peroxidation. Therefore, we conclude that GSH does not provide high oxidative stress protection in C. rei which is somewhat against its insensitivity to pollution. The reduced pool of GSH could be explained by its oxidation to glutathione disulphide induced by heavy metal stress or its use for phytochelatin (PC) synthesis. The content of secondary metabolites was not related to heavy metal accumulation and remained at a relatively stable level. This indicates that the decline in the physiological condition did not weaken the mycobiont of C. rei enough to inhibit the synthesis of secondary metabolites and their precursors were supplied at a sufficient level. Thus, the potential function of main secondary metabolites as extracellular metal immobilizers and antioxidants is still possible even in individuals growing at extremely polluted sites. Despite the evident heavy metal stress, C. rei copes well and spreads easily through extremely polluted environments, which underlines its unique pioneering abilities in highly disturbed sites.
Collapse
Affiliation(s)
- Kaja Rola
- Institute of Botany, Faculty of Biology, Jagiellonian University, Gronostajowa 3, 30-387, Kraków, Poland.
| | - Ewa Latkowska
- Laboratory of Metabolomics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387, Kraków, Poland
| | - Wiktoria Ogar
- Laboratory of Metabolomics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387, Kraków, Poland
| | - Piotr Osyczka
- Institute of Botany, Faculty of Biology, Jagiellonian University, Gronostajowa 3, 30-387, Kraków, Poland
| |
Collapse
|
25
|
Grint I, Crea F, Vasiliadou R. The Combination of Electrochemistry and Microfluidic Technology in Drug Metabolism Studies. ChemistryOpen 2022; 11:e202200100. [PMID: 36166688 PMCID: PMC9716038 DOI: 10.1002/open.202200100] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 08/25/2022] [Indexed: 01/31/2023] Open
Abstract
Drugs are metabolized within the liver (pH 7.4) by phase I and phase II metabolism. During the process, reactive metabolites can be formed that react covalently with biomolecules and induce toxicity. Identifying and detecting reactive metabolites is an important part of drug development. Preclinical and clinical investigations are conducted to assess the toxicity and safety of a new drug candidate. Electrochemistry coupled to mass spectrometry is an ideal complementary technique to the current preclinical studies, a pure instrumental approach without any purification steps and tedious protocols. The combination of microfluidics with electrochemistry towards the mimicry of drug metabolism offers portability, low volume of reagents and faster reaction times. This review explores the development of microfluidic electrochemical cells for mimicking drug metabolism.
Collapse
Affiliation(s)
- Isobel Grint
- School of Life, Health and Chemical SciencesThe Open UniversityWalton Hall, Karen HillsMilton KeynesMK7 6AAUK
| | - Francesco Crea
- School of Life, Health and Chemical SciencesThe Open UniversityWalton Hall, Karen HillsMilton KeynesMK7 6AAUK
| | - Rafaela Vasiliadou
- School of Life, Health and Chemical SciencesThe Open UniversityWalton Hall, Karen HillsMilton KeynesMK7 6AAUK
| |
Collapse
|
26
|
Yaqoob A, Rehman K, Akash MSH, Alvi M, Shoaib SM. Biochemical profiling of metabolomics in heavy metal-intoxicated impaired metabolism and its amelioration using plant-based bioactive compound. Front Mol Biosci 2022; 9:1029729. [PMID: 36330218 PMCID: PMC9623090 DOI: 10.3389/fmolb.2022.1029729] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Accepted: 09/28/2022] [Indexed: 07/25/2023] Open
Abstract
Exposure to Pb is widely spreading and has far-reaching negative effects on living systems. This study aimed to investigate the toxic effects of Pb, through biochemical profiling and the ameliorative effects of quercetin against Pb-toxicity. Twenty-five male Wistar albino mice were divided into the following five groups. The CON-group received normal saline; the Pb-group received PbAc; the Pb + Q-CRN group received lead acetate followed by quercetin; the Q-CRN group received quercetin; and the CRN group received corn oil. After 4 weeks, the mice were euthanized. It was speculated that Pb significantly increased the levels of serine, threonine, and asparagine and decreased the levels of valine, lysine, and glutamic acid in the plasma of Pb-group, thus impairing amino acid metabolism. However, in the Pb + Q-CRN group, the level of these six amino acids was restored significantly due to the ameliorative effect of quercetin. The presence of lipid metabolites (L-carnitine, sphinganine, phytosphingosine, and lysophosphatidylcholine) in mice serum was confirmed by ESI/MS. The GPx, SOD, GSH, and CAT levels were significantly decreased, and the MDA level was significantly increased, thus confirming the oxidative stress and lipid peroxidation in the Pb group. The antioxidant effect of quercetin was elucidated in the Pb + Q-CRN group. Expression of CPT-I, CPT-II, LCAT, CROT, CACT, and MTR genes was significantly upregulated in the liver of Pb goup mice. Hence, the findings of this study proved that Pb exposure induced oxidative stress, upregulated gene expression, and impaired the lipid and amino acid metabolism in mice.
Collapse
Affiliation(s)
- Azka Yaqoob
- Department of Pharmaceutical Chemistry, Government College University, Faisalabad, Pakistan
| | - Kanwal Rehman
- Department of Pharmacy, The University Multan, Multan, Pakistan
| | | | - Maria Alvi
- Department of Pharmaceutical Chemistry, Government College University, Faisalabad, Pakistan
| | - Syed Muhammad Shoaib
- Drugs Testing Laboratory, Faisalabad, Primary & Secondary Healthcare Department, Government of the Punjab, Faisalabad, Pakistan
| |
Collapse
|
27
|
Zhou YL, Mara P, Vik D, Edgcomb VP, Sullivan MB, Wang Y. Ecogenomics reveals viral communities across the Challenger Deep oceanic trench. Commun Biol 2022; 5:1055. [PMID: 36192584 PMCID: PMC9529941 DOI: 10.1038/s42003-022-04027-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Accepted: 09/23/2022] [Indexed: 11/23/2022] Open
Abstract
Despite the environmental challenges and nutrient scarcity, the geographically isolated Challenger Deep in Mariana trench, is considered a dynamic hotspot of microbial activity. Hadal viruses are the least explored microorganisms in Challenger Deep, while their taxonomic and functional diversity and ecological impact on deep-sea biogeochemistry are poorly described. Here, we collect 13 sediment cores from slope and bottom-axis sites across the Challenger Deep (down to ~11 kilometers depth), and identify 1,628 previously undescribed viral operational taxonomic units at species level. Community-wide analyses reveals 1,299 viral genera and distinct viral diversity across the trench, which is significantly higher at the bottom-axis vs. slope sites of the trench. 77% of these viral genera have not been previously identified in soils, deep-sea sediments and other oceanic settings. Key prokaryotes involved in hadal carbon and nitrogen cycling are predicted to be potential hosts infected by these viruses. The detected putative auxiliary metabolic genes suggest that viruses at Challenger Deep could modulate the carbohydrate and sulfur metabolisms of their potential hosts, and stabilize host's cell membranes under extreme hydrostatic pressures. Our results shed light on hadal viral metabolic capabilities, contribute to understanding deep sea ecology and on functional adaptions of hadal viruses for future research.
Collapse
Affiliation(s)
- Ying-Li Zhou
- Institute of Deep-Sea Science and Engineering, Chinese Academy of Sciences, Sanya, Hainan, China
| | - Paraskevi Mara
- Department of Geology and Geophysics, Woods Hole Oceanographic Institution, Woods Hole, MA, USA
| | - Dean Vik
- Department of Microbiology and Center of Microbiome Science, The Ohio State University, Columbus, OH, USA
| | - Virginia P Edgcomb
- Department of Geology and Geophysics, Woods Hole Oceanographic Institution, Woods Hole, MA, USA
| | - Matthew B Sullivan
- Department of Microbiology and Center of Microbiome Science, The Ohio State University, Columbus, OH, USA
- Department of Civil, Environmental and Geodetic Engineering, The Ohio State University, Columbus, OH, USA
| | - Yong Wang
- Institute of Deep-Sea Science and Engineering, Chinese Academy of Sciences, Sanya, Hainan, China.
- Institute for Ocean Engineering, Shenzhen International Graduate School, Tsinghua University, Shenzhen, China.
| |
Collapse
|
28
|
Čelić TV, Vukašinović EL, Kojić D, Orčić S, Milić S, Vasin J, Purać J. Exposure to High Concentrations of Cadmium Which Delay Development of Ostrinia Nubilalis Hbn. Larvae Affected the Balance of Bioelements. ARCHIVES OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2022; 83:193-200. [PMID: 35997790 DOI: 10.1007/s00244-022-00953-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 07/16/2022] [Indexed: 06/15/2023]
Abstract
All processes involved in metal homeostasis must be coordinated to provide sufficient, but not toxic, concentrations of important bioelements, and to minimize detrimental effects of toxic metals. Our previous studies dealing with the exposure of O. nubilalis non-diapausing larvae to dietary Cd demonstrated that exposure to higher concentrations of Cd caused delay in the development of larvae, induced oxidative stress and also induced defense mechanisms against the toxic effects of Cd. The aim of the present study was to evaluate how acute and chronic exposure of O. nubilalis larvae to increased concentrations of dietary Cd affected the balance of important bioelements. The concentration of bioelements was analyzed in larvae (after short-term exposure) and pupae (after long-term exposure). The short-term exposure of final instar larvae (L5) to Cd did not affect significantly the concentration of any of the analyzed bioelements, while the long-term exposure of developing larvae to higher concentrations of Cd caused increase in the concentrations of Ca, Mg and Na in pupae. The bioaccumulation factor, calculated for bioelements after long-term exposure to Cd, was higher for the most bioelements in groups fed with diet containing higher concentrations of Cd, except K which displayed the opposite trend. Pearson correlation coefficient showed positive correlations between Cd and Ca, Mg, Na, Fe, Cu and Zn, while negative correlation was observed between Cd and K. The results indicate that impact on the balance of important bioelements might be one of the mechanisms of cadmium toxicity and certainly raise numerous questions for future research.
Collapse
Affiliation(s)
- Tatjana V Čelić
- Department of Biology and Ecology, Faculty of Sciences, University of Novi Sad, Trg Dositeja Obradovića 3, 21000, Novi Sad, Republic of Serbia.
| | - Elvira L Vukašinović
- Department of Biology and Ecology, Faculty of Sciences, University of Novi Sad, Trg Dositeja Obradovića 3, 21000, Novi Sad, Republic of Serbia
| | - Danijela Kojić
- Department of Biology and Ecology, Faculty of Sciences, University of Novi Sad, Trg Dositeja Obradovića 3, 21000, Novi Sad, Republic of Serbia
| | - Snežana Orčić
- Department of Biology and Ecology, Faculty of Sciences, University of Novi Sad, Trg Dositeja Obradovića 3, 21000, Novi Sad, Republic of Serbia
| | - Stanko Milić
- Institute of Field and Vegetable Crops, Laboratory for Soil and Agroecology, National Institute of the Republic of Serbia, Maksima Gorkog 30, 21000, Novi Sad, Serbia
| | - Jovica Vasin
- Institute of Field and Vegetable Crops, Laboratory for Soil and Agroecology, National Institute of the Republic of Serbia, Maksima Gorkog 30, 21000, Novi Sad, Serbia
| | - Jelena Purać
- Department of Biology and Ecology, Faculty of Sciences, University of Novi Sad, Trg Dositeja Obradovića 3, 21000, Novi Sad, Republic of Serbia
| |
Collapse
|
29
|
New Insights for Exploring the Risks of Bioaccumulation, Molecular Mechanisms, and Cellular Toxicities of AgNPs in Aquatic Ecosystem. WATER 2022. [DOI: 10.3390/w14142192] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Silver nanoparticles (AgNPs) are commonly used in numerous consumer products, including textiles, cosmetics, and health care items. The widespread usage of AgNPs results in their unavoidable discharge into the ecosystem, which pollutes the aquatic, groundwater, sediments, and marine environments. These nanoparticles (NPs) activate the production of free radicals reactive species in aquatic organisms that interrupt the functions of DNA, cause mitochondrial dysfunction, and increase lipid peroxidation, which terminates the development and reproduction both in vivo and in vitro. The life present in the aquatic ecosystem is becoming threatened due to the release and exploitation of AgNPs. Managing the aquatic ecosystem from the AgNP effects in the near future is highly recommended. In this review, we discussed the background of AgNPs, their discharge, and uptake by aquatic organisms, the mechanism of toxicity, different pathways of cytotoxicity, and bioaccumulation, particularly in aquatic organisms. We have also discussed the antimicrobial activities of AgNPs along with acute and chronic toxicity in aquatic groups of organisms.
Collapse
|
30
|
Alleviating Heavy Metal Toxicity in Milk and Water through a Synergistic Approach of Absorption Technique and High Voltage Atmospheric Cold Plasma and Probable Rheological Changes. Biomolecules 2022; 12:biom12070913. [PMID: 35883469 PMCID: PMC9312926 DOI: 10.3390/biom12070913] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 06/23/2022] [Accepted: 06/27/2022] [Indexed: 02/05/2023] Open
Abstract
In this study, we combined atmospheric pressure cold plasma, a novel treatment technology, with an absorption technique with soybean husk to remove Pb and Cd from milk. Different combinations of treatment duration, voltage, and post treatment retention time were used to determine the effectiveness of cold plasma. Soybean husk was used for metal extraction, and it was observed that when the milk samples were plasma treated with a discharge voltage of 50 kV for 2 min and held for 24 h, the highest mean elimination of about 27.37% for Pb and 14.89% for Cd was obtained. Reactive oxygen and nitrogen species produced from plasma treatment were identified using Optical Emission Spectra analysis. A high voltage of 50 kV plasma for a 2 min duration could produce 500 ± 100 ppm of ozone concentration inside the treated package. The value of ΔE, which indicates overall color difference measurement, was significantly (p < 0.05) higher in all the treated samples than control samples. However, in the frequency range from 0.01 to 100 Hz, there was not much difference between the control and treated sample in the frequency sweep test. The identified functional groups at different wavenumbers (cm−1) in the treated samples were found to be similar compared to the control samples.
Collapse
|
31
|
Ashraf MW, Haider SI, Solangi AR, Memon AF. Toxicity of tellurium and its compounds. PHYSICAL SCIENCES REVIEWS 2022. [DOI: 10.1515/psr-2021-0112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
Tellurium (Te) is widely used in industry because of its unique physicochemical properties. In the general population, foodstuff like meat, dairy products, and cereals is the major source of tellurium exposure. In the occupational environment, inhalational exposure predominates. Due to its exceptional properties as a metalloid, Te is broadly used in the industry. For example, Te is used as an alloy for solar panels, phase change optical magnetic disks, and Peltier devices. Recently, alloys of Te with cadmium, zinc, and other metals are used for nanomaterials, such as quantum dots. Thus, it is suggested that there is an existence of risk of exposure to Te in everyday life. Commercial Te is mostly obtained from slimes of electrolytic copper refineries. Te concentration in the slimes can extend up to 10% or more. Slight levels of its organic compounds may also be absorbed via skin. Not much information is available to prove Te as carcinogenic but its toxicity is well established. The present paper will review the toxicity of Te and its compounds.
Collapse
Affiliation(s)
- Muhammad Waqar Ashraf
- Mathematics & Natural Sciences , Prince Mohammad Bin Fahd University , Azizeyah , Al-Khobar , 31952 , Saudi Arabia
| | | | - Amber Rehana Solangi
- Center of Excellence in Analytical Chemistry , University of Sindh , Jamshoro , Pakistan
| | | |
Collapse
|
32
|
Singh M, Verma Y, Rana SVS. Nephrotoxicity of nickel nano and microparticles in rat- a comparative, time dependent study with special reference to antioxidant defence system. INORG NANO-MET CHEM 2022. [DOI: 10.1080/24701556.2022.2048307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Meenu Singh
- Department of Toxicology, Ch. Charan Singh University, Meerut, India
| | - Yeshvandra Verma
- Department of Toxicology, Ch. Charan Singh University, Meerut, India
| | - S. V. S. Rana
- Department of Toxicology, Ch. Charan Singh University, Meerut, India
| |
Collapse
|
33
|
Alkahtani S, Hasnain MS, Algamdy H, Aljarba NH, AlKahtane A. Acute and sub-acute oral toxicity Lagerstroemia speciosa in Sprague-Dawley rats. Saudi J Biol Sci 2022; 29:1585-1591. [PMID: 35280577 PMCID: PMC8913382 DOI: 10.1016/j.sjbs.2021.11.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 10/25/2021] [Accepted: 11/04/2021] [Indexed: 11/19/2022] Open
Affiliation(s)
- Saad Alkahtani
- Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia
- Corresponding author at: Department of Zoology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia.
| | - Md Saquib Hasnain
- Department of Pharmacy, Palamau Institute of Pharmacy, Chianki, Daltonganj 822102, Jharkhand, India
| | - Hamzah Algamdy
- Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Nada H. Aljarba
- Department of Biology, College of Sciences, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Abdullah AlKahtane
- Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
34
|
Exploiting Rhizobium for Cadmium Sulphide Nanoparticle Synthesis: Heterologous Expression of an Escherichia coli DH10B Enzyme, YbdK [EC: 6.3.2.2] in Sinorhizobium fredii NGR234. JOURNAL OF PURE AND APPLIED MICROBIOLOGY 2022. [DOI: 10.22207/jpam.16.1.59] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Escherichia coli DH10B has 1.1 kb ybdK gene which is responsible for encoding YbdK enzyme that possess a Gamma glutamyl cysteine synthetase activity. ybdK gene was ligated downstream of a constitutive derepressed lac promoter of a low copy number plasmid vector pBBR1MCS-2, giving rise to a recombinant plasmid pPAT. Sinorhizobium fredii NGR234 transformed with pPAT showed an augmented production of glutathione which in turn increased the production of cadmium sulphide nanoparticles to some extent. Also, a heterologous expression of YbdK in Sinorhizobium fredii NGR234 improved the oxidation status of bacterial cells which is confirmed by fluorescence microscopy images and fluorometry. Genetically modified (GM) cells stained by DCFDA showed a significant decrease in fluorescence compared to wild type (WT) cells. Physical and chemical properties of the nanoparticles produced by the pPAT transformed Sinorhizobium fredii NGR234 differed significantly compared to wild type (WT) Sinorhizobium fredii NGR234. Comparative analysis of the nanoparticles by FTIR and SEM analysis revealed the functional groups attached to nanoparticles and average nanoparticle size respectively. Nanoparticles synthesized by genetically modified (GM) bacteria were about 3 times smaller in size compared to those produced by wild type (WT) rhizobium. FTIR analysis revealed an augmented presence of peptide with the nanoparticles produced by GM bacteria compared to those produced by the WT bacteria. XRD data revealed that biosynthesized CdS nanoparticles are face centered crystalline particles which was confirmed by comparing the peaks to standard JCPDS data (JCPDS card no. 10-454).
Collapse
|
35
|
Morão IFC, Lemos MFL, Félix R, Vieira S, Barata C, Novais SC. Stress response markers in the blood of São Tomé green sea turtles (Chelonia mydas) and their relation with accumulated metal levels. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 293:118490. [PMID: 34780755 DOI: 10.1016/j.envpol.2021.118490] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 11/10/2021] [Accepted: 11/11/2021] [Indexed: 06/13/2023]
Abstract
Metals are persistent worldwide being harmful for diverse organisms and having complex and combined effects with other contaminants in the environment. Sea turtles accumulate these contaminants being considered good bioindicator species for marine pollution. However, very little is known on how this is affecting these charismatic animals. São Tomé and Príncipe archipelago harbours important green sea turtle (Chelonia mydas) nesting and feeding grounds. The main goal of this study was to determine metal and metalloid accumulation in the blood of females C. mydas nesting in São Tomé Island, and evaluate the possible impacts of this contamination by addressing molecular stress responses. Gene expression analysis was performed in blood targeting genes involved in detoxification/sequestration and metal transport (mt, mtf and fer), and in antioxidant and oxidative stress responses (cat, sod, gr, tdx, txrd, selp and gclc). Micronuclei analysis in blood was also addressed as a biomarker of genotoxicity. Present results showed significant correlations between different gene expressions with the metals evaluated. The best GLM models and significant relationships were found for mt expression, for which 78% of the variability was attributed to metal levels (Al, Cu, Fe, Hg, Pb and Zn), followed by micronuclei count (65% - Cr, Cu, Fe, Hg, Mn and Zn), tdx expression (52% - Cd, Fe, Mn, Pb and Se), and cat expression (52% - As, Fe, Se and Cd x Hg). Overall, this study demonstrates that these green sea turtles are trying to adapt to the oxidative stress and damage produced by metals through the increased expression of antioxidants and other protectors, which raises concerns about the impacts on these endangered organisms' fitness. Furthermore, promising biomarker candidates associated to metal stress were identified in this species that may be used in future biomonitoring studies using C. mydas' blood, allowing for a temporal follow-up of the organisms.
Collapse
Affiliation(s)
- Inês F C Morão
- MARE - Marine and Environmental Sciences Centre, ESTM, Politécnico de Leiria, Portugal
| | - Marco F L Lemos
- MARE - Marine and Environmental Sciences Centre, ESTM, Politécnico de Leiria, Portugal
| | - Rafael Félix
- MARE - Marine and Environmental Sciences Centre, ESTM, Politécnico de Leiria, Portugal
| | - Sara Vieira
- Associação Programa Tatô, Avenida Marginal 12 de Julho, Cidade de São Tomé, São Tomé e Príncipe, Portugal
| | - Carlos Barata
- Environmental Chemistry Department, IDAEA-CSIC, Jordi Girona 18-26, 08034, Barcelona, Spain
| | - Sara C Novais
- MARE - Marine and Environmental Sciences Centre, ESTM, Politécnico de Leiria, Portugal.
| |
Collapse
|
36
|
Ndaba J, Gilbert BM, Avenant-Oldewage A. METALLOTHIONEIN EXPRESSION IN A PARASITIC CRUSTACEAN, LAMPROGLENA CLARIAE (CRUSTACEA: COPEPODA), ON CLARIAS GARIEPINUS (TELOESTEI: CLARIIDAE) CORRESPONDS TO WATER QUALITY. J Parasitol 2022; 108:10-21. [PMID: 34995354 DOI: 10.1645/21-62] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Globally, parasites are sensitive toward environmental changes, and, in some cases, they are even more sensitive than their hosts. However, there is limited knowledge on the physiological responses of parasites and their effects on their hosts in relation to environmental degradation. In this study, metallothioneins (MTs) were isolated and compared between the ectoparasite Lamproglena clariae and its host fish Clarias gariepinus. Differences in the levels of MTs in the parasite and host were compared to physicochemical water quality variables and metals to determine if MT expression was linked with changes in water quality. Clarias gariepinus individuals were sampled from 2 sites of differing water quality along the Vaal River using gill nets and assessed for L. clariae. Gill, muscle, and liver tissue of the host and L. clariae were collected and stored in liquid nitrogen for analysis of MT. Water and sediment samples were collected for metal analysis by inductively coupled plasma-optical emission spectrometry and inductively coupled plasma-mass spectrometry. Nutrient levels and water hardness in water samples were assessed using spectrophotometry. MTs were quantified using spectrophotometry and size exclusion chromatography in the host and parasite, respectively. Infections by L. clariae differed between sites, with higher parasite intensity at the unpolluted Vaal Dam site. Concentrations of MT in host tissues and L. clariae were significantly higher at the polluted site, below the Vaal River Barrage, compared to the Vaal Dam site. Parasite MT concentrations were significantly lower compared to concentrations in the liver and gill tissue of C. gariepinus individuals. In conclusion, differences in the concentrations of MT and infection biology of L. clariae reflected the state of the environment and support the usefulness of this parasite and other Lamproglena spp. as bioindicators.
Collapse
Affiliation(s)
- Jabulani Ndaba
- Department of Zoology, University of Johannesburg, P.O. Box 524, Auckland Park, 2006, Johannesburg, South Africa
| | - Beric M Gilbert
- Department of Zoology, University of Johannesburg, P.O. Box 524, Auckland Park, 2006, Johannesburg, South Africa
| | - Annemariè Avenant-Oldewage
- Department of Zoology, University of Johannesburg, P.O. Box 524, Auckland Park, 2006, Johannesburg, South Africa
| |
Collapse
|
37
|
Liu W, Jing C, Liu X, Du J. 3D imaging of single bacterial cells using surface-enhanced Raman spectroscopy with a multivariate curve resolution model. Analyst 2021; 147:223-229. [PMID: 34877945 DOI: 10.1039/d1an01879e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Imaging biomolecules within a single bacterial cell is crucial for understanding cellular genetic mechanisms. Herein, we exploited a surface-enhanced Raman spectroscopy (SERS) imaging strategy for single cell analysis. Cellular biosynthesized Ag nanoparticles (NPs) provided the necessary enhancement for SERS imaging. Multiple complementary techniques, including high-resolution transmission electron microscopy (HR-TEM), high-angle annular dark-field (HAADF)-scanning transmission electron microscopy (STEM), and energy-dispersive X-ray spectroscopy (EDX), were used to characterize the biogenic Ag NPs in cells. Three-dimensional SERS imaging maps displayed spectral information of biomolecules within the single cell. The multivariate curve resolution (MCR) model and principal component analysis (PCA) model were used to analyze the cellular SERS imaging maps. The MCR model, with a specific constraint of non-negativity, resulted in meaningful identification of biomolecules associated with Ag reduction. Focusing on the molecular level reveals that Pantoea sp. IMH utilizes several mechanisms to synthesize Ag NPs, including cytoplasm reduction by glucose or nicotinamide adenine dinucleotide (NADH)-dependent reductase, and extracellular reduction by an electron transfer chain containing quinone and cytochrome C. Our results shed new light on the Ag NP biosynthesis mechanism and single cell Raman analysis.
Collapse
Affiliation(s)
- Wenjing Liu
- Key Laboratory for Environmental Factors Control of Agro-product Quality Safety, Ministry of Agriculture and Rural Affairs, Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China
| | | | - Xiaowei Liu
- Key Laboratory for Environmental Factors Control of Agro-product Quality Safety, Ministry of Agriculture and Rural Affairs, Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China
| | - Jingjing Du
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
| |
Collapse
|
38
|
Bhattacharya S, Das A, Krishnan K, Patil NA, Sadique J. Co-substrate-mediated utilization of high concentration of phenol by Aspergillus niger FP7 and reduction of its phytotoxicity on Vigna radiata L. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:64030-64038. [PMID: 33890222 DOI: 10.1007/s11356-021-13947-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2020] [Accepted: 04/12/2021] [Indexed: 06/12/2023]
Abstract
Phenol and its derivatives behave as mutagens, teratogens and carcinogens inducing adverse physiological effects and are considered environmental hazards. The present study focuses on high concentration phenol utilization by Aspergillus niger FP7 under various physicochemical parameters. The soil remediation potential of the culture for reducing phenol toxicity against Vigna radiata L. seed germination was also evaluated along with the extent of phenol utilization using high-performance liquid chromatography. Aspergillus niger FP7 showed phenol tolerance up to 1000 mg/l, beyond which there was a sharp reduction in phenol utilization. Supplementation of the mineral salt medium with glucose and peptone and application of a 100 rpm agitation rate enhanced phenol utilization (up to 88.3%). Phenol utilization efficiency decreased (up to 29.6%) when cadmium and mercury salts were present, but the same improved (59.4-75.5%) by the incorporation of cobalt, copper and zinc salts. Vigna radiata L. seeds sown in the non-augmented soil revealed a 3.27% germination index, and with fungal augmentation, the germination index improved (97.3%). The non-augmented soil demonstrated 3.1% phenol utilization, while for the augmented soil, the utilization was 79.3%. Based on the phytotoxicity study and chromatographic analysis, it could be inferred that Aspergillus niger FP7 significantly enhanced phenol utilization in soil. In the future, Aspergillus niger FP7 could be of potential use in bioremediation of sites polluted with high concentrations of phenol.
Collapse
Affiliation(s)
- Sourav Bhattacharya
- Department of Microbiology, School of Sciences, JAIN (Deemed-to-be University), 18/3, 9th Main, 3rd Block, Jayanagar, Bangalore, Karnataka, 560011, India.
| | - Arijit Das
- Department of Microbiology, School of Sciences, JAIN (Deemed-to-be University), 18/3, 9th Main, 3rd Block, Jayanagar, Bangalore, Karnataka, 560011, India
| | - Kavitha Krishnan
- Department of Microbiology, School of Sciences, JAIN (Deemed-to-be University), 18/3, 9th Main, 3rd Block, Jayanagar, Bangalore, Karnataka, 560011, India
| | - Nischita A Patil
- Department of Microbiology, School of Sciences, JAIN (Deemed-to-be University), 18/3, 9th Main, 3rd Block, Jayanagar, Bangalore, Karnataka, 560011, India
| | - Jaffar Sadique
- Department of Microbiology, School of Sciences, JAIN (Deemed-to-be University), 18/3, 9th Main, 3rd Block, Jayanagar, Bangalore, Karnataka, 560011, India
| |
Collapse
|
39
|
Turan N, Buldurun K, Türkan F, Aras A, Çolak N, Murahari M, Bursal E, Mantarcı A. Some metal chelates with Schiff base ligand: synthesis, structure elucidation, thermal behavior, XRD evaluation, antioxidant activity, enzyme inhibition, and molecular docking studies. Mol Divers 2021; 26:2459-2472. [PMID: 34743300 DOI: 10.1007/s11030-021-10344-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Accepted: 10/18/2021] [Indexed: 11/30/2022]
Abstract
Schiff bases are well-known compounds for having significant biological properties. In this study, a new Schiff base ligand and its metal complexes were synthesized, and their antioxidant and enzyme inhibitory activities were evaluated. The new Schiff base ligand was synthesized with the condensation reaction of 6-tert-butyl 3-ethyl 2-amino-4,5-dihydrothieno[2,3-c]pyridine-3,6(7H)-dicarboxylate and 2-hydroxybenzaldehyde compounds. Fe(II), Co(II), and Ni(II) metal complexes of the novel Schiff base ligand were synthesized and characterized. The purity and molecular formula of the synthesized compounds were identified with elemental analysis, infrared, ultraviolet-visible, mass spectrophotometry, powder XRD, magnetic and thermal measurements. The Schiff base acted as a three dentate chelate. The analytical and spectroscopic data suggested an octahedral geometry for the complexes. The in vitro antioxidant method studies elucidated a more effective antioxidant character of the Schiff base ligand than its metal complexes but a less effective antioxidant potential than the standard antioxidant compounds. The enzyme inhibition potentials of the synthesized compounds for AChE, BChE, and GST enzymes were determined by in vitro enzyme activity methods. The Schiff base ligand was discovered to be the best inhibitor for the AChE and BChE with the values of 7.13 ± 0.84 µM and 5.75 ± 1.03 µM Ki, respectively. Moreover, the Fe(II) complex displayed the best Ki value as 9.37 ± 1.06 µM for the GST enzyme. Finally, molecular docking studies were carried out to see the structural interactions of the compounds. The metal complexes demonstrated better binding affinities with the AChE, BChE, and GST enzymes than the Schiff base ligand. This study identified a potential Schiff base molecule against both AChE and BChE targets to further investigate for in vivo and safety evaluation.
Collapse
Affiliation(s)
- Nevin Turan
- Department of Chemistry, Faculty of Arts and Sciences, Muş Alparslan University, 49250, Muş, Turkey.
| | - Kenan Buldurun
- Department of Food Processing, Technical Science Vocational School, Muş Alparslan University, 49250, Muş, Turkey
| | - Fikret Türkan
- Health Services Vocational School, Igdır University, 76000, Igdır, Turkey
| | - Abdulmelik Aras
- Department of Biochemistry, Faculty of Arts and Sciences, Igdır University, 76100, Igdır, Turkey
| | - Naki Çolak
- Department of Chemistry, Faculty of Arts and Sciences, Hitit University, 19100, Çorum, Turkey
| | - Manikanta Murahari
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, M.S. Ramaiah University of Applied Sciences, Bangalore, India
| | - Ercan Bursal
- Department of Nursing, Faculty of Health, Muş Alparslan University, 49250, Muş, Turkey
| | - Asim Mantarcı
- Department of Physics, Faculty of Arts and Sciences, Muş Alparslan University, 49250, Muş, Turkey
| |
Collapse
|
40
|
Deshmukh Y, Gandhi VV, Singh BG, Kumbhare LB, Debnath AK, Kunwar A. 3,3'-Diselenodipropionic acid (DSePA) forms 1:1 complex with Hg (II) and prevents oxidative stress in cultured cells and mice model. J Inorg Biochem 2021; 226:111638. [PMID: 34717254 DOI: 10.1016/j.jinorgbio.2021.111638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Revised: 09/30/2021] [Accepted: 10/13/2021] [Indexed: 10/20/2022]
Abstract
Mercury is one of the most toxic heavy metal for mammals particularly in inorganic form. In present study, 3,3'-diselenodipropionic acid (DSePA), a well-known pharmacological diselenide was evaluated for its interaction with HgCl2 and ability to prevent HgCl2-induced toxicity in experimental cellular and mice models. UV-visible, stopped flow, Fourier-transform infrared spectroscopy and 1H nuclear magnetic resonance spectroscopy studies confirmed that DSePA sequestered Hg (II) ions with stoichiometry of 1:1 and binding constant of ~104 M-1. X-ray photoelectron spectroscopy and X-ray powder diffraction analysis suggested that diselenide group of DSePA was involved in the complexation with Hg (II) ions. Further, Hg-DSePA complex degraded within 10 days to form excretable HgSe. The binding constant of DSePA and Hg (II) was comparable with that of dihydrolipoic acid, a standard disulfide compound used in heavy metal detoxification. Corroborating these observations, pre-treatment of DSePA (10 μM) significantly prevented the HgCl2 (50 μM)-induced glutathione oxidation (GSH/GSSG), decrease of thioredoxin reductase (TrxR) and glutathione peroxidase (GPx) activities and cell death in Chinese Hamster Ovary (CHO) cells. Similarly, intraperitoneal administration of DSePA at a dosage of 2 mg/kg for 5 consecutive days prior to exposure of HgCl2 (1 mg/kg) significantly suppressed oxidative stress in renal and hepatic tissues of C57BL/6 mice. In conclusion, the protective effect of DSePA against Hg induced oxidative stress is attributed to its ability to rescue the activities of GPx, TrxR and GSH by sequestering Hg (II) ions. DSePA being a relatively safer selenium-compound for in vivo administration can be explored for mercury detoxification.
Collapse
Affiliation(s)
- Y Deshmukh
- Radiation and Photochemistry Division, Bhabha Atomic Research Centre, Mumbai 400085, India; Center for Basic Sciences, Pt. Ravishankar Shukla University, Raipur 492010, India
| | - V V Gandhi
- Radiation and Photochemistry Division, Bhabha Atomic Research Centre, Mumbai 400085, India; Homi Bhabha National Institute, Anushaktinagar, Mumbai 400 094, India
| | - B G Singh
- Radiation and Photochemistry Division, Bhabha Atomic Research Centre, Mumbai 400085, India; Homi Bhabha National Institute, Anushaktinagar, Mumbai 400 094, India
| | - L B Kumbhare
- Chemistry Division, Bhabha Atomic Research Centre, Mumbai 400085, India
| | - A K Debnath
- Homi Bhabha National Institute, Anushaktinagar, Mumbai 400 094, India; Technical Physics Division, Bhabha Atomic Research Centre, Mumbai 400085, India
| | - A Kunwar
- Radiation and Photochemistry Division, Bhabha Atomic Research Centre, Mumbai 400085, India; Homi Bhabha National Institute, Anushaktinagar, Mumbai 400 094, India.
| |
Collapse
|
41
|
Rashaid AHB, Nusair SD, Alqhazo MT, Adams JB, Abu-Dalo MA, Bashtawi MA. Heavy metals and trace elements in scalp hair samples of children with severe autism spectrum disorder: A case-control study on Jordanian children. J Trace Elem Med Biol 2021; 67:126790. [PMID: 34022568 DOI: 10.1016/j.jtemb.2021.126790] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 04/28/2021] [Accepted: 05/13/2021] [Indexed: 11/17/2022]
Abstract
BACKGROUND Elemental analysis has been increasingly used for biomonitoring heavy metals and trace elements. METHODS This study monitored the levels of two heavy metals (Al and Pb), and seven trace elements (Macroelements Mg, K, P and Ca; Microelements Zn, Cu, Fe) in scalp hair of 57 children with severe autism spectrum disorder (ASD) and 50 age-matched controls, using Inductively Coupled Plasma Atomic Emission Spectrophotometry (ICP-AES). RESULTS Compared to controls, significantly higher levels of Al (p = 0.001), Pb (p = 0.001) and K (p = 0.021), with lower levels of Mg and Zn (p = 0.038) were observed for the ASD group. ASD boys had higher levels of Al (p = 0.001), Pb (p = 0.001) and K (p = 0.017) than control boys, while ASD girls had higher Pb levels (p = 0.005) than control girls. The ASD subgroup exposed to passive smokers had higher levels of Al (p = 0.033) and Pb (p = 0.001, and the ASD subgroup not exposed to passive smoke had higher levels of Al (p = 0.011), Pb (p = 0.001), K (p = 0.003); and lower levels of Mg (p = 0.011) than their controls. Other confounding factors and the correlation between these elements were also investigated. CONCLUSION This data suggests that exposure to Al and Pb, increase intake of K, and decreased intake of magnesium and zinc, may contribute to ASD etiology.
Collapse
Affiliation(s)
- Ayat Hussein B Rashaid
- Department of Chemistry, Faculty of Science and Arts, Jordan University of Science and Technology, Irbid, Jordan.
| | - Shreen Deeb Nusair
- Department of Clinical Pharmacy, Faculty of Pharmacy, Jordan University of Science and Technology, Irbid, Jordan
| | - Mazin Taha Alqhazo
- Department of Rehabilitation Sciences, Applied Medical Sciences, Jordan University of Science and Technology, Irbid, Jordan
| | | | - Muna Ahmed Abu-Dalo
- Department of Chemistry, Faculty of Science and Arts, Jordan University of Science and Technology, Irbid, Jordan
| | - Mahmoud Ahmad Bashtawi
- Department of Neuroscience, Faculty of Medicine, Jordan University of Science and Technology, Irbid, Jordan
| |
Collapse
|
42
|
Alam T, Rizwan S, Farooqui Z, Abidi S, Parwez I, Khan F. Oral Nigella sativa oil administration alleviates arsenic-induced redox imbalance, DNA damage, and metabolic and histological alterations in rat liver. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:41464-41478. [PMID: 33786765 DOI: 10.1007/s11356-021-13493-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Accepted: 03/12/2021] [Indexed: 06/12/2023]
Abstract
Arsenic, an omnipresent environmental contaminant, is regarded as a potent hepatotoxin. Nigella sativa oil (NSO) consumption has been shown to improve hepatic functions in various in vivo models of acute hepatic injury. The present study evaluates the protective efficacy of NSO against sodium arsenate (As)-induced deleterious alterations in the liver. Male Wistar rats were divided into four groups, namely, control, As, NSO, and AsNSO. After pre-treating rats in AsNSO and NSO groups with NSO (2 mL/kg bwt, orally) for 14 days, NSO treatment was further extended for 30 days, with and without As treatment (5 mg/kg bwt, orally), respectively. As induced an upsurge in serum ALT and AST activities indicating liver injury, as also confirmed by the histopathological findings. As caused significant alterations in the activities of membrane marker enzymes and carbohydrate metabolic enzymes, and in the vital components of antioxidant defense system. Marked DNA damage and hepatic arsenic accumulation were also observed in As-treated rats. Oral NSO administration ameliorated these deleterious alterations and improved overall hepatic antioxidant and metabolic status in As-treated rats. Prevention of oxidative damage could be the underlying mechanism of NSO-mediated protective effects. The results suggest that NSO could be a useful dietary supplement in the management of arsenic hepatotoxicity.
Collapse
Affiliation(s)
- Tauseef Alam
- Department of Biochemistry, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, U.P., 202002, India
| | - Sana Rizwan
- Department of Biochemistry, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, U.P., 202002, India
| | - Zeba Farooqui
- Department of Biochemistry, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, U.P., 202002, India
| | - Subuhi Abidi
- Department of Zoology, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, U.P., 202002, India
| | - Iqbal Parwez
- Department of Zoology, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, U.P., 202002, India
| | - Farah Khan
- Department of Biochemistry, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, U.P., 202002, India.
| |
Collapse
|
43
|
Bolan S, Seshadri B, Keely S, Kunhikrishnan A, Bruce J, Grainge I, Talley NJ, Naidu R. Bioavailability of arsenic, cadmium, lead and mercury as measured by intestinal permeability. Sci Rep 2021; 11:14675. [PMID: 34282255 PMCID: PMC8289861 DOI: 10.1038/s41598-021-94174-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Accepted: 06/25/2021] [Indexed: 12/17/2022] Open
Abstract
In this study, the intestinal permeability of metal(loid)s (MLs) such as arsenic (As), cadmium (Cd), lead (Pb) and mercury (Hg) was examined, as influenced by gut microbes and chelating agents using an in vitro gastrointestinal/Caco-2 cell intestinal epithelium model. The results showed that in the presence of gut microbes or chelating agents, there was a significant decrease in the permeability of MLs (As-7.5%, Cd-6.3%, Pb-7.9% and Hg-8.2%) as measured by apparent permeability coefficient value (Papp), with differences in ML retention and complexation amongst the chelants and the gut microbes. The decrease in ML permeability varied amongst the MLs. Chelating agents reduce intestinal absorption of MLs by forming complexes thereby making them less permeable. In the case of gut bacteria, the decrease in the intestinal permeability of MLs may be associated to a direct protection of the intestinal barrier against the MLs or indirect intestinal ML sequestration by the gut bacteria through adsorption on bacterial surface. Thus, both gut microbes and chelating agents can be used to decrease the intestinal permeability of MLs, thereby mitigating their toxicity.
Collapse
Affiliation(s)
- Shiv Bolan
- Global Centre for Environmental Remediation, University of Newcastle, Callaghan, NSW, Australia
- Cooperative Research Centre for Contamination Assessment and Remediation of the Environment, University of Newcastle, Callaghan, NSW, Australia
| | - Balaji Seshadri
- Global Centre for Environmental Remediation, University of Newcastle, Callaghan, NSW, Australia
- Cooperative Research Centre for Contamination Assessment and Remediation of the Environment, University of Newcastle, Callaghan, NSW, Australia
| | - Simon Keely
- Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
| | - Anitha Kunhikrishnan
- Global Centre for Environmental Remediation, University of Newcastle, Callaghan, NSW, Australia
| | - Jessica Bruce
- Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
| | - Ian Grainge
- School of Environmental and Life Sciences, University of Newcastle, Callaghan, NSW, Australia
| | - Nicholas J Talley
- Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
| | - Ravi Naidu
- Global Centre for Environmental Remediation, University of Newcastle, Callaghan, NSW, Australia.
- Cooperative Research Centre for Contamination Assessment and Remediation of the Environment, University of Newcastle, Callaghan, NSW, Australia.
| |
Collapse
|
44
|
Nogueira LS, Vasconcelos CP, Mitre GP, Kataoka MSDS, Bittencourt LO, Lima MO, de Oliveira EHC, Crespo-Lopez ME, Lima RR. Metabolic and oxidative impairments in human salivary gland cells line exposed to MeHg. J Trace Elem Med Biol 2021; 66:126747. [PMID: 33773279 DOI: 10.1016/j.jtemb.2021.126747] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2020] [Revised: 01/17/2021] [Accepted: 03/15/2021] [Indexed: 12/20/2022]
Abstract
BACKGROUND/AIM The ingestion of contaminated seafood by MeHg is considered the main route of human exposure, turning the salivary gland one important target organ. The salivary glands play critical roles in maintaining oral health homeostasis, producing saliva that maintains the oral microbiota, initiation of the digestion of macromolecules, and being essential in maintaining the integrity of the adjacent soft tissues and teeth. Thus, this study aimed to investigate the effects of MeHg exposure on human salivary gland cells line. METHODS Cells were exposed to 1-6 μM of MeHg for 24 h, and analysis of toxicity was performed. Based on these results, the LC50 was calculated and two concentrations were chosen (0.25 and 2.5 μM MeHg) to evaluate intracellular mercury (Hg) accumulation (THg), metabolic viability and oxidative stress parameters (GSH:GSSG ratio, lipid peroxidation, protein oxidation and DNA damage). RESULTS The results demonstrated accumulation of THg as we increased the MeHg concentrations in the exposure and, the higher the dose, the lower is the cell metabolic response. In addition, the 2.5 μM MeHg concentration also triggered oxidative stress in human salivary gland cells by depleting the antioxidant competence of GSH:GSSG ratio and increasing lipid peroxidation and proteins carbonyl levels, but no damages to DNA integrity. CONCLUSION In conclusion, although these two elected doses did not show lethal effects, the highest dose triggered oxidative stress and new questionings about long-term exposure models are raised to investigate furthers cellular damages to human salivary gland cells caused by MeHg exposure to extrapolate in a translational perspective.
Collapse
Affiliation(s)
- Lygia S Nogueira
- Laboratory of Functional and Structural Biology, Institute of Biological Sciences, Federal University of Pará, Belém, PA, Brazil
| | - Carolina P Vasconcelos
- Laboratory of Cell Culture and Cytogenetics, Environment Section, Evandro Chagas Institute, Ananindeua, PA, Brazil
| | | | | | - Leonardo Oliveira Bittencourt
- Laboratory of Functional and Structural Biology, Institute of Biological Sciences, Federal University of Pará, Belém, PA, Brazil
| | - Marcelo O Lima
- Laboratory of Toxicology, Environment Section, Evandro Chagas Institute, Ananindeua, PA, Brazil
| | - Edivaldo H C de Oliveira
- Laboratory of Cell Culture and Cytogenetics, Environment Section, Evandro Chagas Institute, Ananindeua, PA, Brazil
| | - Maria Elena Crespo-Lopez
- Laboratory of Molecular Pharmacology, Institute of Biological Sciences, Federal University of Pará, Belém, PA, Brazil
| | - Rafael Rodrigues Lima
- Laboratory of Functional and Structural Biology, Institute of Biological Sciences, Federal University of Pará, Belém, PA, Brazil.
| |
Collapse
|
45
|
Portable Au Nanoparticle-Based Colorimetric Sensor Strip for Rapid On-Site Detection of Cd2+ Ions in Potable Water. BIOCHIP JOURNAL 2021. [DOI: 10.1007/s13206-021-00029-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
46
|
Tellurium: A Rare Element with Influence on Prokaryotic and Eukaryotic Biological Systems. Int J Mol Sci 2021; 22:ijms22115924. [PMID: 34072929 PMCID: PMC8199023 DOI: 10.3390/ijms22115924] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Revised: 05/27/2021] [Accepted: 05/28/2021] [Indexed: 11/16/2022] Open
Abstract
Metalloid tellurium is characterized as a chemical element belonging to the chalcogen group without known biological function. However, its compounds, especially the oxyanions, exert numerous negative effects on both prokaryotic and eukaryotic organisms. Recent evidence suggests that increasing environmental pollution with tellurium has a causal link to autoimmune, neurodegenerative and oncological diseases. In this review, we provide an overview about the current knowledge on the mechanisms of tellurium compounds' toxicity in bacteria and humans and we summarise the various ways organisms cope and detoxify these compounds. Over the last decades, several gene clusters conferring resistance to tellurium compounds have been identified in a variety of bacterial species and strains. These genetic determinants exhibit great genetic and functional diversity. Besides the existence of specific resistance mechanisms, tellurium and its toxic compounds interact with molecular systems, mediating general detoxification and mitigation of oxidative stress. We also discuss the similarity of tellurium and selenium biochemistry and the impact of their compounds on humans.
Collapse
|
47
|
Medina Pérez OM, Flórez-Vargas O, Rincón Cruz G, Rondón González F, Rocha Muñoz L, Sánchez Rodríguez LH. Glutathione-related genetic polymorphisms are associated with mercury retention and nephrotoxicity in gold-mining settings of a Colombian population. Sci Rep 2021; 11:8716. [PMID: 33888803 PMCID: PMC8062595 DOI: 10.1038/s41598-021-88137-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Accepted: 04/08/2021] [Indexed: 11/09/2022] Open
Abstract
Mercury (Hg) vapor can produce kidney injury, where the proximal tubule region of the nephron is the main target of the Hg-induced oxidative stress. Hg is eliminated from the body as a glutathione conjugate. Thus, single nucleotide polymorphisms (SNPs) in glutathione-related genes might modulate the negative impact of this metal on the kidneys. Glutathione-related SNPs were tested for association with levels of Hg and renal function biomarkers between occupationally exposed (n = 160) and non-exposed subjects (n = 121). SNPs were genotyped by TaqMan assays in genomic DNA samples. Total mercury concentration was measured in blood, urine and hair samples. Regression analyses were performed to estimate the effects of SNPs on quantitative traits. Alleles GCLM rs41303970-T and GSTP1 rs4147581-C were significantly overrepresented in the exposed compared with the non-exposed group (P < 0.01). We found significant associations for GCLM rs41303970-T with higher urinary clearance rate of Hg (β = 0.062, P = 0.047), whereas GCLC rs1555903-C was associated with lower levels of estimated glomerular filtration rate in the non-exposed group (eGFR, β = − 3.22, P = 0.008) and beta-2-microglobulin in the exposed group (β-2MCG, β = − 19.32, P = 0.02). A SNP-SNP interaction analysis showed significant epistasis between GSTA1 rs3957356-C and GSS rs3761144-G with higher urinary levels of Hg in the exposed (β = 0.13, P = 0.04) but not in the non-exposed group. Our results suggest that SNPs in glutathione-related genes could modulate the pathogenesis of Hg nephrotoxicity in our study population by modulating glutathione concentrations in individuals occupationally exposed to this heavy metal.
Collapse
Affiliation(s)
- Olga Marcela Medina Pérez
- Departamento de Ciencias Básicas, Universidad Industrial de Santander, Bucaramanga, Colombia.,Laboratorio de Toxicología Ambiental y Toxicogenética, Universidad Industrial de Santander, Bucaramanga, Colombia
| | - Oscar Flórez-Vargas
- Laboratorio de Toxicología Ambiental y Toxicogenética, Universidad Industrial de Santander, Bucaramanga, Colombia.,Laboratory of Translational Genomics, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, USA
| | - Giovanna Rincón Cruz
- Grupo de Inmunología y Epidemiología Molecular, Escuela de Microbiología, Universidad Industrial de Santander, Carrera 32 No. 29-31; Building Roberto Serpa, Floor 5, Office 5, Bucaramanga, Colombia
| | - Fernando Rondón González
- Grupo de Investigación en Microbiología y Genética, Escuela de Biología, Universidad Industrial de Santander, Bucaramanga, Colombia
| | - Linda Rocha Muñoz
- Grupo de Investigación CienciaUDES, Universidad de Santander, Bucaramanga, Colombia
| | - Luz Helena Sánchez Rodríguez
- Grupo de Inmunología y Epidemiología Molecular, Escuela de Microbiología, Universidad Industrial de Santander, Carrera 32 No. 29-31; Building Roberto Serpa, Floor 5, Office 5, Bucaramanga, Colombia. .,Laboratorio de Toxicología Ambiental y Toxicogenética, Universidad Industrial de Santander, Bucaramanga, Colombia.
| |
Collapse
|
48
|
Kim S, Nassar M, Tamura Y, Hiraishi N, Jamleh A, Nikaido T, Tagami J. The effect of reduced glutathione on the toxicity of silver diamine fluoride in rat pulpal cells. J Appl Oral Sci 2021; 29:e20200859. [PMID: 33886942 PMCID: PMC8075293 DOI: 10.1590/1678-7757-2020-0859] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Accepted: 01/15/2021] [Indexed: 01/10/2023] Open
Abstract
Introduction Due to its ability to arrest untreated dental caries, silver diamine fluoride (SDF) has been advocated for indirect pulp capping procedures. However, the high concentrations of silver and fluoride in SDF raise concerns about its biocompatibility to pulpal tissues. Objectives This study aimed to investigate the effect of SDF on the viability, alkaline phosphatase (ALP) activity, and morphology of pulpal-like cells (RPC-C2A) and to evaluate the influence of reduced glutathione (GSH) on SDF-induced cytotoxicity and deposit formation on dentin. Methodology The cytotoxicity of diluted 38% SDF solutions (10-4 and 10-5), with or without the addition of 5 mM or 50 mM GSH, was evaluated at 6 and 24 hours. Cell viability was detected using WST-8 and the effect on ALP activity was performed using an ALP assay kit. Cell morphology was observed using a phase-contrast microscope. Scanning electron microscopy analysis was conducted to evaluate the effect of GSH incorporation or conditioning on SDF-induced deposit formation on dentin discs. Cytotoxicity data were analyzed by two-way analysis of variance (ANOVA) and Tukey post hoc tests (p<0.05). Results There were significant differences between the groups. The results demonstrated that all tested SDF dilutions caused a remarkable cytotoxic effect, while the addition of GSH prevented SDF-induced damage at 6-hour exposure time in the higher dilution of SDF. Dentin treated with plain SDF or GSH-incorporated SDF solution showed deposit formation with occluded dentinal tubules, unlike the other groups. Conclusion SDF severely disturbed the viability, mineralization-ability, and morphology of pulpal-like cells, while controlled concentrations of GSH had a short-term protective effect against SDF-induced damage. GSH showed an inhibitory effect on SDF-induced dentinal deposit formation. Further research is warranted to evaluate the effect of GSH on caries-arresting, anti-hypersensitivity, and antibacterial functions of SDF.
Collapse
Affiliation(s)
- Seunggun Kim
- Tokyo Medical and Dental University, Graduate School of Medical and Dental Sciences, Department of Cariology and Operative Dentistry, Tokyo, Japan
| | - Mohannad Nassar
- University of Sharjah, College of Dental Medicine, Department of Preventive and Restorative Dentistry, Sharjah, United Arab Emirates (UAE)
| | - Yukihiko Tamura
- Tokyo Medical and Dental University, Bio-Matrix (Dental Pharmacology), Tokyo, Japan
| | - Noriko Hiraishi
- Tokyo Medical and Dental University, Graduate School of Medical and Dental Sciences, Department of Cariology and Operative Dentistry, Tokyo, Japan
| | - Ahmed Jamleh
- National Guard Health Affairs, King Saud bin Abdulaziz University for Health Sciences, College of Dentistry, Restorative and Prosthetic Dental Sciences, Riyadh, Saudi Arabia.,National Guard Health Affairs, King Abdullah International Medical Research Centre, Riyadh, Saudi Arabia
| | - Toru Nikaido
- Asahi University, School of Dentistry, Division of Oral Functional Science and Rehabilitation, Department of Operative Dentistry, Gifu, Japan
| | - Junji Tagami
- Tokyo Medical and Dental University, Graduate School of Medical and Dental Sciences, Department of Cariology and Operative Dentistry, Tokyo, Japan
| |
Collapse
|
49
|
Al-Brakati A, Albarakati AJA, Lokman MS, Theyab A, Algahtani M, Menshawi S, AlAmri OD, Al Omairi NE, Essawy EA, Kassab RB, Abdel Moneim AE. Possible Role of Kaempferol in Reversing Oxidative Damage, Inflammation, and Apoptosis-Mediated Cortical Injury Following Cadmium Exposure. Neurotox Res 2021; 39:198-209. [PMID: 33141427 DOI: 10.1007/s12640-020-00300-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 10/15/2020] [Accepted: 10/18/2020] [Indexed: 12/13/2022]
Abstract
Cadmium (Cd) is a heavy metal of considerable toxicity, inducing a number of hazardous effects to humans and animals including neurotoxicity. This experiment was aimed to investigate the potential effect of kaempferol (KPF) against Cd-induced cortical injury. Thirty-two adult Sprague-Dawley rats were divided equally into four groups. The control rats intraperitoneally (i.p.) injected with physiological saline (0.9% NaCl), the cadmium chloride (CdCl2)-treated rats were i.p. injected with 4.5 mg/kg of CdCl2, the KPF-treated rats were orally gavaged with 50 mg/kg of KPF, and the KPF + CdCl2-treated rats were administered orally 50 mg/kg of KPF 120 min before receiving i.p. injection of 4.5 mg/kg CdCl2. CdCl2 exposure for 30 days led to the accumulation of Cd in the cortical tissue, accompanied by a reduction in the content of monoamines and acetylcholinesterase activity. Additionally, CdCl2 induced a state of oxidative stress as evidenced by the elevation of lipid peroxidation and nitrate/nitrite levels, while glutathione content and the activities of glutathione peroxidase, glutathione reductase, superoxide dismutase, and catalase were decreased. Moreover, CdCl2 mediated inflammatory events in the cortical tissue through increasing tumor necrosis factor-alpha and interleukin-1 beta levels and upregulating the expression of inducible nitric oxide synthase. Furthermore, pro-apoptotic proteins (Bax and caspase-3) were elevated, while Bcl-2, the anti-apoptotic protein, was decreased. Also, histological alterations were observed obviously following CdCl2. However, KPF pretreatment restored significantly the examined markers to be near the normal values. Hence, the obtained data provide evidences that KPF pretreatment has the protective effect to preserve the cortical tissues in CdCl2-exposed rats by restraining oxidative stress, inflammatory response, apoptosis, neurochemical modulation, and improving the histological changes.
Collapse
Affiliation(s)
- Ashraf Al-Brakati
- Department of Human Anatomy, College of Medicine, Taif University, P.O. Box 11099, Taif, 21944, Saudi Arabia
| | - Alaa Jameel A Albarakati
- Surgery Department, College of Medicine, Al-Qunfudah Branch, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Maha S Lokman
- Biology Department, College of Science and Humanities, Prince Sattam bin Abdul Aziz University, Alkharj, Saudi Arabia.
- Department of Zoology and Entomology, Faculty of Science, Helwan University, Cairo, Egypt.
| | - Abdulrahman Theyab
- Department of Laboratory Medicine, Security Forces Hospital, Mecca, Saudi Arabia
| | - Mohammad Algahtani
- Department of Laboratory Medicine, The Comprehensive Specialized Clinics of Security Forces, Jeddah, Saudi Arabia
| | - Salah Menshawi
- Department of Laboratory Medicine, The Comprehensive Specialized Clinics of Security Forces, Jeddah, Saudi Arabia
| | - Ohoud D AlAmri
- Department of Zoology, Faculty of Science, King Saud University, Riyadh, Saudi Arabia
| | - Naif E Al Omairi
- Department of Internal Medicine, College of Medicine, Taif University, Taif, Saudi Arabia
| | - Ehab A Essawy
- Department of Chemistry, Faculty of Science, Helwan University, Cairo, Egypt
| | - Rami B Kassab
- Department of Zoology and Entomology, Faculty of Science, Helwan University, Cairo, Egypt
- Department of Biology, Faculty of Science and Arts, Al Baha University, Almakhwah, Al Baha, Saudi Arabia
| | - Ahmed E Abdel Moneim
- Department of Zoology and Entomology, Faculty of Science, Helwan University, Cairo, Egypt
| |
Collapse
|
50
|
Gochfeld M, Burger J. Mercury interactions with selenium and sulfur and the relevance of the Se:Hg molar ratio to fish consumption advice. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:18407-18420. [PMID: 33507504 PMCID: PMC8026698 DOI: 10.1007/s11356-021-12361-7] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Accepted: 01/02/2021] [Indexed: 05/20/2023]
Abstract
Eating fish is often recommended as part of a healthful diet. However, fish, particularly large predatory fish, can contain significant levels of the highly toxic methylmercury (MeHg). Ocean fish in general also contain high levels of selenium (Se), which is reported to confer protection against toxicity of various metals including mercury (Hg). Se and Hg have a high mutual binding affinity, and each can reduce the toxicity of the other. This is an evolving area of extensive research and controversy with variable results in the animal and epidemiologic literature. MeHg is toxic to many organ systems through high affinity for -SH (thiol) ligands on enzymes and microtubules. Hg toxicity also causes oxidative damage particularly to neurons in the brain. Hg is a potent and apparently irreversible inhibitor of the selenoenzymes, glutathione peroxidases (GPX), and thioredoxin reductases (TXNRD) that are important antioxidants, each with a selenocysteine (SeCys) at the active site. Hg binding to the SeCys inhibits these enzymes, accounting in part for the oxidative damage that is an important manifestation of Hg toxicity, particularly if there is not a pool of excess Se to synthesize new enzymes. A molar excess of Se reflected in an Se:Hg molar ratio > 1 is often invoked as evidence that the Hg content can be discounted. Some recent papers now suggest that if the Se:Hg molar ratio exceeds 1:1, the fish is safe and the mercury concentration can be ignored. Such papers suggested that the molar ratio rather than the Hg concentration should be emphasized in fish advisories. This paper examines some of the limitations of current understanding of the Se:Hg molar ratio in guiding fish consumption advice; Se is certainly an important part of the Hg toxicity story, but it is not the whole story. We examine how Hg toxicity relates also to thiol binding. We suggest that a 1:1 molar ratio cannot be relied on because not all of the Se in fish or in the fish eater is available to interact with Hg. Moreover, in some fish, Se levels are sufficiently high to warrant concern about Se toxicity.
Collapse
Affiliation(s)
- Michael Gochfeld
- Rutgers Biomedical and Health Sciences, School of Public Health, Piscataway, NJ, USA.
- Environmental and Occupational Health Sciences Institutes, Rutgers University, Piscataway, NJ, 08854, USA.
| | - Joanna Burger
- Environmental and Occupational Health Sciences Institutes, Rutgers University, Piscataway, NJ, 08854, USA
- Division of Life Science, Rutgers University, 604 Allison Road, Piscataway, NJ, 08854, USA
| |
Collapse
|