1
|
Özgür ME, Ulu A, Sezer S, Köytepe S, Ateş B. Tire Rubber Based Microplastic Particles Cause Adverse on Quality Parameters of Rainbow Trout Sperm Cells. BULLETIN OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2024; 113:43. [PMID: 39306598 DOI: 10.1007/s00128-024-03951-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 09/03/2024] [Indexed: 10/19/2024]
Abstract
In the present study, we aimed to determine the parameters of oxidative stress markers, motility and kinematics of rainbow trout (Oncorhynchus mykiss) sperm cells exposed to different doses (0.001, 0.01, 0.1, 1.0, and 10 mg/L, in vitro 4 h) of tire rubber based microplastic particles (TRMP-Ps) the leachates procedure of rubber pieces. First of all, TRMP-Ps were prepared by abrasion method in accordance with the literature. Structural and morphological features of TRMP-Ps were determined by Fourier transform infrared (FTIR) spectroscopy and scanning electron microscopy (SEM) methods, respectively. Energy dispersive X-ray (EDX) analysis technique was used to characterize the elemental composition of TRMP-Ps. Particle size of microplastic structures was measured hydrodynamically with dynamic light scattering analysis (DLS). After exposure, the effect of TRMP-Ps was defined by the observations of kinematics and antioxidant activities in sperm cells. Our findings showed that the straight line velocity, the curvilinear velocity, the angular path velocity, and the amplitude of lateral displacement of sperm cells decreased. Moreover, while the level of superoxide dismutase decreased dose-dependently against the toxicity of TRMP-Ps, no significant change was observed in the levels of malondialdehyde and total glutathione. The 4-h median effective concentrations (EC50) of TRMP-Ps based on mobility parameters of sperm ranged from 0.31 mg/L for reduced straight line velocity of sperm cells to 0.51 mg/L for reduced amplitude of lateral displacement of the spermatozoa head. Therefore, we concluded that TRMP-Ps can be a risk for the reproduction cycle of fish in aquatic environments.
Collapse
Affiliation(s)
- Mustafa Erkan Özgür
- Faculty of Agriculture, Department of Fishery Engineering, Malatya Turgut Özal University, Malatya, 44500, Turkey.
| | - Ahmet Ulu
- Science Faculty, Department of Chemistry, İnönü University, Malatya, 44280, Turkey.
| | - Selda Sezer
- Akçadağ Vocational High School, Department of Laboratory and Veterinary Health, Malatya Turgut Özal University, Malatya, 44600, Turkey
| | - Süleyman Köytepe
- Science Faculty, Department of Chemistry, İnönü University, Malatya, 44280, Turkey
| | - Burhan Ateş
- Science Faculty, Department of Chemistry, İnönü University, Malatya, 44280, Turkey
| |
Collapse
|
2
|
Garncarek-Musiał M, Dziewulska K, Kowalska-Góralska M. Effect of different sizes of nanocopper particles on rainbow trout (Oncorhynchus mykiss W.) spermatozoa motility kinematics. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 941:173763. [PMID: 38839004 DOI: 10.1016/j.scitotenv.2024.173763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 05/22/2024] [Accepted: 06/02/2024] [Indexed: 06/07/2024]
Abstract
In recent years, nanocopper (Cu NPs) has gained attention due to its antimicrobial properties and potential for industrial, agricultural, and consumer applications. But it also has several effects on the aquatic environment. Widespread use of various nanoproducts has raised concerns about impacts of different nanoparticle size on environment and biological objects. Spermatozoa is a model for studying the ecotoxic effects of pollutants on cells and organisms. This study aimed to investigate the effects of different sizes of copper nanoparticles on rainbow trout spermatozoa motility, and to compare their effects with copper ionic solution. Computer assisted sperm analysis (CASA) was used to detect movement parameters at activation of gametes (direct effect) with milieu containing nanocopper of primary particle size of 40-60, 60-80 and 100 nm. The effect of the elements ions was also tested using copper sulfate solution. All products was prepared in concentration of 0, 1, 5, 50, 125, 250, 350, 500, 750, and 1000 mg Cu L-1. Six motility parameters were selected for analysis. The harmful effect of Cu NPS nanoparticle was lower than ionic form of copper but the effect depends on the motility parameters. Ionic form caused complete immobilization (MOT = 0 %, IC100) at 350 mg Cu L-1 whilst Cu NPs solution only decreased the percentage of motile sperm (MOT) up to 76.4 % at highest concentration tested of 1000 mg Cu L-1 of 40-60 nm NPs. Cu NPs of smaller particles size had more deleterious effect than the bigger one particularly in percentage of MOT and for curvilinear velocity (VCL). Moreover, nanoparticles decrease motility duration (MD). This may influence fertility because the first two parameters positively correlate with fertilization rate. However, the ionic form of copper has deleterious effect on the percentage of MOT and linearity (LIN), but in some concentrations it slightly increases VCL and MD.
Collapse
Affiliation(s)
- Małgorzata Garncarek-Musiał
- University of Szczecin, Doctoral School, Mickiewicza 18, 70-383 Szczecin, Poland; University of Szczecin, Institute of Biology, Felczaka 3C, 71-412 Szczecin, Poland.
| | - Katarzyna Dziewulska
- University of Szczecin, Institute of Biology, Felczaka 3C, 71-412 Szczecin, Poland; Molecular Biology and Biotechnology Centre, University of Szczecin, Wąska 13, 71-415 Szczecin, Poland.
| | - Monika Kowalska-Góralska
- Wrocław University of Environmental and Life Sciences, Faculty of Biology and Animal Science, Institute of Animal Breeding, Department of Limnology and Fishery, Chełmońskiego 38c, 51-630 Wrocław, Poland.
| |
Collapse
|
3
|
Zhang L, Ma M, Li J, Qiao K, Xie Y, Zheng Y. Stimuli-responsive microcarriers and their application in tissue repair: A review of magnetic and electroactive microcarrier. Bioact Mater 2024; 39:147-162. [PMID: 38808158 PMCID: PMC11130597 DOI: 10.1016/j.bioactmat.2024.05.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 04/07/2024] [Accepted: 05/07/2024] [Indexed: 05/30/2024] Open
Abstract
Microcarrier applications have made great advances in tissue engineering in recent years, which can load cells, drugs, and bioactive factors. These microcarriers can be minimally injected into the defect to help reconstruct a good microenvironment for tissue repair. In order to achieve more ideal performance and face more complex tissue damage, an increasing amount of effort has been focused on microcarriers that can actively respond to external stimuli. These microcarriers have the functions of directional movement, targeted enrichment, material release control, and providing signals conducive to tissue repair. Given the high controllability and designability of magnetic and electroactive microcarriers, the research progress of these microcarriers is highlighted in this review. Their structure, function and applications, potential tissue repair mechanisms, and challenges are discussed. In summary, through the design with clinical translation ability, meaningful and comprehensive experimental characterization, and in-depth study and application of tissue repair mechanisms, stimuli-responsive microcarriers have great potential in tissue repair.
Collapse
Affiliation(s)
- LiYang Zhang
- School of Material Science and Engineering, University of Science and Technology Beijing, Beijing, China
| | - Mengjiao Ma
- Beijing Wanjie Medical Device Co., Ltd, Beijing, China
| | - Junfei Li
- School of Material Science and Engineering, University of Science and Technology Beijing, Beijing, China
| | - Kun Qiao
- Beijing Gerecov Technology Company Ltd., Beijing, China
| | - Yajie Xie
- Beijing Gerecov Technology Company Ltd., Beijing, China
| | - Yudong Zheng
- School of Material Science and Engineering, University of Science and Technology Beijing, Beijing, China
| |
Collapse
|
4
|
Zuo Q, Yang Y, Xie X, Yang L, Zhang Q, He X. Grinding siderite with ferric sulfate to generate an active ferrous source for Cr(VI) reduction. CHEMOSPHERE 2024; 361:142516. [PMID: 38850691 DOI: 10.1016/j.chemosphere.2024.142516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 05/12/2024] [Accepted: 05/31/2024] [Indexed: 06/10/2024]
Abstract
Activated siderite, endowed with excellent properties, was simply prepared by co-grinding with Fe sulfate to enhance its high reducing ability for Cr(VI). Batch experiments were conducted to investigate the main affecting parameters, such as material ratio, pH, temperature, etc. The removal of Cr(VI) by activated siderite was completed within 4 h of the reaction. The activated siderite maintained a high removal effect of Cr(VI) within a wide pH range (3-9). Various analytical methods, including XRD, SEM/EDS, XPS, etc., were employed to characterize the samples and discover variations before and after the reaction. The Fe (Ⅱ) in activated siderite becomes highly active, and it can even be released from the solid phase in the mildly acidic liquid phase to efficiently reduce Cr(VI) and mitigate its toxicity. These findings introduce an innovative approach for activating various minerals widely distributed in nature to promote the recovery of the ecological system.
Collapse
Affiliation(s)
- Qiang Zuo
- Hubei Key Laboratory of Mineral Resources Processing and Environment, School of Resources and Environmental Engineering, Wuhan University of Technology, Wuhan, 430070, China
| | - Yi Yang
- Hubei Key Laboratory of Mineral Resources Processing and Environment, School of Resources and Environmental Engineering, Wuhan University of Technology, Wuhan, 430070, China
| | - Xin Xie
- Hubei Key Laboratory of Mineral Resources Processing and Environment, School of Resources and Environmental Engineering, Wuhan University of Technology, Wuhan, 430070, China
| | - Lie Yang
- Hubei Key Laboratory of Mineral Resources Processing and Environment, School of Resources and Environmental Engineering, Wuhan University of Technology, Wuhan, 430070, China
| | - Qiwu Zhang
- Hubei Key Laboratory of Mineral Resources Processing and Environment, School of Resources and Environmental Engineering, Wuhan University of Technology, Wuhan, 430070, China
| | - Xiaoman He
- Hubei Key Laboratory of Mineral Resources Processing and Environment, School of Resources and Environmental Engineering, Wuhan University of Technology, Wuhan, 430070, China.
| |
Collapse
|
5
|
Asad F, Batool N, Nadeem A, Bano S, Anwar N, Jamal R, Ali S. Fe-NPs and Zn-NPs: Advancing Aquaculture Performance Through Nanotechnology. Biol Trace Elem Res 2024; 202:2828-2842. [PMID: 37723405 DOI: 10.1007/s12011-023-03850-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 09/05/2023] [Indexed: 09/20/2023]
Abstract
Aquaculture is a growing industry facing several challenges, including disease control, water quality management, and sustainable feed production. One potential solution to these challenges is the use of trace elements such as iron (Fe) and zinc (Zn), either in their conventional form or as nanoparticles (NPs). Aquatic animals need these micronutrients for normal growth, physiological processes, and overall health. In marine species, iron boosts development, immunity, and disease resistance. At the same time, zinc enhances metabolism, synthesizes essential enzymes, and produces hormones that play a part in defenses, growth, reproduction, and antioxidative activities. According to this review, species-specific requirements by different Fe and Zn compounds have all emphasized the impacts on animal growth and development, antioxidant capacity, reproductive efficiency, and immunological response. However, NPs of Fe and Zn have been found to have higher bioavailability and efficacy than conventional forms. This work examines the effects of applications of Fe and Fe nanoparticles (Fe-NPs) and Zn and Zn nanoparticles (Zn-NPs) in aquaculture. However, the source of Fe and Zn in aquaculture species and administration volume may significantly impact efficacy. Nanotechnology boosts the positive benefits of Fe and Zn by converting them to their nanoforms (Fe-NPs) and (Zn-NPs), which are better used by animals and have a broader intake range. As a result, Fe-NPs and Zn-NPs offer an effective method for using nutrients in aquaculture.
Collapse
Affiliation(s)
- Farkhanda Asad
- Government College University Faisalabad, Faisalabad, 38000, Pakistan.
| | - Navaira Batool
- Government College University Faisalabad, Faisalabad, 38000, Pakistan
| | - Aiman Nadeem
- Government College University Faisalabad, Faisalabad, 38000, Pakistan
| | - Shehar Bano
- Government College University Faisalabad, Faisalabad, 38000, Pakistan
| | - Noshaba Anwar
- Government College University Faisalabad, Faisalabad, 38000, Pakistan
| | - Rafia Jamal
- Government College University Faisalabad, Faisalabad, 38000, Pakistan
| | - Shahbaz Ali
- Government College University Faisalabad, Faisalabad, 38000, Pakistan
| |
Collapse
|
6
|
Sharjeel M, Ali S, Summer M, Noor S, Nazakat L. Recent advancements of nanotechnology in fish aquaculture: an updated mechanistic insight from disease management, growth to toxicity. AQUACULTURE INTERNATIONAL 2024. [DOI: 10.1007/s10499-024-01473-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Accepted: 03/16/2024] [Indexed: 08/04/2024]
|
7
|
Arslan E, Güngördü A. Subacute toxicity and endocrine-disrupting effects of Fe 2O 3, ZnO, and CeO 2 nanoparticles on amphibian metamorphosis. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:4174-4195. [PMID: 38097842 DOI: 10.1007/s11356-023-31441-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Accepted: 12/05/2023] [Indexed: 01/19/2024]
Abstract
This study evaluated the potential toxic and endocrine-disrupting effects of sublethal concentrations of Fe2O3, CeO2 and ZnO nanoparticles (NPs) on amphibian metamorphosis. Tadpoles were exposed to several NPs concentrations, reaching a maximum of 1000 µg/L, for up to 21 days according to the amphibian metamorphosis assay (AMA). Some standard morphological parameters, such as developmental stage (DS), hind limb length (HLL), snout-to-vent length (SVL), wet body weight (WBW), and as well as post-exposure lethality were recorded in exposed organisms on days 7 and 21 of the bioassay. Furthermore, triiodothyronine (T3), thyroxine (T4) and malondialdehyde (MDA) levels and the activities of glutathione S-transferases (GST), glutathione reductase (GR), catalase (CAT), carboxylesterase (CaE), and acetylcholinesterase (AChE) were determined in exposed tadpoles as biomarkers. The results indicate that short-term exposure to Fe2O3 NPs leads to toxic effects, both exposure periods cause toxic effects and growth inhibition for ZnO NPs, while short-term exposure to CeO2 NPs results in toxic effects and long-term exposure causes endocrine-disrupting effects. The responses observed after exposure to the tested NPs during amphibian metamorphosis suggest that they may have ecotoxicological effects and their effects should be monitored through field studies.
Collapse
Affiliation(s)
- Eren Arslan
- Laboratory of Environmental Toxicology, Department of Biology, Faculty of Arts and Science, Inonu University, 44280, Malatya, Turkey
| | - Abbas Güngördü
- Laboratory of Environmental Toxicology, Department of Biology, Faculty of Arts and Science, Inonu University, 44280, Malatya, Turkey.
| |
Collapse
|
8
|
Rawat J, Kumar V, Ahlawat P, Tripathi LK, Tomar R, Kumar R, Dholpuria S, Gupta PK. Current Trends on the Effects of Metal-Based Nanoparticles on Microbial Ecology. Appl Biochem Biotechnol 2023; 195:6168-6182. [PMID: 36847986 DOI: 10.1007/s12010-023-04386-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/17/2023] [Indexed: 03/01/2023]
Abstract
The growing field of nanotechnology and its many applications have led to the irregular release of nanoparticles (NPs), with unintended effects on the environment and continued contamination of water bodies. Metallic NPs are used more frequently in extreme environmental conditions due to their higher efficiency, which attracts more attention in various applications. Due to improper pre-treatment of biosolids, inefficient wastewater treatment practices, and other unregulated agricultural practices continue to contaminate the environment. In particular, the uncontrolled use of NPs in various industrial applications has led to damage to the microbial flora and caused irreplaceable damage to animals and plants. This study focuses on the effect of different doses, types, and compositions of NP on the ecosystem. The review also mentions the impact of various metallic NPs on microbial ecology, their interactions with microorganisms, ecotoxicity studies, and dosage evaluation of the NPs, mainly focused on the review article. However, further research is still needed to understand the complexity of interactions between NPs and microbes in soil and aquatic ecosystems.
Collapse
Affiliation(s)
- Jyoti Rawat
- Department of Biotechnology, Sir J. C. Bose Technical Campus Bhimtal, Kumaun University, Nainital, 263136, Uttarakhand, India
| | - Vikas Kumar
- School of Engineering, The University of British Columbia, Okanagan, Kelowna, BC, Canada
| | | | - Lokesh Kumar Tripathi
- Department of Biotechnology, Sir J. C. Bose Technical Campus Bhimtal, Kumaun University, Nainital, 263136, Uttarakhand, India
| | - Richa Tomar
- Department of Chemistry and Biochemistry, Sharda School of Basic Sciences and Research, Sharda University, Greater Noida, 201310, Uttar Pradesh, India
| | - Rohit Kumar
- Department of Life Sciences, Sharda School of Basic Sciences and Research, Sharda University, Greater Noida, Uttar Pradesh, 201310, India
| | - Sunny Dholpuria
- Department of Life Sciences, J.C. Bose University of Science and Technology, YMCA, Faridabad, 121006, Haryana, India
| | - Piyush Kumar Gupta
- Department of Life Sciences, Sharda School of Basic Sciences and Research, Sharda University, Greater Noida, Uttar Pradesh, 201310, India.
- Department of Biotechnology, Graphic Era Deemed to Be University, Dehradun, 248002, Uttarakhand, India.
- Faculty of Health and Life Sciences, INTI International University, 71800, Nilai, Malaysia.
| |
Collapse
|
9
|
Veeramani S, Chandrababu L, Rajangam I, Singh NR, Al-Humaid L, Al-Dahmash ND, Balaji R, Chandrasekar N, Hwang MT. N-Hydroxysuccinamide functionalized iron oxide nanoparticles conjugated with 5-flurouracil for hyperthermic therapy of malignant liver cancer cells by DNA repair disruption. Int J Biol Macromol 2023; 250:126001. [PMID: 37532190 DOI: 10.1016/j.ijbiomac.2023.126001] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Revised: 06/05/2023] [Accepted: 07/24/2023] [Indexed: 08/04/2023]
Abstract
Magnetized iron oxide nanoparticles are ideal materials for biological and biomedical applications due to their biocompatibility, super paramagnetic behavior, surface capability, and chemical stability. This research article is narrating the overview of methodologies of preparation, functionalization, characterization and applications of Fe3O4 nanoparticles. Super paramagnetic nanoparticles are studied for their hyperthermia properties. The proposed mechanism behind the hyperthermia was damaging the proteins responsible for DNA repair thereby, directly accelerating the DNA damages on cancer cells by increasing the temperature in the vicinity of the cancer cells. In this study, super paramagnetic iron oxide (Fe3O4) nanoparticles (SPIONs) and anti-cancer drug, 5-fluorouracil, functionalized with N-Hydroxysuccinimide organic molecules. A specific absorption rate at 351 nm can be achieved using UV analysis. The magnetic Fe3O4 nanoparticles had a cubic crystalline structure. FE-SEM(field emission scanning Electron microscopy) with EDAX(energy dispersive X-ray analysis) analysis shows that the size of the SPION was about 30-100 nm range and the percentage of chemical compositions was higher in the order of Fe, O, C. for particle size analysis, the SPION were positively charged derived at +9.9 mV and its conductivity is measured at 0.826 mS/cm. In-vitro anti-cancerous activity analysis in Hep-G2 cells (liver cancer cells) shows that the 5-fluorouracil functionalized SPIONs have higher inhibition rate than the bare Fe3O4 nanoparticles. The Fe3O4 nanoparticles were studied for their hyperthermic abilities at two different frequencies such as 3.05 × 106 kAm-1s-1 and 4.58 × 106 kAm-1s-1.The bare Fe3O4 at low magnetic field, 10 mg was required to raise the temperature above 42°- 45 °C and at high magnetic field, 6 mg was enough to raise the same temperature. The 5-fluorouracil functionalized Fe3O4 shows that at low magnetic field, 6 mg is required to raise the hyperthermia temperature and at high magnetic field, 3 mg is required to raise the temperature above 42°- 45 °C. the rate of heating and the temperature achieved with time can be tuned with concentrations as well as magnetic component present in the Fe3O4 nanoparticles. Beyond this concentration, the rate of cell death was observed to increase. The saturation and low residual magnetization were revealed by the magnetization analysis, making them well suited for clinical applications.
Collapse
Affiliation(s)
- Subha Veeramani
- National Centre for Nanoscience and Nanotechnology, University of Madras, Chennai 600 025, India; Dermscientist Laboratory Pvt., 11/D2, Jawaharlal Street, Usman Road, Chennai, India
| | - Lavanya Chandrababu
- National Centre for Nanoscience and Nanotechnology, University of Madras, Chennai 600 025, India
| | - Ilangovan Rajangam
- National Centre for Nanoscience and Nanotechnology, University of Madras, Chennai 600 025, India.
| | - N Rajmuhon Singh
- School of Mathematical and Physical Sciences, Department of Chemistry, Manipur University, Canchipur, India
| | - Latifah Al-Humaid
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Nora Dahmash Al-Dahmash
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Ramachandran Balaji
- Department of Electronics and Communication Engineering, Koneru Lakshmaiah Educational Foundation, Andhra Pradesh 522302, India
| | - Narendhar Chandrasekar
- Department of BioNano Technology, Gachon University, 1342, Seongnam-Daero, Sujeong-Gu, Seongnam-si 13120, Gyeonggi-do, Republic of Korea.
| | - Michael Taeyoung Hwang
- Department of BioNano Technology, Gachon University, 1342, Seongnam-Daero, Sujeong-Gu, Seongnam-si 13120, Gyeonggi-do, Republic of Korea.
| |
Collapse
|
10
|
Erkurt FE, Mert A. Eco-friendly oxidation of a reactive textile dye by CaO 2: effects of specific independent parameters. ENVIRONMENTAL TECHNOLOGY 2023; 44:3294-3315. [PMID: 37376879 DOI: 10.1080/09593330.2023.2229943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 06/18/2023] [Indexed: 06/29/2023]
Abstract
Textile wastewater containing dyes poses significant risks to the environment. Advanced oxidation processes (AOPs) effectively eliminate dyes by converting them into harmless substances. However, AOPs have drawbacks such as sludge formation, metal toxicity, and high cost. As an alternative to AOPs, calcium peroxide (CaO2) offers an eco-friendly and potent oxidant for dye removal. Unlike certain AOPs that generate sludge, CaO2 can be directly employed without resulting in sludge formation. This study examines the use of CaO2 for oxidizing Reactive Black 5 (RB5) in textile wastewater without any activator. Various independent factors-pH, CaO2 dosage, temperature, and certain anions-were investigated for their influence on the oxidation process. The effects of these factors on dye oxidation were analyzed using the Multiple Linear Regression Method (MLR). CaO2 dosage was determined to be the most influential parameter for RB5 oxidation, while the optimal pH for oxidation with CaO2 was found to be 10. The study determined that 0.5 g of CaO2 achieved approximately 99% efficiency in oxidizing 100 mg/L of RB5. Additionally, the study revealed that the oxidation process is endothermic, with an activation energy (Ea) and standard enthalpy (ΔH°) for RB5 oxidation by CaO2 determined as 31.135 kJ mol-1 and 110.4 kJ mol-1, respectively. The presence of anions decreased RB5 oxidation, with decreasing effectiveness observed in the order of PO43-, SO42-, HCO3-, Cl-, CO32-, and NO3-. Overall, this research highlights CaO2 as an effective, easy-to-use, eco-friendly, and cost-efficient method for removing RB5 from textile wastewater.
Collapse
Affiliation(s)
- F Elcin Erkurt
- Department of Environmental Engineering, Cukurova University, Adana, Turkey
| | - Aslı Mert
- Department of Environmental Engineering, Cukurova University, Adana, Turkey
| |
Collapse
|
11
|
Özgür ME, Ulu A, Gürses C, Özcan İ, Noma SAA, Köytepe S, Ateş B. The Cytotoxicity, DNA Fragmentation, and Decreasing Velocity Induced By Chromium(III) Oxide on Rainbow Trout Spermatozoa. Biol Trace Elem Res 2023; 201:968-983. [PMID: 35368229 DOI: 10.1007/s12011-022-03211-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 03/18/2022] [Indexed: 01/21/2023]
Abstract
The present study aimed to determine the cytotoxicity of chromium(III) oxide micro particles (Cr2O3-Ps) in rainbow trout (Oncorhynchus mykiss) spermatozoa. Firstly, Cr2O3-Ps were synthesized and structurally characterized the surface, morphological for particle size and thermal properties. In addition, its structural and elemental purity was determined using energy-dispersive X-ray (EDX) spectrum and elemental maps. Structural purity, thermal properties, and stability of Cr2O3-Ps were also examined in detail by performing thermal analysis techniques. The cytotoxicity of Cr2O3-Ps was measured by the observation of velocities, antioxidant activities, and DNA damages in rainbow trout spermatozoa after exposure during 3 h in vitro incubation. The straight line velocity (VSL), the curvilinear velocity (VCL), and the angular path velocity (VAP) of spermatozoa decreased after exposure to Cr2O3-Ps. While the superoxide dismutase (SOD) and the catalase (CAT) decreased, the lipid peroxidation increased in a dose-dependent manner. However, the total glutathione (tGSH) was not affected in this period. DNA damages were also determined in spermatozoa using Comet assay. According to DNA in tail (%) data, DNA damages have been detected with gradually increasing concentrations of Cr2O3-Ps. Furthermore, all of class types which are categorized as the intensity of DNA fragmentation has been observed between 50 and 500 µg/L concentrations of Cr2O3-Ps exposed to rainbow trout spermatozoa. At the end of this study, we determined that the effective concentrations (EC50) were 76.67 µg/L for VSL and 87.77 µg/L for VCL. Finally, these results about Cr2O3-Ps may say to be major risk concentrations over 70 µg/L for fish reproduction in aquatic environments.
Collapse
Affiliation(s)
- Mustafa Erkan Özgür
- Department of Aquaculture, Vahap Küçük Vocational High School, Malatya Turgut Özal University, Malatya, Turkey.
| | - Ahmet Ulu
- Department of Chemistry, Faculty of Arts and Science, İnönü University, Malatya, Turkey
| | - Canbolat Gürses
- Department of Molecular Biology and Genetics, Faculty of Arts and Science, İnönü University, Malatya, Turkey
| | - İmren Özcan
- Department of Chemistry, Faculty of Arts and Science, İnönü University, Malatya, Turkey
| | - Samir Abbas Ali Noma
- Department of Chemistry, Faculty of Arts and Science, İnönü University, Malatya, Turkey
- Department of Chemistry, Faculty of Arts and Science, Bursa Uludağ University, Bursa, Turkey
| | - Süleyman Köytepe
- Department of Chemistry, Faculty of Arts and Science, İnönü University, Malatya, Turkey
| | - Burhan Ateş
- Department of Chemistry, Faculty of Arts and Science, İnönü University, Malatya, Turkey
| |
Collapse
|
12
|
Fleming CL, Golzan M, Gunawan C, McGrath KC. Systematic and Bibliometric Analysis of Magnetite Nanoparticles and Their Applications in (Biomedical) Research. GLOBAL CHALLENGES (HOBOKEN, NJ) 2023; 7:2200009. [PMID: 36618105 PMCID: PMC9818080 DOI: 10.1002/gch2.202200009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 08/09/2022] [Indexed: 06/17/2023]
Abstract
Recent reports show air pollutant magnetite nanoparticles (MNPs) in the brains of people with Alzheimer's disease (AD). Considering various field applications of MNPs because of developments in nanotechnology, the aim of this study is to identify major trends and data gaps in research on magnetite to allow for relevant environmental and health risk assessment. Herein, a bibliometric and systematic analysis of the published magnetite literature (n = 31 567) between 1990 to 2020 is completed. Following appraisal, publications (n = 244) are grouped into four time periods with the main research theme identified for each as 1990-1997 "oxides," 1998-2005 "ferric oxide," 2006-2013 "pathology," and 2014-2020 "animal model." Magnetite formation and catalytic activity dominate the first two time periods, with the last two focusing on the exploitation of nanoparticle engineering. Japan and China have the highest number of citations for articles published. Longitudinal analysis indicates that magnetite research for the past 30 years shifted from environmental and industrial applications, to biomedical and its potential toxic effects. Therefore, whilst this study presents the research profile of different countries, the development in research on MNPs, it also reveals that further studies on the effects of MNPs on human health is much needed.
Collapse
Affiliation(s)
- Charlotte L. Fleming
- School of Life SciencesFaculty of ScienceUniversity of Technology SydneySydneyNSW2008Australia
| | - Mojtaba Golzan
- Vision Science GroupGraduate School of HealthUniversity of Technology SydneySydneyNSW2008Australia
| | - Cindy Gunawan
- Australian Institute for Microbiology and InfectionUniversity of Technology SydneySydneyNSW2008Australia
| | - Kristine C. McGrath
- School of Life SciencesFaculty of ScienceUniversity of Technology SydneySydneyNSW2008Australia
| |
Collapse
|
13
|
Chandra Sekhar Singh B. Toxicity Analysis of Hybrid Nanodiamond/Fe 3O 4 Nanoparticles on Allium cepa L. J Toxicol 2022; 2022:5903409. [PMID: 36246190 PMCID: PMC9553711 DOI: 10.1155/2022/5903409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 08/23/2022] [Indexed: 11/17/2022] Open
Abstract
Materials and Methods The chemicals of hydrochloric acid, nitric acid, FeCl3.6H2O, FeCl2.4H2O, NaCl, and NaOH (Sigma-Aldrich chemicals, USA) were utilized in this study. A statistical analysis was performed on the results with a prevalence of p < 0.05. Results A novel ND/Fe3O4 nanocomposite material was successfully synthesized by the in-situ method and characterized by various characterization techniques. The analysis of X-ray diffraction indicated the formation of an ND/Fe3O4 nanocomposite with both participating phases. The saturation magnification of the ND/Fe3O4 nanocomposite is 13.2 emu/g, whereas for a pure Fe3O4 nanomaterial, it is 47 emu/g. The weight rates of ND and Fe3O4 existent in the nanocomposite are 28% and 72%, respectively. From the electrical conductivity analysis, ND/Fe3O4 exhibits conductivity in the order of 27 times more compared to ND. Conclusion The result implies that the product ND/Fe3O4 has both magnetic and electrical properties. The biocompatibility of the synthesized ND/Fe3O4 material was studied based on the in-vitro method.
Collapse
Affiliation(s)
- Bhaludra Chandra Sekhar Singh
- Department of Plant Science, College of Agriculture and Veterinary Sciences, Guder Mamo Mezemir Campus, Ambo University, Ambo, P.O. 19, Ethiopia
| |
Collapse
|
14
|
Ucar A, Parlak V, Ozgeris FB, Yeltekin AC, Arslan ME, Alak G, Turkez H, Kocaman EM, Atamanalp M. Magnetic nanoparticles-induced neurotoxicity and oxidative stress in brain of rainbow trout: Mitigation by ulexite through modulation of antioxidant, anti-inflammatory, and antiapoptotic activities. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 838:155718. [PMID: 35525350 DOI: 10.1016/j.scitotenv.2022.155718] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 03/22/2022] [Accepted: 05/01/2022] [Indexed: 06/14/2023]
Abstract
The prevalent exposition of metallic nanoparticles (MNPs) to the aquatic medium and their negative influence on human life is one of the major concerns global. Stress mechanization, as a non-specific and pervasive response, involves all physiological systems, particularly the closely interconnected neuroendocrine and immune systems. In this study, which was designed to obtain more data on the biological effects of ulexit, which prevents oxidative DNA damage by protecting against toxicity damage and offers new antioxidant roles. The concomitant use of ulexite (UX, as 18.75 mg/l) as a natural therapeutic agent against exposure to magnetic nanoparticles (Fe3O4-MNPs/0.013 ml/l) on Oncorhynchus mykiss was investigated for 96 h. The brain tissues were taken at the 48th and 96th hours of the trial period, the effects on neurotoxic, pro-inflammatory cytokine genes, antioxidant immune system, DNA and apoptosis mechanisms were analyzed. In the present study, it was determined that AChE activity and BDNF level in the brain tissue decreased over time in the Fe3O4-MNPs group compared to the control, and UX tried to depress this inhibition. While inhibition was determined in antioxidant system biomarkers (SOD, CAT, GPx, and GSH values), an induction was observed in lipid peroxidation indicators (MDA and MPO values) in Fe3O4-MNPs applied group. The same group data showed that TNF-α, IL-6, 8-OHdG and caspase-3 levels were increased, but Nrf-2 levels were decreased. The alterations in all biomarkers were found to be significant at the p < 0.05 level. In general, it was determined that Fe3O4-MNPs caused stress in O. mykiss and UX exhibited a positive effect on this stress management.
Collapse
Affiliation(s)
- Arzu Ucar
- Department of Aquaculture, Faculty of Fisheries, Ataturk University, Erzurum, Turkey.
| | - Veysel Parlak
- Department of Basic Sciences, Faculty of Fisheries, Ataturk University, Erzurum, Turkey
| | - Fatma Betul Ozgeris
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Ataturk University, Erzurum, Turkey
| | | | - Mehmet Enes Arslan
- Erzurum Technical University, Faculty of Science, Department of Molecular Biology and Genetics, Erzurum, Turkey
| | - Gonca Alak
- Department of Sea Food Processing, Faculty of Fisheries, Ataturk University, Erzurum, Turkey.
| | - Hasan Turkez
- Department of Medical Biology, Faculty of Medicine, Atatürk University, Erzurum, Turkey
| | - Esat Mahmut Kocaman
- Department of Aquaculture, Faculty of Fisheries, Ataturk University, Erzurum, Turkey
| | - Muhammed Atamanalp
- Department of Aquaculture, Faculty of Fisheries, Ataturk University, Erzurum, Turkey
| |
Collapse
|
15
|
Vineeth Kumar CM, Karthick V, Kumar VG, Inbakandan D, Rene ER, Suganya KSU, Embrandiri A, Dhas TS, Ravi M, Sowmiya P. The impact of engineered nanomaterials on the environment: Release mechanism, toxicity, transformation, and remediation. ENVIRONMENTAL RESEARCH 2022; 212:113202. [PMID: 35398077 DOI: 10.1016/j.envres.2022.113202] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 02/24/2022] [Accepted: 03/24/2022] [Indexed: 06/14/2023]
Abstract
The presence and longevity of nanomaterials in the ecosystem, as well as their properties, account for environmental toxicity. When nanomaterials in terrestrial and aquatic systems are exposed to the prevailing environmental conditions, they undergo various transformations such as dissociation, dissolution, and aggregation, which affects the food chain. The toxicity of nanomaterials is influenced by a variety of factors, including environmental factors and its physico-chemical characteristics. Bioaccumulation, biotransformation, and biomagnification are the mechanisms that have been identified for determining the fate of nanomaterials. The route taken by nanomaterials to reach living cells provides us with information about their toxicity profile. This review discusses the recent advances in the transport, transformation, and fate of nanomaterials after they are released into the environment. The review also discusses how nanoparticles affect lower trophic organisms through direct contact, the impact of nanoparticles on higher trophic organisms, and the possible options for remediation.
Collapse
Affiliation(s)
- C M Vineeth Kumar
- Centre for Ocean Research, Col. Dr. Jeppiaar Research Park, Sathyabama Institute of Science and Technology, Jeppiaar Nagar, Rajiv Gandhi Salai, Chennai, 600119, Tamilnadu, India
| | - V Karthick
- Centre for Ocean Research, Col. Dr. Jeppiaar Research Park, Sathyabama Institute of Science and Technology, Jeppiaar Nagar, Rajiv Gandhi Salai, Chennai, 600119, Tamilnadu, India.
| | - V Ganesh Kumar
- Centre for Ocean Research, Col. Dr. Jeppiaar Research Park, Sathyabama Institute of Science and Technology, Jeppiaar Nagar, Rajiv Gandhi Salai, Chennai, 600119, Tamilnadu, India
| | - D Inbakandan
- Centre for Ocean Research, Col. Dr. Jeppiaar Research Park, Sathyabama Institute of Science and Technology, Jeppiaar Nagar, Rajiv Gandhi Salai, Chennai, 600119, Tamilnadu, India
| | - Eldon R Rene
- Department of Water Supply, Sanitation and Environmental Engineering, IHE Delft Institute for Water Education, Westvest 7, P. O. Box 3015, 2611AX Delft, the Netherlands
| | - K S Uma Suganya
- Department of Biotechnology and Biochemical Engineering, Sree Chitra Thirunal College of Engineering, Pappanamcode, Thiruvananthapuram, 695018, Kerala, India
| | - Asha Embrandiri
- Department of Environmental Health, College of Medicine and Health Sciences, Wollo University, P. O. Box 1145, Dessie, Amhara, Ethiopia
| | - T Stalin Dhas
- Centre for Ocean Research, Col. Dr. Jeppiaar Research Park, Sathyabama Institute of Science and Technology, Jeppiaar Nagar, Rajiv Gandhi Salai, Chennai, 600119, Tamilnadu, India
| | - M Ravi
- Centre for Ocean Research, Col. Dr. Jeppiaar Research Park, Sathyabama Institute of Science and Technology, Jeppiaar Nagar, Rajiv Gandhi Salai, Chennai, 600119, Tamilnadu, India
| | - P Sowmiya
- Centre for Ocean Research, Col. Dr. Jeppiaar Research Park, Sathyabama Institute of Science and Technology, Jeppiaar Nagar, Rajiv Gandhi Salai, Chennai, 600119, Tamilnadu, India
| |
Collapse
|
16
|
Zareshahrabadi Z, Khorram M, Pakshir K, Tamaddon AM, Jafari M, Nouraei H, Ardekani NT, Amirzadeh N, Irajie C, Barzegar A, Iraji A, Zomorodian K. Magnetic chitosan nanoparticles loaded with Amphotericin B: Synthesis, properties and potentiation of antifungal activity against common human pathogenic fungal strains. Int J Biol Macromol 2022; 222:1619-1631. [DOI: 10.1016/j.ijbiomac.2022.09.244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 08/22/2022] [Accepted: 09/26/2022] [Indexed: 11/28/2022]
|
17
|
Garncarek M, Dziewulska K, Kowalska-Góralska M. The Effect of Copper and Copper Oxide Nanoparticles on Rainbow Trout ( Oncorhynchus mykiss W.) Spermatozoa Motility after Incubation with Contaminants. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:8486. [PMID: 35886337 PMCID: PMC9319033 DOI: 10.3390/ijerph19148486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 06/27/2022] [Accepted: 07/08/2022] [Indexed: 01/26/2023]
Abstract
The study aimed to analyse the effect of copper nanoparticles of similar particle size of Cu and CuO and copper ions (CuSO4) on the motility parameters of rainbow trout spermatozoa after long-term exposure and compare its harmful effect. Nanoproducts of Cu and CuO (Cu NPs, CuO NPs) of primary particle size around 50 nm and ionic solution of CuSO4 were used for the study. Suspension of concentrations 0, 1, 5, 10, 25, and 50 mg Cu·L-1 of Cu NPs, CuO NPs, and CuSO4 was dissolved in an artificial seminal plasma. Milt was mixed with the prepared solution and stored in a fridge, at 6 °C, for 96 h. At the defined incubation time, spermatozoa were activated for movement, and six motility parameters were evaluated using an automated system (CASA). Increasing concentrations of Cu NPs, CuO NPs, and CuSO4 in an incubation medium in parallel decreased the percentage of motile sperm (MOT). The effect of Cu NPs and ionic copper on MOT was more deleterious than that of CuO NPs. Copper products slightly increased the velocity (VCL) compared to the control, particularly up to 24 h of storage. Linearity (LIN) was improved by three tested products, particularly CuO NPs. Generally, the motility duration was prolonged when the sperm was incubated with copper products compared to the control. Nanoproducts made from different compounds of the same elements of similar particle size have a different effect on cells. Cu NPs were more harmful than CuO NPs. The effect of Cu NPs was similar to an ionic form of CuSO4. When incubated, the copper nanoproducts and ionic form exert a slightly positive effect on spermatozoa velocity, linearity, and motility duration, particularly up to 24 h of storage.
Collapse
Affiliation(s)
- Małgorzata Garncarek
- Institute of Biology, Doctoral School, University of Szczecin, 70-383 Szczecin, Poland;
| | - Katarzyna Dziewulska
- Department of Hydrobiology, Institute of Biology, University of Szczecin, 71-412 Szczecin, Poland
| | - Monika Kowalska-Góralska
- Department of Limnology and Fishery, Institute of Animal Breeding, Faculty of Biology and Animal Science, Wrocław University of Environmental and Life Sciences, 51-630 Wroclaw, Poland;
| |
Collapse
|
18
|
Rashk-E-Eram, Mukherjee K, Saha A, Bhattacharjee S, Mallick A, Sarkar B. Nanoscale iron for sustainable aquaculture and beyond. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2022. [DOI: 10.1016/j.bcab.2022.102440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
19
|
Carvalhais A, Oliveira IB, Oliveira H, Oliveira CCV, Ferrão L, Cabrita E, Asturiano JF, Guilherme S, Pacheco M, Mieiro CL. Ex vivo exposure to titanium dioxide and silver nanoparticles mildly affect sperm of gilthead seabream (Sparus aurata) - A multiparameter spermiotoxicity approach. MARINE POLLUTION BULLETIN 2022; 177:113487. [PMID: 35245769 DOI: 10.1016/j.marpolbul.2022.113487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 02/17/2022] [Accepted: 02/20/2022] [Indexed: 06/14/2023]
Abstract
Nanoparticles (NP) are potentially reprotoxic, which may compromise the success of populations. However, the reprotoxicity of NP is still scarcely addressed in marine fish. Therefore, we evaluated the impacts of environmentally relevant and supra environmental concentrations of titanium dioxide (TiO2: 10 to 10,000 μg·L-1) and silver NP (Ag: 0.25 to 250 μg·L-1) on the sperm of gilthead seabream (Sparus aurata). We performed short-term direct exposures (ex vivo) and evaluated sperm motility, head morphometry, mitochondrial function, antioxidant responses and DNA integrity. No alteration in sperm motility (except for supra environmental Ag NP concentration), head morphometry, mitochondrial function, and DNA integrity occurred. However, depletion of all antioxidants occurred after exposure to TiO2 NP, whereas SOD decreased after exposure to Ag NP (lowest and intermediate concentration). Considering our results, the decrease in antioxidants did not indicate vulnerability towards oxidative stress. TiO2 NP and Ag NP induced low spermiotoxicity, without proven relevant ecological impacts.
Collapse
Affiliation(s)
- A Carvalhais
- CESAM and Department of Biology, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| | - I B Oliveira
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR), University of Porto, 4450-208 Matosinhos, Portugal.
| | - H Oliveira
- CESAM and Department of Biology, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| | - C C V Oliveira
- Centre of Marine Sciences (CCMAR), University of Algarve, Campus de Gambelas, 8005-139 Faro, Portugal
| | - L Ferrão
- Centre of Marine Sciences (CCMAR), University of Algarve, Campus de Gambelas, 8005-139 Faro, Portugal; Grupo de Acuicultura y Biodiversidad, Instituto de Ciencia y Tecnología Animal, Universitat Politècnica de València, Spain
| | - E Cabrita
- Centre of Marine Sciences (CCMAR), University of Algarve, Campus de Gambelas, 8005-139 Faro, Portugal
| | - J F Asturiano
- Grupo de Acuicultura y Biodiversidad, Instituto de Ciencia y Tecnología Animal, Universitat Politècnica de València, Spain
| | - S Guilherme
- CESAM and Department of Biology, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| | - M Pacheco
- CESAM and Department of Biology, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| | - C L Mieiro
- CESAM and Department of Biology, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| |
Collapse
|
20
|
Marycz K, Kornicka-Garbowska K, Patej A, Sobierajska P, Kotela A, Turlej E, Kepska M, Bienko A, Wiglusz RJ. Aminopropyltriethoxysilane (APTES)-Modified Nanohydroxyapatite (nHAp) Incorporated with Iron Oxide (IO) Nanoparticles Promotes Early Osteogenesis, Reduces Inflammation and Inhibits Osteoclast Activity. MATERIALS (BASEL, SWITZERLAND) 2022; 15:2095. [PMID: 35329547 PMCID: PMC8953252 DOI: 10.3390/ma15062095] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 02/16/2022] [Accepted: 02/23/2022] [Indexed: 12/02/2022]
Abstract
Due to its increased prevalence, osteoporosis (OP) represents a great challenge to health care systems and brings an economic burden. To overcome these issues, treatment plans that suit the need of patients should be developed. One of the approaches focuses on the fabrication of personalized biomaterials, which can restore the balance and homeostasis of disease-affected bone. In the presented study, we fabricated nanometer crystalline hydroxyapatite (nHAp) and iron oxide (IO) nanoparticles stabilized with APTES and investigated whether they can modulate bone cell metabolism and be useful in the fabrication of personalized materials for OP patients. Using a wide range of molecular techniques, we have shown that obtained nHAp@APTES promotes viability and RUNX-2 expression in osteoblasts, as well as reducing activity of critical proinflammatory cytokines while inhibiting osteoclast activity. Materials with APTES modified with nHAp incorporated with IO nanoparticles can be applied to support the healing of osteoporotic bone fractures as they enhance metabolic activity of osteoblasts and diminish osteoclasts' metabolism and inflammation.
Collapse
Affiliation(s)
- Krzysztof Marycz
- The Department of Experimental Biology, Faculty of Biology and Animal Science, Wroclaw University of Environmental and Life Sciences, Norwida 27B, 50-375 Wroclaw, Poland; (K.K.-G.); (E.T.); (M.K.)
- International Institute of Translational Medicine, Jesionowa 11, Malin, 55-114 Wisznia Mała, Poland
- Collegium Medicum, Cardinal Stefan Wyszynski University (UKSW), Woycickiego 1/3, 01-938 Warsaw, Poland;
| | - Katarzyna Kornicka-Garbowska
- The Department of Experimental Biology, Faculty of Biology and Animal Science, Wroclaw University of Environmental and Life Sciences, Norwida 27B, 50-375 Wroclaw, Poland; (K.K.-G.); (E.T.); (M.K.)
- International Institute of Translational Medicine, Jesionowa 11, Malin, 55-114 Wisznia Mała, Poland
| | - Adrian Patej
- Institute of Low Temperature and Structure Research, Polish Academy of Sciences, Okolna 2, 50-422 Wroclaw, Poland; (A.P.); (P.S.)
| | - Paulina Sobierajska
- Institute of Low Temperature and Structure Research, Polish Academy of Sciences, Okolna 2, 50-422 Wroclaw, Poland; (A.P.); (P.S.)
| | - Andrzej Kotela
- Collegium Medicum, Cardinal Stefan Wyszynski University (UKSW), Woycickiego 1/3, 01-938 Warsaw, Poland;
| | - Eliza Turlej
- The Department of Experimental Biology, Faculty of Biology and Animal Science, Wroclaw University of Environmental and Life Sciences, Norwida 27B, 50-375 Wroclaw, Poland; (K.K.-G.); (E.T.); (M.K.)
| | - Martyna Kepska
- The Department of Experimental Biology, Faculty of Biology and Animal Science, Wroclaw University of Environmental and Life Sciences, Norwida 27B, 50-375 Wroclaw, Poland; (K.K.-G.); (E.T.); (M.K.)
| | - Alina Bienko
- Faculty of Chemistry, University of Wroclaw, F. Joliot-Curie14 Street, 50-383 Wroclaw, Poland;
| | - Rafal J. Wiglusz
- Institute of Low Temperature and Structure Research, Polish Academy of Sciences, Okolna 2, 50-422 Wroclaw, Poland; (A.P.); (P.S.)
| |
Collapse
|
21
|
de Souza MA, de Castro KK, Almeida-Neto FW, Bandeira PN, Ferreira MK, Marinho MM, da Rocha MN, de Brito DH, Mendes FRDS, Rodrigues TH, de Oliveira MR, de Menezes JE, Barreto AC, Marinho ES, de Lima-Neto P, dos Santos HS, Teixeira AM. Structural and spectroscopic analysis, ADMET study, and anxiolytic-like effect in adult zebrafish (Danio rerio) of 4′-[(1E,2E)-1-(2-(2′,4′-dinitrophenyl)hydrazone-3-(4-methoxyphenyl)allyl)aniline. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2021.132064] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
22
|
Mustapić M, Glumac Z, Heffer M, Zjalić M, Prološčić I, Masud M, Blažetić S, Vuković A, Billah M, Khan A, Šegota S, Al Hossain MS. AC/DC magnetic device for safe medical use of potentially harmful magnetic nanocarriers. JOURNAL OF HAZARDOUS MATERIALS 2021; 409:124918. [PMID: 33422751 DOI: 10.1016/j.jhazmat.2020.124918] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 10/23/2020] [Accepted: 10/31/2020] [Indexed: 06/12/2023]
Abstract
Continuing our previous research work on a drug delivery system based on combined AC/DC magnetic fields, we have developed a prototype AC/DC magnetic syringe device for stimulation of drug release from drug carriers, with the options of injecting/removing drug carriers. The porous Fe3O4 carrier, in a dose-dependent manner, causes acute oxidative damage and reduces the viability of differentiated SH-SY5Y human neuroblastoma cells, indicating the necessity for its removal once it reaches the therapeutic concentration at the target tissue. The working mechanism of the device consists of three simple steps. First, direct injection of the drug adsorbed on the surface of a carrier via a needle inserted into the targeted area. The second step is stimulation of drug release using a combination of AC magnetic field (a coil magnetised needle with AC current) and permanent magnets (DC magnetic lens outside of the body), and the third step is removal of the drug carriers from the injected area after the completion of drug release by magnetising the tip of the needle with DC current. Removing the drug carriers allows us to avoid possible acute and long term side effects of the drug carriers in the patient's body, as well as any potential response of the body to the drug carriers.
Collapse
Affiliation(s)
- Mislav Mustapić
- Department of Physics, University of Osijek, 31000 Osijek, Croatia.
| | - Zvonko Glumac
- Department of Physics, University of Osijek, 31000 Osijek, Croatia
| | - Marija Heffer
- Department of Medical Biology and Genetics, Faculty of Medicine, JJ Strossmayer University of Osijek, J. Huttlera 4, 31000 Osijek, Croatia
| | - Milorad Zjalić
- Department of Medical Biology and Genetics, Faculty of Medicine, JJ Strossmayer University of Osijek, J. Huttlera 4, 31000 Osijek, Croatia
| | - Ivan Prološčić
- Department of Physics, University of Osijek, 31000 Osijek, Croatia
| | - Mostafa Masud
- Australian Institute for Bioengineering and Nanotechnology, University of Queensland, St. Lucia, Brisbane, QLD 4067, Australia
| | - Senka Blažetić
- Department of Biology, J.J. Strossmayer University of Osijek, Ulica Cara Hadrijana 8A, 31000 Osijek, Croatia
| | - Ana Vuković
- Department of Biology, J.J. Strossmayer University of Osijek, Ulica Cara Hadrijana 8A, 31000 Osijek, Croatia
| | - Motasim Billah
- Australian Institute for Bioengineering and Nanotechnology, University of Queensland, St. Lucia, Brisbane, QLD 4067, Australia; School of Mechanical and Mining Engineering, University of Queensland, St. Lucia, Brisbane, QLD 4067, Australia
| | - Aslam Khan
- King Abdullah Institute for Nanotechnology, King Saud University, Riyadh 11451, Saudi Arabia
| | - Suzana Šegota
- Division of Physical Chemistry, Ruđer Bošković Institute, 10000 Zagreb, Croatia
| | - Md Shahriar Al Hossain
- Australian Institute for Bioengineering and Nanotechnology, University of Queensland, St. Lucia, Brisbane, QLD 4067, Australia; School of Mechanical and Mining Engineering, University of Queensland, St. Lucia, Brisbane, QLD 4067, Australia.
| |
Collapse
|
23
|
Wu Z, Chen J, Li Q, Xia DH, Deng Y, Zhang Y, Qin Z. Preparation and Thermal Conductivity of Epoxy Resin/Graphene-Fe 3O 4 Composites. MATERIALS 2021; 14:ma14082013. [PMID: 33923696 PMCID: PMC8074025 DOI: 10.3390/ma14082013] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 04/13/2021] [Accepted: 04/14/2021] [Indexed: 01/29/2023]
Abstract
By modifying the bonding of graphene (GR) and Fe3O4, a stable structure of GR-Fe3O4, namely magnetic GR, was obtained. Under the induction of a magnetic field, it can be orientated in an epoxy resin (EP) matrix, thus preparing EP/GR-Fe3O4 composites. The effects of the content of GR and the degree of orientation on the thermal conductivity of the composites were investigated, and the most suitable Fe3O4 load on GR was obtained. When the mass ratio of GR and Fe3O4 was 2:1, the thermal conductivity could be increased by 54.8% compared with that of pure EP. Meanwhile, EP/GR-Fe3O4 composites had a better thermal stability, dynamic thermomechanical properties, and excellent electrical insulation properties, which can meet the requirements of electronic packaging materials.
Collapse
Affiliation(s)
- Zhong Wu
- Tianjin Key Laboratory of Composite and Functional Materials, School of Material Science and Engineering, Tianjin University, Tianjin 300072, China; (Z.W.); (J.C.); (Q.L.); (D.-H.X.); (Y.D.); (Y.Z.)
| | - Jingyun Chen
- Tianjin Key Laboratory of Composite and Functional Materials, School of Material Science and Engineering, Tianjin University, Tianjin 300072, China; (Z.W.); (J.C.); (Q.L.); (D.-H.X.); (Y.D.); (Y.Z.)
| | - Qifeng Li
- Tianjin Key Laboratory of Composite and Functional Materials, School of Material Science and Engineering, Tianjin University, Tianjin 300072, China; (Z.W.); (J.C.); (Q.L.); (D.-H.X.); (Y.D.); (Y.Z.)
| | - Da-Hai Xia
- Tianjin Key Laboratory of Composite and Functional Materials, School of Material Science and Engineering, Tianjin University, Tianjin 300072, China; (Z.W.); (J.C.); (Q.L.); (D.-H.X.); (Y.D.); (Y.Z.)
| | - Yida Deng
- Tianjin Key Laboratory of Composite and Functional Materials, School of Material Science and Engineering, Tianjin University, Tianjin 300072, China; (Z.W.); (J.C.); (Q.L.); (D.-H.X.); (Y.D.); (Y.Z.)
| | - Yiwen Zhang
- Tianjin Key Laboratory of Composite and Functional Materials, School of Material Science and Engineering, Tianjin University, Tianjin 300072, China; (Z.W.); (J.C.); (Q.L.); (D.-H.X.); (Y.D.); (Y.Z.)
| | - Zhenbo Qin
- Tianjin Key Laboratory of Composite and Functional Materials, School of Material Science and Engineering, Tianjin University, Tianjin 300072, China; (Z.W.); (J.C.); (Q.L.); (D.-H.X.); (Y.D.); (Y.Z.)
- Key Laboratory of Advanced Ceramics and Machining Technology (Ministry of Education), Tianjin University, Tianjin 300072, China
- Correspondence:
| |
Collapse
|
24
|
Kusrini E, Sabira K, Hashim F, Abdullah NA, Usman A, Putra N, Prasetyanto EA. Design, synthesis and antiamoebic activity of dysprosium-based nanoparticles using contact lenses as carriers against Acanthamoeba sp. Acta Ophthalmol 2021; 99:e178-e188. [PMID: 32701190 DOI: 10.1111/aos.14541] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2019] [Revised: 05/27/2020] [Accepted: 06/13/2020] [Indexed: 01/07/2023]
Abstract
PURPOSE Contact lenses have direct contact with the corneal surface and can induce sight-threatening infection of the cornea known as Acanthamoeba keratitis. The objective of this study was to evaluate the dysprosium-based nanoparticles (Dy-based NPs), namely Fe3 O4 -PEG-Dy2 O3 nanocomposites and Dy(OH)3 nanorods, as an active component against Acanthamoeba sp., as well as the possibility of their loading onto contact lenses as the drug administering vehicle to treat Acanthamoeba keratitis (AK). METHODS The Dy-based NPs were synthesized, and they were loaded onto commercial contact lenses. The loading content of the NPs and their release kinetics was determined based on the absorbance of their colloidal solution before and after soaking the contact lenses. The cytotoxicity of the NPs was evaluated, and the IC50 values of their antiamoebic activity against Acanthamoeba sp. were determined by MTT colorimetric assay, followed by observation on the morphological changes by using light microscopy. The mechanism of action of the Dy-based NPs against Acanthamoeba sp. was evaluated by DNA laddering assays. RESULTS The loading efficiencies of the Dy-based NPs onto the contact lens were in the range of 30.6-36.1% with respect to their initial concentration (0.5 mg ml-1 ). The Dy NPs were released with the flux approximately 5.5-11 μg cm-2 hr-1 , and the release was completed within 10 hr. The emission of the NPs consistently showed a peak at 575 nm due to Dy3+ ion, offering the possible monitoring and tracking of the NPs. The SEM images indicated the NPs are aggregated on the surface of the contact lenses. The DNA ladder assay suggested that the cells underwent DNA fragmentation, and the cell death was due most probably to necrosis, rather than apoptosis. The cytotoxicity assay of Acanthamoeba sp. suggested that Fe3 O4 -PEG, Fe3 O4 -PEG-Dy2 O3 , Dy(NO3 )3 .6H2 O and Dy(OH)3 NPs have an antiamoebic activity with the IC50 value being 4.5, 5.0, 9.5 and 22.5 μg ml-1 , respectively. CONCLUSIONS Overall findings in this study suggested that the Dy-based NPs can be considered as active antiamoebic agents and possess the potential as drugs against Acanthamoeba sp. The NPs could be loaded onto the contact lenses; thus, they can be potentially utilized to treat Acanthamoeba keratitis (AK).
Collapse
Affiliation(s)
- Eny Kusrini
- Department of Chemical Engineering Faculty of Engineering Universitas Indonesia Depok Indonesia
| | - Klanita Sabira
- Department of Chemical Engineering Faculty of Engineering Universitas Indonesia Depok Indonesia
| | - Fatimah Hashim
- School of Fundamental Science Universiti Malaysia Terengganu Kuala Terengganu Malaysia
| | - Nurul Aliah Abdullah
- Department of Chemistry Faculty of Science Universiti Brunei Darussalam Gadong Brunei Darussalam
| | - Anwar Usman
- Department of Chemistry Faculty of Science Universiti Brunei Darussalam Gadong Brunei Darussalam
| | - Nandy Putra
- Applied Heat Transfer Research Group Department of Mechanical Engineering Faculty of Engineering Universitas Indonesia Jawa Barat Indonesia
| | - Eko Adi Prasetyanto
- Faculty of Medicine and Health Sciences Universitas Katolik Indonesia Atma Jaya Jakarta Indonesia
| |
Collapse
|
25
|
Bag J, Mukherjee S, Ghosh SK, Das A, Mukherjee A, Sahoo JK, Tung KS, Sahoo H, Mishra M. Fe 3O 4 coated guargum nanoparticles as non-genotoxic materials for biological application. Int J Biol Macromol 2020; 165:333-345. [PMID: 32980413 DOI: 10.1016/j.ijbiomac.2020.09.144] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 09/04/2020] [Accepted: 09/19/2020] [Indexed: 02/06/2023]
Abstract
The current study aims to check various behavioural, developmental, cytotoxic, and genotoxic effects of Fe3O4-GG nanocomposite (GGNCs) on Drosophila melanogaster. Fe3O4 nanoparticles were prepared by the chemical co-precipitation method and cross-linked with guargum nanoparticles to prepare the nanocomposites. The nanocomposites were characterized by using transmission electron microscopy (TEM), X-ray diffraction (XRD), and FTIR techniques. To investigate the biomolecular interaction, GGNCs was further tagged with Fluorescein isothiocyanate. Various concentrations of nanocomposites were mixed with the food and flies were allowed to complete the life cycle. The life cycle of the flies was studied as a function of various concentrations of GGNCs. The 1st instar larvae after hatching from the egg start eating the food mixed with GGNCs. The 3rd instar larvae were investigated for various behavioural and morphological abnormalities within the gut. The 3rd instar larva has defective crawling speed, crawling path, and more number of micronuclei within the gut. Similarly, in adult flies thermal sensitivity, climbing behaviour was found to be altered. In adult flies, a significant reduction in body weight was found which is further correlated with variation of protein, carbohydrate, triglyceride, and antioxidant enzymes. Altogether, the current study suggests GGNCs as a non-genotoxic nanoparticle for various biological applications.
Collapse
Affiliation(s)
- Janmejaya Bag
- Neural Developmental Biology Lab, Department of Life Science, NIT Rourkela, Rourkela, Odisha 769008, India
| | - Sumit Mukherjee
- Neural Developmental Biology Lab, Department of Life Science, NIT Rourkela, Rourkela, Odisha 769008, India
| | - Sumanta Kumar Ghosh
- Division of Pharmaceutical and Fine Chemical Technology, Department of Chemical Technology, University of Calcutta, West Bengal 700009, India
| | - Aatrayee Das
- Division of Pharmaceutical and Fine Chemical Technology, Department of Chemical Technology, University of Calcutta, West Bengal 700009, India
| | - Arup Mukherjee
- Division of Pharmaceutical and Fine Chemical Technology, Department of Chemical Technology, University of Calcutta, West Bengal 700009, India; Department of Biotechnology, MaulanaAbulKalam Azad University of Technology, West Bengal 741249, India.
| | - Jitendra Kumar Sahoo
- Department of Chemistry, NIT Rourkela, Rourkela, Odisha 769008, India; Department of Basic Science and Humanities, GIET University, Gunupur, Odisha 765022, India
| | - Kshyama Subhadarsini Tung
- Neural Developmental Biology Lab, Department of Life Science, NIT Rourkela, Rourkela, Odisha 769008, India
| | - Harekrushna Sahoo
- Department of Chemistry, NIT Rourkela, Rourkela, Odisha 769008, India; Centre for Nanomaterials, NIT Rourkela, Rourkela, Odisha 769008, India
| | - Monalisa Mishra
- Neural Developmental Biology Lab, Department of Life Science, NIT Rourkela, Rourkela, Odisha 769008, India; Centre for Nanomaterials, NIT Rourkela, Rourkela, Odisha 769008, India.
| |
Collapse
|
26
|
Kamran M, Ali H, Saeed MF, Bakhat HF, Hassan Z, Tahir M, Abbas G, Naeem MA, Rashid MI, Shah GM. Unraveling the toxic effects of iron oxide nanoparticles on nitrogen cycling through manure-soil-plant continuum. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 205:111099. [PMID: 32829207 DOI: 10.1016/j.ecoenv.2020.111099] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 07/25/2020] [Accepted: 07/28/2020] [Indexed: 06/11/2023]
Abstract
Soil contamination with metallic nanoparticles is increasing due to their increased use in industrial and domestic settings. These nanoparticles are potentially toxic to soil microbes and may affect their associated functions and thereby the nutrient cycling in agro-ecosystems. This study examined the effects of iron oxides nanoparticles (IONPs) on carbon (C) and nitrogen (N) dynamics of poultry (PM) and farmyard manure (FYM) in the soil. The application of IONPs increased iron content in soil microbial biomass, which reflected its consumption by the microbes. As a result, colony-forming units of bacteria and fungi reduced considerably. Such observations lead to a decrease in CO2 emission from PM and FYM by 27 and 28%, respectively. The respective decrease fractions in the case of N mineralization were 24 and 35%. Consequently, soil mineral N content was reduced by 16% from PM and 12% from FYM as compared to their sole application without IONPs. Spinach dry matter yield and apparent N recovery were increased by the use of organic waste (FYM, PM). The use of IONPs significantly reduced the plant N recovery fraction by 26 and 24% (P < 0.05) from PM and FYM, respectively. All the results mentioned above lead us to conclude that IONPs are toxic to soil microbes and affect their function i.e., carbon and N mineralization of applied manure, and thereby the on-farm N cycling from the manure-soil-plant continuum.
Collapse
Affiliation(s)
- Muhammad Kamran
- Department of Environmental Sciences, COMSATS University Islamabad, Vehari-Campus, Vehari, 61100, Pakistan
| | - Hifsa Ali
- Department of Environmental Sciences, COMSATS University Islamabad, Vehari-Campus, Vehari, 61100, Pakistan
| | - Muhammad Farhan Saeed
- Department of Environmental Sciences, COMSATS University Islamabad, Vehari-Campus, Vehari, 61100, Pakistan
| | - Hafiz Faiq Bakhat
- Department of Environmental Sciences, COMSATS University Islamabad, Vehari-Campus, Vehari, 61100, Pakistan
| | - Zeshan Hassan
- College of Agriculture, Bahauddin Zakariya University, Multan, Bahadur Sub Campus, Layyah, Pakistan
| | - Muhammad Tahir
- Department of Environmental Sciences, COMSATS University Islamabad, Vehari-Campus, Vehari, 61100, Pakistan
| | - Ghulam Abbas
- Department of Environmental Sciences, COMSATS University Islamabad, Vehari-Campus, Vehari, 61100, Pakistan
| | - Muhammad Asif Naeem
- Department of Environmental Sciences, COMSATS University Islamabad, Vehari-Campus, Vehari, 61100, Pakistan
| | - Muhammad Imtiaz Rashid
- Center of Excellence in Environmental Studies, King Abdulaziz University, P.O. Box 80216, Jeddah, 21589, Saudi Arabia
| | - Ghulam Mustafa Shah
- Department of Environmental Sciences, COMSATS University Islamabad, Vehari-Campus, Vehari, 61100, Pakistan.
| |
Collapse
|
27
|
Agayeva NJ, Rzayev FH, Gasimov EK, Mamedov CA, Ahmadov IS, Sadigova NA, Khusro A, Al-Dhabi NA, Arasu MV. Exposure of rainbow trout ( Oncorhynchus mykiss) to magnetite (Fe 3O 4) nanoparticles in simplified food chain: Study on ultrastructural characterization. Saudi J Biol Sci 2020; 27:3258-3266. [PMID: 33304131 PMCID: PMC7715042 DOI: 10.1016/j.sjbs.2020.09.032] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Revised: 09/13/2020] [Accepted: 09/15/2020] [Indexed: 01/30/2023] Open
Abstract
The widespread exposure of metallic nanoparticles to the aquatic ecosystem and its adverse impact on human life is the colossal concern worldwide. In view of this, this context was investigated to analyze microscopically the bioaccumulation and localization of magnetite (Fe3O4) nanoparticles in the cellular organelles of rainbow trout (Oncorhynchus mykiss, Walbaum, 1792) in aquatic conditions. Initially, Fe3O4 nanoparticles were absorbed on to Elodea (Elodea canadensis) and fed to molluscs (Melanopsis praemorsa). Fish were fed with the same molluscs, and then the intestines and liver were examined using light and transmission electron microscopy. Results showed that nanoparticles were present in the cytoplasm and other organelles of cells (mitochondrion and lysosome) by absorbing through microvilli of the epithelial cells of the tunica mucosa in the intestine. Further, nanoparticles passed through the vessels of the lamina propria of the tunica mucosa and reached to the sinusoids of the liver via blood circulation. It was then accumulated from the endothelium of the sinusoid to the cytoplasm of liver hepatocytes and to mitochondria and lysosome. The accumulation of nanoparticles in the epithelial cells, cytoplasm, mitochondria, and lysosome revealed the degree of transparency of the pattern with slight hesitation. In summary, this investigation contributed towards the understanding of the physiological effects of Fe3O4 nanoparticles on O. mykiss, which ascertains essentiality for sustainable development of nanobiotechnology in the aquatic ecosystem.
Collapse
Affiliation(s)
- Nargiz J Agayeva
- Department of Zoology of Vertebrates, Faculty of Biology, Baku State University, Baku AZ1148, Azerbaijan
| | - Fuad H Rzayev
- Laboratory of Electron Microscopy of the SRC, Azerbaijan Medical University, Baku AZ1078, Azerbaijan.,Institute of Zoology, National Academy of Sciences, Baku AZ1004, Azerbaijan
| | - Eldar K Gasimov
- Laboratory of Electron Microscopy of the SRC, Azerbaijan Medical University, Baku AZ1078, Azerbaijan
| | - Chingiz A Mamedov
- Department of Zoology of Vertebrates, Faculty of Biology, Baku State University, Baku AZ1148, Azerbaijan
| | - Ismat S Ahmadov
- Department of Zoology of Vertebrates, Faculty of Biology, Baku State University, Baku AZ1148, Azerbaijan
| | - Narmina A Sadigova
- Department of Zoology of Vertebrates, Faculty of Biology, Baku State University, Baku AZ1148, Azerbaijan
| | - Ameer Khusro
- Research Department of Plant Biology and Biotechnology, Loyola College, Chennai 600034, Tamil Nadu, India
| | - Naif Abdullah Al-Dhabi
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Mariadhas Valan Arasu
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| |
Collapse
|
28
|
Gökçe D, Köytepe S, Özcan İ. Assessing short-term effects of magnetite ferrite nanoparticles on Daphnia magna. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:31489-31504. [PMID: 32488719 DOI: 10.1007/s11356-020-09406-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Accepted: 05/21/2020] [Indexed: 06/11/2023]
Abstract
Magnetic nanoparticles (MNPs) are used in a wide range of sectors ranging from electronics to biomedicine, as well as in eutrophicated lake restoration due to their high P, N, and heavy metal adsorption capacity. This study assessed the effects of MNPs on mortality and morphometric changes of D. magna. According to the SEM, the synthesised MNPs were found to have spherical nanoparticles, be uniformly distributed, and have a homolithic size distribution of 50-110 nm. The EDX spectra confirmed the elemental structure and purities of these MNPs. A total of 396 neonates were used for short-term bioassays (96 h) through the MNPs in the laboratory (16:8 photoperiod). Experiments were applied in triplicate for each concentration of CuFe2O4, CoFe2O4, and NiFe2O4 MNPs and their respective control groups. Mortality and morphological measurements of each individual were recorded every 24 h. In the probit analysis, the 96-h LC50 (p < 0.05) for CuFe2O4, CoFe2O4, and NiFe2O4 MNPs was calculated to be 1.455 mg L-1, 39.834 mg L-1, and 21.730 mg L-1, respectively. CuFe2O4 MNPs were found to be more toxic than the other two MNPs. The concentrations of CuFe2O4, CoFe2O4, and NiFe2O4 MNPs drastically affected life span and morphologic growth of D. magna as a result of a short time exposure. The results of this study are useful for assessing what risks they pose to freshwater ecosystems.
Collapse
Affiliation(s)
- Didem Gökçe
- Department of Biology, Faculty of Arts and Science, İnönü University, Malatya, Turkey.
| | - Süleyman Köytepe
- Department of Chemistry, Faculty of Arts and Science, İnönü University, Malatya, Turkey
| | - İmren Özcan
- Department of Chemistry, Faculty of Arts and Science, İnönü University, Malatya, Turkey
| |
Collapse
|
29
|
Tsakmakidis IA, Samaras T, Anastasiadou S, Basioura A, Ntemka A, Michos I, Simeonidis K, Karagiannis I, Tsousis G, Angelakeris M, Boscos CM. Iron Oxide Nanoparticles as an Alternative to Antibiotics Additive on Extended Boar Semen. NANOMATERIALS 2020; 10:nano10081568. [PMID: 32784995 PMCID: PMC7466471 DOI: 10.3390/nano10081568] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 08/06/2020] [Accepted: 08/07/2020] [Indexed: 01/18/2023]
Abstract
This study examined the effect of Fe3O4 nanoparticles on boar semen. Beltsville thawing solution without antibiotics was used to extend ejaculates from 5 boars (4 ejaculates/boar). Semen samples of control group (C) and group with Fe3O4 (Fe; 0.192 mg/mL semen) were incubated under routine boar semen storage temperature (17 °C) for 0.5 h and nanoparticles were removed by a magnetic field. Before and after treatment, aliquots of all groups were cultured using standard microbiological methods. The samples after treatment were stored (17 °C) for 48 h and sperm parameters (computer-assisted sperm analyzer (CASA) variables; morphology; viability; hypo-osmotic swelling test (HOST); DNA integrity) were evaluated at storage times 0, 24, 48 h. Semen data were analyzed by a repeated measures mixed model and microbial data with Student’s t-test for paired samples. Regarding CASA parameters, Fe group did not differ from C at any time point. In group C, total motility after 24 h and progressive motility after 48 h of storage decreased significantly compared to 0 h. In group Fe, linearity (LIN) after 48 h and head abnormalities after 24 h of storage increased significantly compared to 0 h. The microbiological results revealed a significant reduction of the bacterial load in group Fe compared to control at both 24 and 48 h. In conclusion, the use of Fe3O4 nanoparticles during semen processing provided a slight anti-microbiological effect with no adverse effects on sperm characteristics.
Collapse
Affiliation(s)
- Ioannis A. Tsakmakidis
- School of Veterinary Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, 54627 Thessaloniki, Greece; (S.A.); (A.B.); (A.N.); (I.M.); (I.K.); (G.T.); (C.M.B.)
- Correspondence: ; Tel.: +30-2310-994-467
| | - Theodoros Samaras
- School of Physics, Faculty of Sciences, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (T.S.); (K.S.); (M.A.)
| | - Sofia Anastasiadou
- School of Veterinary Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, 54627 Thessaloniki, Greece; (S.A.); (A.B.); (A.N.); (I.M.); (I.K.); (G.T.); (C.M.B.)
| | - Athina Basioura
- School of Veterinary Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, 54627 Thessaloniki, Greece; (S.A.); (A.B.); (A.N.); (I.M.); (I.K.); (G.T.); (C.M.B.)
| | - Aikaterini Ntemka
- School of Veterinary Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, 54627 Thessaloniki, Greece; (S.A.); (A.B.); (A.N.); (I.M.); (I.K.); (G.T.); (C.M.B.)
| | - Ilias Michos
- School of Veterinary Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, 54627 Thessaloniki, Greece; (S.A.); (A.B.); (A.N.); (I.M.); (I.K.); (G.T.); (C.M.B.)
| | - Konstantinos Simeonidis
- School of Physics, Faculty of Sciences, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (T.S.); (K.S.); (M.A.)
| | - Isidoros Karagiannis
- School of Veterinary Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, 54627 Thessaloniki, Greece; (S.A.); (A.B.); (A.N.); (I.M.); (I.K.); (G.T.); (C.M.B.)
| | - Georgios Tsousis
- School of Veterinary Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, 54627 Thessaloniki, Greece; (S.A.); (A.B.); (A.N.); (I.M.); (I.K.); (G.T.); (C.M.B.)
| | - Mavroeidis Angelakeris
- School of Physics, Faculty of Sciences, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (T.S.); (K.S.); (M.A.)
| | - Constantin M. Boscos
- School of Veterinary Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, 54627 Thessaloniki, Greece; (S.A.); (A.B.); (A.N.); (I.M.); (I.K.); (G.T.); (C.M.B.)
| |
Collapse
|
30
|
Sayadi MH, Mansouri B, Shahri E, Tyler CR, Shekari H, Kharkan J. Exposure effects of iron oxide nanoparticles and iron salts in blackfish (Capoeta fusca): Acute toxicity, bioaccumulation, depuration, and tissue histopathology. CHEMOSPHERE 2020; 247:125900. [PMID: 31951957 DOI: 10.1016/j.chemosphere.2020.125900] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 01/04/2020] [Accepted: 01/10/2020] [Indexed: 06/10/2023]
Abstract
We assessed the toxicity of iron oxide nanoparticles compared with iron salts in the blackfish (Capoeta fusca). After an acute toxicity assessment, we conducted a chronic exposure to a sub-lethal concentration of Fe3O4 NPs, and iron salts (ferric nitrate (Fe(NO3)3), ferric chloride (FeCl3), ferrous sulfate (FeSO4)) to measure iron uptake over a period of 28 days and then subsequent clearance of the iron uptake in the exposed fish that were transferred to clean water for 28 days. Fe(NO3)3 was the most acutely toxic compound followed by FeCl3, FeSO4, and Fe3O4 NPs. Exposure to Fe3O4 NPs and iron salts induced histopathology anomalies in both gills and intestine that included aneurism, hyperplasia, oedema, fusion of lamellae, lamellar synechiae, and clear signs of necrosis (in the gills) and increases in the number of goblet cells, blood cell counts, and higher numbers of lymphocyte (in the intestine). Fe3O4 NPs showed a higher level of uptake in the body tissues compared with iron salts (p < 0.05) with levels of Fe in the gill > intestine > liver > kidney. Fe was shown to be eliminated most efficiently from the gills, followed by the kidney, then liver and finally the intestine. The highest tissue bioconcentration factors (BCF) occurred in the liver for FeCl3, Fe3O4 NPs, and FeSO4 and in the gills for Fe(NO3)3. We thus show differences in the patterns of tissue accumulation, clearance and toxicological responses for exposures to Fe3O4 NPs and iron salts in blackfish with implications for different susceptibilities for biological effects.
Collapse
Affiliation(s)
- Mohammad Hossein Sayadi
- Department of Environmental Sciences, School of Natural Resources and Environment, University of Birjand, Birjand, Iran.
| | - Borhan Mansouri
- Substance Abuse Prevention Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| | - Elham Shahri
- Department of Environmental Sciences, School of Natural Resources and Environment, University of Birjand, Birjand, Iran.
| | - Charles R Tyler
- Biosciences, College of Life and Environmental Sciences, University of Exeter, Geoffrey Pope, Stocker Road, Exeter, Devon, EX4 4QD, United Kingdom.
| | - Hossein Shekari
- Department of Environmental Sciences, School of Natural Resources and Environment, University of Birjand, Birjand, Iran.
| | - Javad Kharkan
- Department of Environmental Sciences, School of Natural Resources and Environment, University of Birjand, Birjand, Iran.
| |
Collapse
|
31
|
Nikolovski D, Cumic J, Pantic I. Application of Gray Level co-Occurrence Matrix Algorithm for Detection of Discrete Structural Changes in Cell Nuclei After Exposure to Iron Oxide Nanoparticles and 6-Hydroxydopamine. MICROSCOPY AND MICROANALYSIS : THE OFFICIAL JOURNAL OF MICROSCOPY SOCIETY OF AMERICA, MICROBEAM ANALYSIS SOCIETY, MICROSCOPICAL SOCIETY OF CANADA 2019; 25:982-988. [PMID: 31272521 DOI: 10.1017/s1431927619014594] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The gray level co-occurrence matrix (GLCM) algorithm is a contemporary computational biology method which, today, is frequently used to detect small changes in texture that are not visible using conventional techniques. We demonstrate that the toxic compound 6-hydroxydopamine (6-OHDA) and iron oxide nanoparticles (IONPS) have opposite effects on GLCM features of cell nuclei. Saccharomyces cerevisiae yeast cells were treated with 6-OHDA and IONPs, and imaging with GLCM analysis was performed at three different time points: 30 min, 60 min, and 120 min after the treatment. A total of 200 cell nuclei were analyzed, and for each nucleus, 5 GLCM parameters were calculated: Angular second moment (ASM), Inverse difference moment (IDM), Contrast (CON), Correlation (COR) and Sum Variance (SVAR). Exposure to IONPs was associated with the increase of ASM and IDM while the values of SVAR and COR were reduced. Treatment with 6-OHDA was associated with the increase of SVAR and CON, while the values of nuclear ASM and IDM were reduced. This is the first study to indicate that IONPs and 6-OHDA have opposite effects on nuclear texture. Also, to the best of our knowledge, this is the first study to apply the GLCM algorithm in Saccharomyces cerevisiae yeast cells in this experimental setting.
Collapse
Affiliation(s)
| | - Jelena Cumic
- Clinical Center of Serbia, School of Medicine, University in Belgrade,Dr.KosteTodorovića 8, RS-11129, Belgrade,Serbia
| | - Igor Pantic
- University of Belgrade, Faculty of Medicine, Institute of Medical Physiology, Laboratory for cellular physiology,Visegradska 26/II, RS-11129, Belgrade,Serbia
| |
Collapse
|
32
|
Dukenbayev K, Korolkov IV, Tishkevich DI, Kozlovskiy AL, Trukhanov SV, Gorin YG, Shumskaya EE, Kaniukov EY, Vinnik DA, Zdorovets MV, Anisovich M, Trukhanov AV, Tosi D, Molardi C. Fe₃O₄ Nanoparticles for Complex Targeted Delivery and Boron Neutron Capture Therapy. NANOMATERIALS 2019; 9:nano9040494. [PMID: 30935156 PMCID: PMC6523109 DOI: 10.3390/nano9040494] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/17/2019] [Revised: 03/17/2019] [Accepted: 03/22/2019] [Indexed: 01/11/2023]
Abstract
Magnetic Fe3O4 nanoparticles (NPs) and their surface modification with therapeutic substances are of great interest, especially drug delivery for cancer therapy, including boron-neutron capture therapy (BNCT). In this paper, we present the results of boron-rich compound (carborane borate) attachment to previously aminated by (3-aminopropyl)-trimethoxysilane (APTMS) iron oxide NPs. Fourier transform infrared spectroscopy with Attenuated total reflectance accessory (ATR-FTIR) and energy-dispersive X-ray analysis confirmed the change of the element content of NPs after modification and formation of new bonds between Fe3O4 NPs and the attached molecules. Transmission (TEM) and scanning electron microscopy (SEM) showed Fe3O4 NPs’ average size of 18.9 nm. Phase parameters were studied by powder X-ray diffraction (XRD), and the magnetic behavior of Fe3O4 NPs was elucidated by Mössbauer spectroscopy. The colloidal and chemical stability of NPs was studied using simulated body fluid (phosphate buffer—PBS). Modified NPs have shown excellent stability in PBS (pH = 7.4), characterized by XRD, Mössbauer spectroscopy, and dynamic light scattering (DLS). Biocompatibility was evaluated in-vitro using cultured mouse embryonic fibroblasts (MEFs). The results show us an increasing of IC50 from 0.110 mg/mL for Fe3O4 NPs to 0.405 mg/mL for Fe3O4-Carborane NPs. The obtained data confirm the biocompatibility and stability of synthesized NPs and the potential to use them in BNCT.
Collapse
Affiliation(s)
- Kanat Dukenbayev
- School of Engineering, Nazarbayev University, 010000 Nur-Sultan, Kazakhstan.
| | - Ilya V Korolkov
- The Institute of Nuclear Physics, 050032 Almaty, Kazakhstan.
- L.N. Gumilyov Eurasian National University, 010008 Nur-Sultan, Kazakhstan.
| | - Daria I Tishkevich
- Laboratory of Magnetic Films Physics, Cryogenic Research Department, Scientific-Practical Materials Research Centre, National Academy of Sciences of Belarus, 220072 Minsk, Belarus.
- Laboratory of Single crystal growth, South Ural State University, 454080 Chelyabinsk, Russia.
| | - Artem L Kozlovskiy
- The Institute of Nuclear Physics, 050032 Almaty, Kazakhstan.
- L.N. Gumilyov Eurasian National University, 010008 Nur-Sultan, Kazakhstan.
| | - Sergey V Trukhanov
- Laboratory of Magnetic Films Physics, Cryogenic Research Department, Scientific-Practical Materials Research Centre, National Academy of Sciences of Belarus, 220072 Minsk, Belarus.
- Laboratory of Single crystal growth, South Ural State University, 454080 Chelyabinsk, Russia.
| | - Yevgeniy G Gorin
- The Institute of Nuclear Physics, 050032 Almaty, Kazakhstan.
- L.N. Gumilyov Eurasian National University, 010008 Nur-Sultan, Kazakhstan.
| | - Elena E Shumskaya
- Laboratory of Magnetic Films Physics, Cryogenic Research Department, Scientific-Practical Materials Research Centre, National Academy of Sciences of Belarus, 220072 Minsk, Belarus.
| | - Egor Y Kaniukov
- Laboratory of Magnetic Films Physics, Cryogenic Research Department, Scientific-Practical Materials Research Centre, National Academy of Sciences of Belarus, 220072 Minsk, Belarus.
- Laboratory of Single crystal growth, South Ural State University, 454080 Chelyabinsk, Russia.
- Department of Electronic Materials Technology, National University of Science and Technology MISiS, 119049 Moscow, Russia.
| | - Denis A Vinnik
- Laboratory of Single crystal growth, South Ural State University, 454080 Chelyabinsk, Russia.
| | - Maxim V Zdorovets
- The Institute of Nuclear Physics, 050032 Almaty, Kazakhstan.
- L.N. Gumilyov Eurasian National University, 010008 Nur-Sultan, Kazakhstan.
- Ural Federal University named after the First President of Russia B.N. Yeltsin, 620075 Yekaterinburg, Russia.
| | - Marina Anisovich
- Republican Unitary Enterprise "Scientific-Practical Centre of Hygiene", 220012 Minsk, Belarus.
| | - Alex V Trukhanov
- Laboratory of Magnetic Films Physics, Cryogenic Research Department, Scientific-Practical Materials Research Centre, National Academy of Sciences of Belarus, 220072 Minsk, Belarus.
- Laboratory of Single crystal growth, South Ural State University, 454080 Chelyabinsk, Russia.
- Department of Electronic Materials Technology, National University of Science and Technology MISiS, 119049 Moscow, Russia.
| | - Daniele Tosi
- School of Engineering, Nazarbayev University, 010000 Nur-Sultan, Kazakhstan.
| | - Carlo Molardi
- School of Engineering, Nazarbayev University, 010000 Nur-Sultan, Kazakhstan.
| |
Collapse
|