1
|
Pani BSUL, Chandrasekaran N. Investigating the impact of nanoplastics in altering the efficacy of clarithromycin antibiotics through In vitro studies. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 363:125144. [PMID: 39424051 DOI: 10.1016/j.envpol.2024.125144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 10/15/2024] [Accepted: 10/16/2024] [Indexed: 10/21/2024]
Abstract
Plastics have significant global implications due to their environmental contamination from extensive use and improper disposal. Among plastic particles, nanoplastics (<1 μm) pose notable risks to organisms and ecosystems due to their high surface area, reactivity, and potential to carry environmental pollutants. This study explores the interaction between polystyrene nanoplastics (PSNPs) and clarithromycin (CLA), a broad-spectrum antibiotic, focusing on their combined impact on insulin (INS) and antibiotic-resistant (AMR) bacteria. PSNPs can adsorb CLA, leading to structural changes in insulin and affecting its physiological functions, potentially causing insulin resistance. Additionally, PSNPs reduce CLA's inhibitory effects on pathogenic bacteria, facilitating antibiotic resistance. Our research utilized UV-Vis Spectroscopy, FTIR, Fluorescence spectroscopy, and Circular dichroism (CD) spectroscopy to assess INS structural changes, alongside the Kirby-Bauer disk diffusion method for microbiological examination. The findings highlight the synergistic and antagonistic effects of PSNPs and CLA, underscoring the enhanced toxicity of CLA when adsorbed onto PSNPs and the complex interactions affecting both human health and bacterial resistance. Further studies are essential to fully understand these mechanisms and their broader implications.
Collapse
|
2
|
Kandaswamy K, Guru A, Panda SP, Antonyraj APM, Kari ZA, Giri J, Almutairi BO, Arokiyaraj S, Malafaia G, Arockiaraj J. Polystyrene nanoplastics synergistically exacerbate diclofenac toxicity in embryonic development and the health of adult zebrafish. Comp Biochem Physiol C Toxicol Pharmacol 2024; 281:109926. [PMID: 38641085 DOI: 10.1016/j.cbpc.2024.109926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 03/30/2024] [Accepted: 04/16/2024] [Indexed: 04/21/2024]
Abstract
In this study, we investigated the possible ecotoxicological effect of co-exposure to polystyrene nanoplastics (PS-NPs) and diclofenac (DCF) in zebrafish (Danio rerio). After six days of exposure, we noticed that the co-exposure to PS-NP (100 μg/L) and DCF (at 50 and 500 μg/L) decreased the hatching rate and increased the mortality rate compared to the control group. Furthermore, we noted that larvae exposed to combined pollutants showed a higher frequency of morphological abnormalities and increased oxidative stress, apoptosis, and lipid peroxidation. In adults, superoxide dismutase and catalase activities were also impaired in the intestine, and the co-exposure groups showed more histopathological alterations. Furthermore, the TNF-α, COX-2, and IL-1β expressions were significantly upregulated in the adult zebrafish co-exposed to pollutants. Based on these findings, the co-exposure to PS-NPs and DCF has shown an adverse effect on the intestinal region, supporting the notion that PS-NPs synergistically exacerbate DCF toxicity in zebrafish.
Collapse
Affiliation(s)
- Karthikeyan Kandaswamy
- Department of Cariology, Saveetha Dental College and Hospitals, SIMATS, Chennai 600 077, Tamil Nadu, India
| | - Ajay Guru
- Department of Cariology, Saveetha Dental College and Hospitals, SIMATS, Chennai 600 077, Tamil Nadu, India.
| | - Siva Prasad Panda
- Institute of Pharmaceutical Research, GLA University, Mathura, Uttarpradesh, India
| | - Anahas Perianaika Matharasi Antonyraj
- Department of Research Analytics, Saveetha Dental College and Hospital, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha University, Poonamallee, Chennai 600 077, Tamil Nadu, India
| | - Zulhisyam Abdul Kari
- Department of Agricultural Sciences, Faculty of Agro-Based Industry, Universiti Malaysia Kelantan, Jeli Campus, Jeli 17600, Malaysia; Advanced Livestock and Aquaculture Research Group, Faculty of Agro-Based Industry, Universiti Malaysia Kelantan, Jeli Campus, Jeli 17600, Malaysia
| | - Jayant Giri
- Department of Mechanical Engineering, Yeshwantrao Chavan College of Engineering, Nagpur, India
| | - Bader O Almutairi
- Department of Zoology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Riyadh, Saudi Arabia
| | - Selvaraj Arokiyaraj
- Department of Food Science & Biotechnology, Sejong University, Seoul 05006, Republic of Korea
| | - Guilherme Malafaia
- Laboratory of Toxicology Applied to the Environment and Post-Graduation Program in Conservation of Cerrado Natural Resources, Goiano Federal Institute, Urutaí Campus, Urutaí, GO, Brazil; Post-Graduation Program in Biotechnology and Biodiversity, Federal University of Goiás, Goiânia, GO, Brazil; Post-Graduation Program in Ecology, Conservation, and Biodiversity, Federal University of Uberlândia, Uberlândia, MG, Brazil.
| | - Jesu Arockiaraj
- Toxicology and Pharmacology Laboratory, Department of Biotechnology, Faculty of Science and Humanities, SRM Institute of Science and Technology, Kattankulathur 603203, Chengalpattu District, Tamil Nadu, India.
| |
Collapse
|
3
|
Buzenchi Proca TM, Solcan C, Solcan G. Neurotoxicity of Some Environmental Pollutants to Zebrafish. Life (Basel) 2024; 14:640. [PMID: 38792660 PMCID: PMC11122474 DOI: 10.3390/life14050640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 05/15/2024] [Indexed: 05/26/2024] Open
Abstract
The aquatic environment encompasses a wide variety of pollutants, from plastics to drug residues, pesticides, food compounds, and other food by-products, and improper disposal of waste is the main cause of the accumulation of toxic substances in water. Monitoring, assessing, and attempting to control the effects of contaminants in the aquatic environment are necessary and essential to protect the environment and thus human and animal health, and the study of aquatic ecotoxicology has become topical. In this respect, zebrafish are used as model organisms to study the bioaccumulation, toxicity, and influence of environmental pollutants due to their structural, functional, and material advantages. There are many similarities between the metabolism and physiological structures of zebrafish and humans, and the nervous system structure, blood-brain barrier function, and social behavior of zebrafish are characteristics that make them an ideal animal model for studying neurotoxicity. The aim of the study was to highlight the neurotoxicity of nanoplastics, microplastics, fipronil, deltamethrin, and rotenone and to highlight the main behavioral, histological, and oxidative status changes produced in zebrafish exposed to them.
Collapse
Affiliation(s)
- Teodora Maria Buzenchi Proca
- Department of Preclinics, Faculty of Veterinary Medicine, Iasi University of Life Sciences Ion Ionescu de la Brad, 700490 Iasi, Romania; (T.M.B.P.); (C.S.)
| | - Carmen Solcan
- Department of Preclinics, Faculty of Veterinary Medicine, Iasi University of Life Sciences Ion Ionescu de la Brad, 700490 Iasi, Romania; (T.M.B.P.); (C.S.)
| | - Gheorghe Solcan
- Internal Medicine Unit, Clinics Department, Faculty of Veterinary Medicine, Iasi University of Life Sciences Ion Ionescu de la Brad, 700490 Iasi, Romania
| |
Collapse
|
4
|
Maria VL, Santos J, Prodana M, Cardoso DN, Morgado RG, Amorim MJB, Barreto A. Toxicity mechanisms of plastic nanoparticles in three terrestrial species: antioxidant system imbalance and neurotoxicity. Nanotoxicology 2024; 18:299-313. [PMID: 38807536 DOI: 10.1080/17435390.2024.2358781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 05/16/2024] [Indexed: 05/30/2024]
Abstract
The detrimental impacts of plastic nanoparticles (PNPs) are a worldwide concern, although knowledge is still limited, in particular for soil mesofauna. This study investigates the biochemical impact of 44 nm polystyrene PNPs on three soil models-Enchytraeus crypticus (Oligochaeta), Folsomia candida (Collembola) and Porcellionides pruinosus (Isopoda). Exposure durations of 3, 7 and 14 days (d) were implemented at two concentrations (1.5 and 300 mg kg-1 PNPs). Results revealed PNPs impact on the activities of the glutathione-dependent antioxidative enzyme, glutathione S-transferase (GST) and on the neurotransmitter acetylcholinesterase (AChE) for all three species. Catalase (CAT) played a minor role, primarily evident in F. candida at 300 mg kg-1 PNPs (CAT and GST response after 14 d), with no lipid peroxidation (LPO) increase. Even with the antioxidant defence, P. pruinosus was the most sensitive species for lipid oxidative damage (LPO levels increased after 7 d exposure to 300 mg kg-1 PNPs). Significant AChE inhibitions were measured already after 3 d to both PNP concentrations in F. candida and E. crypticus, respectively. Significant AChE inhibitions were also found in P. pruinosus but later (7 d). Overall, the toxicity mechanisms of PNPs involved antioxidant imbalance, being (mostly) the glutathione-associated metabolism part of that defence system. Neurotoxicity, linked to AChE activities, was evident across all species. Sensitivity to PNPs varied: P. pruinosus > F. candida ≅ E. crypticus. This pioneering study on PNPs toxicity in soil invertebrates underscores its environmental relevance, shedding light on altered biochemical responses, that may compromise ecological roles and soil ecosystem fitness.
Collapse
Affiliation(s)
- Vera L Maria
- Department of Biology & Centre for Environmental and Marine Studies (CESAM), University of Aveiro, Aveiro, Portugal
| | - Joana Santos
- Department of Biology & Centre for Environmental and Marine Studies (CESAM), University of Aveiro, Aveiro, Portugal
| | - Marija Prodana
- Department of Biology & Centre for Environmental and Marine Studies (CESAM), University of Aveiro, Aveiro, Portugal
| | - Diogo N Cardoso
- Department of Biology & Centre for Environmental and Marine Studies (CESAM), University of Aveiro, Aveiro, Portugal
| | - Rui G Morgado
- Department of Biology & Centre for Environmental and Marine Studies (CESAM), University of Aveiro, Aveiro, Portugal
| | - Mónica J B Amorim
- Department of Biology & Centre for Environmental and Marine Studies (CESAM), University of Aveiro, Aveiro, Portugal
| | - Angela Barreto
- Department of Biology & Centre for Environmental and Marine Studies (CESAM), University of Aveiro, Aveiro, Portugal
| |
Collapse
|
5
|
Santos J, Barreto A, Coelho T, Carvalho E, Pereira D, Calisto V, Maria VL. Amitriptyline ecotoxicity in Danio rerio (Hamilton, 1822) embryos - similar toxicity profile in the presence of nanoplastics. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2024; 106:104372. [PMID: 38244879 DOI: 10.1016/j.etap.2024.104372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 01/16/2024] [Indexed: 01/22/2024]
Abstract
Interaction of nanoplastics (NPls) with other environmental contaminants could affect their uptake by the organisms and their toxicity. Thus, the present study aims to investigate the polystyrene NPls (44 nm) interaction with the antidepressant amitriptyline (AMI) and its toxicity to Danio rerio embryos. A similar toxicological profile for NPls + AMI exposure was found for most of the evaluated endpoints, comparing with AMI single exposure, showing that the presence of NPls did not modulate the AMI toxicity. However, the behavioral assessment showed a different pattern with hypoactivity for the NPls + AMI exposure (NPls - hyperactivity; AMI - no effect). Interaction effects between NPls and AMI were also found in the protein contents (antagonism) and in the total glutathione content (synergism). This study highlights the complexity and unpredictability of NPls interaction with pharmaceuticals, important for an accurate environmental risk assessment and for the developing of effective strategies and interventions against plastic pollution.
Collapse
Affiliation(s)
- Joana Santos
- Biology Department & Centre for Environmental and Marine Studies (CESAM), University of Aveiro, 3810-193 Aveiro, Portugal
| | - Angela Barreto
- Biology Department & Centre for Environmental and Marine Studies (CESAM), University of Aveiro, 3810-193 Aveiro, Portugal
| | - Teresa Coelho
- Biology Department & Centre for Environmental and Marine Studies (CESAM), University of Aveiro, 3810-193 Aveiro, Portugal
| | - Edna Carvalho
- Biology Department & Centre for Environmental and Marine Studies (CESAM), University of Aveiro, 3810-193 Aveiro, Portugal
| | - Diogo Pereira
- Chemistry Department & CESAM, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Vânia Calisto
- Chemistry Department & CESAM, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Vera L Maria
- Biology Department & Centre for Environmental and Marine Studies (CESAM), University of Aveiro, 3810-193 Aveiro, Portugal.
| |
Collapse
|
6
|
Barreto A, Santos J, Calisto V, Rocha LS, Amorim MJB, Maria VL. Cocktail effects of emerging contaminants on zebrafish: Nanoplastics and the pharmaceutical diphenhydramine. NANOIMPACT 2023; 30:100456. [PMID: 36841353 DOI: 10.1016/j.impact.2023.100456] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 02/17/2023] [Accepted: 02/20/2023] [Indexed: 06/03/2023]
Abstract
Nanoplastics (NPLs) became ubiquitous in the environment, from the air we breathe to the food we eat. One of the main concerns about the NPLs risks is their role as carrier of other environmental contaminants, potentially increasing their uptake, bioaccumulation and toxicity to the organisms. Therefore, the main aim of this study was to understand how the presence of polystyrene NPLs (∅ 44 nm) will influence the toxicity (synergism, additivity or antagonism) of the antihistamine diphenhydramine (DPH), towards zebrafish (Danio rerio) embryos, when in dual mixtures. After 96 hours (h) exposure, at the organismal level, NPLs (0.015 or 1.5 mg/L) + DPH (10 mg/L) induced embryo mortality (90%) and malformations (100%) and decreased hatching (80%) and heartbeat rates (60%). After 120 h exposure, NPLs (0.015 or 1.5 mg/L) + DPH (0.01 mg/L) decreased larvae swimming distance (30-40%). At the biochemical level, increased glutathione S-transferases (55-122%) and cholinesterase (182-343%) activities were found after 96 h exposure to NPLs (0.015 or 1.5 mg/L) + DPH (0.01 mg/L). However, catalase (CAT) activity remained similar to the control group in the mixtures, inhibiting the effects detected after the exposure to 1.5 mg/L NPLs alone (increased 230% of CAT activity). In general, the effects of dual combination - NPLs + DPH (even at concentrations as low as 10 μg/L of DPH) - were more harmful than the correspondent individual exposures, showing the synergistic interactions of the dual mixture and answering to the main question of this work. The obtained results, namely the altered toxicity patterns of NPLs + DPH compared with the individual exposures, show the importance of an environmental risk assessment considering NPLs as a co-contaminant due to the potential NPLs role as vector for other contaminants.
Collapse
Affiliation(s)
- Angela Barreto
- Department of Biology & CESAM, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Joana Santos
- Department of Biology & CESAM, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Vânia Calisto
- Department of Chemistry & CESAM, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Luciana S Rocha
- Department of Chemistry & CESAM, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Mónica J B Amorim
- Department of Biology & CESAM, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Vera L Maria
- Department of Biology & CESAM, University of Aveiro, 3810-193 Aveiro, Portugal.
| |
Collapse
|
7
|
Santos J, Barreto A, Sousa ÉML, Calisto V, Amorim MJB, Maria VL. The role of nanoplastics on the toxicity of the herbicide phenmedipham, using Danio rerio embryos as model organisms. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 303:119166. [PMID: 35306087 DOI: 10.1016/j.envpol.2022.119166] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 02/18/2022] [Accepted: 03/14/2022] [Indexed: 06/14/2023]
Abstract
Once in the aquatic ecosystems, nanoplastics (NPls) can interact with other contaminants acting as vectors of transport and altering their toxicological effects towards organisms. Thus, the present study aims to investigate how polystyrene NPls (44 nm) interact with the herbicide phenmedipham (PHE) and affect its toxicity to zebrafish embryos. Single exposures to 0, 0.015, 0.15, 1.5, 15 and 150 mg/L NPls and 0.02, 0.2, 2 and 20 mg/L PHE were performed. Embryos were also exposed to the binominal combinations: 0.015 mg/L NPls + 2 mg/L PHE, 0.015 mg/L NPls + 20 mg/L PHE, 1.5 mg/L NPls + 2 mg/L PHE and 1.5 mg/L NPls + 20 mg/L PHE. Due to the low solubility of PHE in water, a solvent control was performed (0.01% acetone). PHE was quantified. Mortality, heartbeat and hatching rate, malformations appearance, locomotor behavior and biomarkers related to oxidative stress, neurotransmission and energy budgets were analyzed. During 96 h, NPls and PHE single and combined exposures did not affect embryos development. After 120 h, NPls induced hyperactivity and PHE induced hypoactivity. After 96 h, NPls increased catalase activity and PHE increased glutathione S-transferases activity. On the combination 0.015 mg/L NPls + 20 mg/L PHE, hyperactivity behavior was found, similar to 0.015 mg/L NPls, and cholinesterase activity was inhibited. Additionally, the combination 1.5 mg/L NPls + 20 mg/L PHE increased both catalase and glutathione S-transferases activities. The combination NPls with PHE affected more biochemical endpoints than the single exposures, showing the higher effect of the binominal combinations. Dissimilar interactions effects - no interaction, synergism and antagonism - between NPls and PHE were found. The current study shows that the effects of NPls on bioavailability and toxicity of other contaminants (e.g. PHE) cannot be ignored during the assessment of NPls environmental behavior and risks.
Collapse
Affiliation(s)
- Joana Santos
- Biology Department & CESAM, University of Aveiro, 3810-193, Aveiro, Portugal.
| | - Angela Barreto
- Biology Department & CESAM, University of Aveiro, 3810-193, Aveiro, Portugal.
| | - Érika M L Sousa
- Chemistry Department & CESAM, University of Aveiro, 3810-193, Aveiro, Portugal.
| | - Vânia Calisto
- Chemistry Department & CESAM, University of Aveiro, 3810-193, Aveiro, Portugal.
| | - Mónica J B Amorim
- Biology Department & CESAM, University of Aveiro, 3810-193, Aveiro, Portugal.
| | - Vera L Maria
- Biology Department & CESAM, University of Aveiro, 3810-193, Aveiro, Portugal.
| |
Collapse
|
8
|
Co-Exposure of Nanopolystyrene and Other Environmental Contaminants-Their Toxic Effects on the Survival and Reproduction of Enchytraeus crypticus. TOXICS 2022; 10:toxics10040193. [PMID: 35448454 PMCID: PMC9032828 DOI: 10.3390/toxics10040193] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 04/06/2022] [Accepted: 04/12/2022] [Indexed: 02/06/2023]
Abstract
Plastics in all shapes and sizes have become widespread across ecosystems due to intense anthropogenic use. As such, they can interact with other contaminants that accumulate in the terrestrial environment, such as pharmaceuticals, metals or nanomaterials (NMs). These interactions can potentiate combined toxic effects in the exposed soil organisms, with hazardous long-term consequences to the full ecosystem. In the present study, a terrestrial model species, Enchytraeus crypticus (oligochaeta), was exposed through contaminated soil with nanopolystyrene (representative of nanoplastics (NPls)), alone and in combination with diphenhydramine (DPH, representative of pharmaceuticals), silver nitrate (AgNO3, representative of metals) and vanadium nanoparticles (VNPs, representative of NMs). AgNO3 and VNPs decreased E. crypticus reproduction at 50 mg/kg, regardless of the presence of NPls. Moreover, at the same concentration, both single and combined VNP exposures decreased the E. crypticus survival. On the other hand, DPH and NPls individually caused no effect on organisms' survival and reproduction. However, the combination of DPH (10 and 50 mg/kg) with 300 mg NPls/kg induced a decrease in reproduction, showing a relevant interaction between the two contaminants (synergism). Our findings indicate that the NPls can play a role as vectors for other contaminants and can potentiate the effects of pharmaceuticals, such as DPH, even at low and sub-lethal concentrations, highlighting the negative impact of mixtures of contaminants (including NPls) on soil systems.
Collapse
|
9
|
Stapleton PA. Micro- and nanoplastic transfer, accumulation, and toxicity in humans. CURRENT OPINION IN TOXICOLOGY 2021; 28:62-69. [PMID: 34901583 DOI: 10.1016/j.cotox.2021.10.001] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Plastics impact our daily lives. Unfortunately, it is the disuse and disposal of these items that may affect us the greatest. Plastic micro- and nanosized particles, likely from bulk degradation, have been identified in air pollution and water sources. Recently, plastic particles have also been identified in consumable products. The purpose of this review is to identify the likely routes of human exposure, the toxicological outcomes and concerns currently reported, and to provide some considerations for future assessments.
Collapse
Affiliation(s)
- P A Stapleton
- Environmental and Occupational Health Sciences Institute, 170 Frelinghuysen Rd., Piscataway, NJ 08854, USA.,Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers University, 160 Frelinghuysen Rd., Piscataway, NJ 08854, USA
| |
Collapse
|