1
|
Yan X, Kiki C, Xu Z, Manzi HP, Rashid A, Chen T, Sun Q. Comparative growth inhibition of 6PPD and 6PPD-Q on microalgae Selenastrum capricornutum, with insights into 6PPD-induced phototoxicity and oxidative stress. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 957:177627. [PMID: 39579899 DOI: 10.1016/j.scitotenv.2024.177627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Revised: 10/24/2024] [Accepted: 11/16/2024] [Indexed: 11/25/2024]
Abstract
Widespread environmental detection of tire additive N-(1,3-dimethylbutyl)-N'-phenyl-p-phenylenediamine (6PPD) and its toxic metabolite 6PPD-Q has raised great concerns for their potential impact on aquatic biota. This study investigated the effects of 6PPD and 6PPD-Q on the model green microalgae (Selenastrum capricornutum). Results showed that 6PPD at the concentrations of 1-5 mg·L-1 stimulated S. capricornutum growth, while higher concentrations (10-50 mg·L-1) inhibited growth with an IC50(96 h) of 8.78 mg·L-1. However, at concentrations up to 10 mg·L-1, no toxicity was observed for S. capricornutum exposed to 6PPD-Q. Under the stress of 6PPD, S. capricornutum exhibited increased cellular membrane permeability and cell wall rupture, indicating structural damage to the algae cell. Microalgal oxidative stress was induced through the accumulation of reactive oxygen species (ROS), reaching levels of 1.65-5.29 times higher than the non-exposure cells, which altered enzymatic activities including superoxide dismutase (SOD) and catalase. Exposure to 6PPD at concentrations of 10-50 mg·L-1 resulted in photosynthetic toxicity as evidenced by decreased Chlorophyll a (Chl a) content and adverse effects on chlorophyll fluorescence parameters, such as maximum photochemical quantum yield (Fv/Fm), PSII (photosystem II) effective quantum yield [Y(II)], and photosynthetic electron transfer rate (ETR). While the concentrations employed may be higher than those typically found in the environment, this study uncovers a significant finding that 6PPD may demonstrate even greater toxicity to microalgae than its derivative, 6PPD-Q. This underscores the need for further investigation into the ecological risks of 6PPD, particularly in the context of primary producers like microalgae.
Collapse
Affiliation(s)
- Xiaopeng Yan
- CAS Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, China; University of Chinese Academy of Sciences, China
| | - Claude Kiki
- CAS Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, China
| | - Zijie Xu
- CAS Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, China; University of Chinese Academy of Sciences, China
| | - Habasi Patrick Manzi
- CAS Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, China; University of Chinese Academy of Sciences, China
| | - Azhar Rashid
- Department of Environmental Sciences, The University of Haripur, Haripur 22620, Pakistan
| | - Tianyuan Chen
- CAS Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, China; University of Chinese Academy of Sciences, China
| | - Qian Sun
- CAS Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, China.
| |
Collapse
|
2
|
Wang R, Zhu W, Sun J, Zhang C, Dai H, Qu T. Novel three-stage microalgal cultivation system for lipid production utilizing nutrients derived from refinery waste. BIORESOURCE TECHNOLOGY 2024; 414:131623. [PMID: 39395602 DOI: 10.1016/j.biortech.2024.131623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 10/09/2024] [Accepted: 10/09/2024] [Indexed: 10/14/2024]
Abstract
The pollution and transformation of refineries are receiving increasing attention. The carbonic anhydrase in Tetradesmus obliquus was found exhibiting a hysteresis phenomenon in response to periodic changes in the composition of external carbon sources, with a surge in inorganic carbon concentration stressing the carbonic anhydrase activity to increase by 6-9 times. On this basis, a novel three-stage culture system of T. obliquus was proposed, which mainly uses refinery waste as the nutrients. By controlling the nutrient content in the environment, especially the composition of carbon sources, microalgae could sequentially complete rapid biomass accumulation, efficient inorganic carbon assimilation, and oil production. Compared to a single-environment culture system, the biomass yield increased by 1.34 times, the oil content increased by more than 6%, and the oil productivity increased by 2.08 times. Above findings may lay a partial theoretical foundation for the future evolution of traditional refineries towards "fossil-algal-biomass" hybrid refineries.
Collapse
Affiliation(s)
- Ruochen Wang
- College of environmental and chemical engineering, Jiangsu University of Science and Technology, Zhenjiang 212114, China; College of Environment, Hohai University, Nanjing 210098, China; Center for Taihu basin, Institute of Water Science and Technology, Hohai University, Nanjing 211111, China; National Engineering Research Center of Water Resources Efficient Utilization and Engineering Safety, Hohai University, Nanjing 211111, China.
| | - Wei Zhu
- College of Environment, Hohai University, Nanjing 210098, China; Center for Taihu basin, Institute of Water Science and Technology, Hohai University, Nanjing 211111, China; National Engineering Research Center of Water Resources Efficient Utilization and Engineering Safety, Hohai University, Nanjing 211111, China
| | - JiPeng Sun
- College of Environment, Hohai University, Nanjing 210098, China; Center for Taihu basin, Institute of Water Science and Technology, Hohai University, Nanjing 211111, China; National Engineering Research Center of Water Resources Efficient Utilization and Engineering Safety, Hohai University, Nanjing 211111, China
| | - Chi Zhang
- College of Water Conservancy and Hydropower Engineering, Hohai University, Nanjing 210098, China
| | - Hongliang Dai
- College of environmental and chemical engineering, Jiangsu University of Science and Technology, Zhenjiang 212114, China
| | - Tiantian Qu
- SINOPEC Jinling Company, Water Treatment Department, Nanjing 210033, China
| |
Collapse
|
3
|
Lee H, Nguyen DV, Wu D, De Saeger J, Park M, Lee SD, Yu Y, Lee J, Lee C, Han T, Park J. A rapid and multi-endpoint ecotoxicological test using Mychonastes afer for efficient screening of metals and herbicides. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 281:116652. [PMID: 38941657 DOI: 10.1016/j.ecoenv.2024.116652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 06/22/2024] [Accepted: 06/26/2024] [Indexed: 06/30/2024]
Abstract
Microalgal growth-based tests are international standards for ecotoxicity assessment; however, their long exposure times, large sample volumes, and reliance on a single growth-endpoint make them inadequate for rapid toxicity screening. Here, we aimed to develop a rapid and simple ecotoxicological test using the fast-growing green alga Mychonastes afer, with multiple endpoints-growth, lipid content, and photosynthesis. We exposed M. afer to two metals-silver and copper-and two herbicides-atrazine and diuron-for 24 h and identified the most sensitive and reliable endpoints for each toxicant: the maximum electron transport rate (ETRmax) for Ag, Cu and atrazine, and the lipid content for diuron. Lipid content was found to be both a sensitive and reliable biomarker, meeting the effluent limit guidelines in both the Republic of Korea and the USA. The sensitivity of M. afer to Ag and atrazine also closely matched the HC5 values derived from the species sensitivity distribution approach, confirming its reliability for setting regulatory concentrations of these contaminants. Our calculated predicted no-effect concentration (PNEC) values were similar to established European Union PNECs for Ag, Cu, atrazine, and diuron, underlining the utility of these biological endpoints for ecological risk assessment and regulatory decision making. This method required lower sample volume (2 mL vs 100 mL) and exposure time (24 h vs 72-120 h) than conventional green algal tests, and eliminated the need for labour-intensive cell counting, expensive equipment, and chlorophyll fluorescence measurement expertise. Overall, this M. afer test can be a valuable tool for the rapid screening of wastewater for metals and herbicides, contributing to environmental protection and management practices.
Collapse
Affiliation(s)
- Hojun Lee
- Bio Environmental Science and Technology (BEST) Lab, Ghent University Global Campus, 119-5, Songdomunhwa-ro, Incheon 21985, Republic of Korea
| | - Duc-Viet Nguyen
- Center for Environmental and Energy Research, Ghent University Global Campus, 119-5, Songdomunhwa-ro, Incheon 21985, Republic of Korea
| | - Di Wu
- Center for Environmental and Energy Research, Ghent University Global Campus, 119-5, Songdomunhwa-ro, Incheon 21985, Republic of Korea
| | - Jonas De Saeger
- Bio Environmental Science and Technology (BEST) Lab, Ghent University Global Campus, 119-5, Songdomunhwa-ro, Incheon 21985, Republic of Korea
| | - Mirye Park
- Protist Research Team, Microbial Research Department, Nakdonggang National Institute of Biological Resources, 137, Donam-2-gil, Sangju-si, Gyeongsangbuk-do 37242, Republic of Korea
| | - Sang Deuk Lee
- Protist Research Team, Microbial Research Department, Nakdonggang National Institute of Biological Resources, 137, Donam-2-gil, Sangju-si, Gyeongsangbuk-do 37242, Republic of Korea
| | - Youngseock Yu
- Bio Environmental Science and Technology (BEST) Lab, Ghent University Global Campus, 119-5, Songdomunhwa-ro, Incheon 21985, Republic of Korea
| | - Jaeyoung Lee
- Bio Environmental Science and Technology (BEST) Lab, Ghent University Global Campus, 119-5, Songdomunhwa-ro, Incheon 21985, Republic of Korea
| | - Chaeyeon Lee
- Bio Environmental Science and Technology (BEST) Lab, Ghent University Global Campus, 119-5, Songdomunhwa-ro, Incheon 21985, Republic of Korea
| | - Taejun Han
- Bio Environmental Science and Technology (BEST) Lab, Ghent University Global Campus, 119-5, Songdomunhwa-ro, Incheon 21985, Republic of Korea; Department of Animal Sciences and Aquatic Ecology, Ghent University, Coupure Links 653-Block F, Gent B-9000, Belgium
| | - Jihae Park
- Bio Environmental Science and Technology (BEST) Lab, Ghent University Global Campus, 119-5, Songdomunhwa-ro, Incheon 21985, Republic of Korea; Center for Environmental and Energy Research, Ghent University Global Campus, 119-5, Songdomunhwa-ro, Incheon 21985, Republic of Korea; Department of Animal Sciences and Aquatic Ecology, Ghent University, Coupure Links 653-Block F, Gent B-9000, Belgium.
| |
Collapse
|
4
|
Irfan M, Mészáros I, Szabó S, Oláh V. Comparative Phytotoxicity of Metallic Elements on Duckweed Lemna gibba L. Using Growth- and Chlorophyll Fluorescence Induction-Based Endpoints. PLANTS (BASEL, SWITZERLAND) 2024; 13:215. [PMID: 38256768 PMCID: PMC10821045 DOI: 10.3390/plants13020215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 01/06/2024] [Accepted: 01/07/2024] [Indexed: 01/24/2024]
Abstract
In this study, we exposed a commonly used duckweed species-Lemna gibba L.-to twelve environmentally relevant metals and metalloids under laboratory conditions. The phytotoxic effects were evaluated in a multi-well-plate-based experimental setup by means of the chlorophyll fluorescence imaging method. This technique allowed the simultaneous measuring of the growth and photosynthetic parameters in the same samples. The inhibition of relative growth rates (based on frond number and area) and photochemical efficiency (Fv/Fo and Y(II)) were both calculated from the obtained chlorophyll fluorescence images. In the applied test system, growth-inhibition-based phytotoxicity endpoints proved to be more sensitive than chlorophyll-fluorescence-based ones. Frond area growth inhibition was the most responsive parameter with a median EC50 of 1.75 mg L-1, while Fv/Fo, the more responsive chlorophyll-fluorescence-based endpoint, resulted in a 5.34 mg L-1 median EC50 for the tested metals. Ag (EC50 0.005-1.27 mg L-1), Hg (EC50 0.24-4.87 mg L-1) and Cu (EC50 0.37-1.86 mg L-1) were the most toxic elements among the tested ones, while As(V) (EC50 47.15-132.18 mg L-1), Cr(III) (EC50 6.22-19.92 mg L-1), Se(VI) (EC50 1.73-10.39 mg L-1) and Zn (EC50 3.88-350.56 mg L-1) were the least toxic ones. The results highlighted that multi-well-plate-based duckweed phytotoxicity assays may reduce space, time and sample volume requirements compared to the standard duckweed growth inhibition tests. These benefits, however, come with lowered test sensitivity. Our multi-well-plate-based test setup resulted in considerably higher median EC50 (3.21 mg L-1) for frond-number-based growth inhibition than the 0.683 mg L-1 median EC50 derived from corresponding data from the literature with standardized Lemna-tests. Under strong acute phytotoxicity, frond parts with impaired photochemical functionality may become undetectable by chlorophyll fluorometers. Consequently, the plant parts that are still detectable display a virtually higher average photosynthetic performance, leading to an underestimation of phytotoxicity. Nevertheless, multi-well-plate-based duckweed phytotoxicity assays, combined with chlorophyll fluorescence imaging, offer definite advantages in the rapid screening of large sample series or multiple species/clones. As chlorophyll fluorescence images provide information both on the photochemical performance of the test plants and their morphology, a joint analysis of the two endpoint groups is recommended in multi-well-plate-based duckweed phytotoxicity assays to maximize the information gained from the tests.
Collapse
Affiliation(s)
- Muhammad Irfan
- Department of Botany, Institute of Biology and Ecology, Faculty of Science and Technology, University of Debrecen, Egyetem Square 1, H-4032 Debrecen, Hungary; (M.I.); (I.M.)
| | - Ilona Mészáros
- Department of Botany, Institute of Biology and Ecology, Faculty of Science and Technology, University of Debrecen, Egyetem Square 1, H-4032 Debrecen, Hungary; (M.I.); (I.M.)
| | - Sándor Szabó
- Department of Biology, Institute of Environmental Sciences, University of Nyiregyhaza, H-4401 Nyiregyhaza, Hungary
| | - Viktor Oláh
- Department of Botany, Institute of Biology and Ecology, Faculty of Science and Technology, University of Debrecen, Egyetem Square 1, H-4032 Debrecen, Hungary; (M.I.); (I.M.)
| |
Collapse
|
5
|
Das S, Lizon F, Gevaert F, Bialais C, Duong G, Ouddane B, Souissi S. Assessing indicators of arsenic toxicity using variable fluorescence in a commercially valuable microalgae: Physiological and toxicological aspects. JOURNAL OF HAZARDOUS MATERIALS 2023; 452:131215. [PMID: 37001210 DOI: 10.1016/j.jhazmat.2023.131215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 02/17/2023] [Accepted: 03/13/2023] [Indexed: 05/03/2023]
Abstract
Indicators signaling Arsenic (As) stress through physiology of microalgae using non-destructive methods like variable fluorescence are rare but requisite. This study reports stress markers indicating arsenic (As) toxicity (in two concentrations 11.25 µg/L and 22.5 µg/L compared to a control) exposed to a microalga (Diacronema lutheri), using fast repetition rate fluorometry (FRRf). Growth and physiological parameters such as cell density, chl a and the maximum quantum yield Fv/Fm showed coherence and impeded after the exponential phase (day 9 - day 12) in As treatments compared to the control (p < 0.05). On contrary photo-physiological constants were elevated showing higher optical (aLHII) and functional [Sigma (σPSII)] absorption cross-section for the As treatments (p < 0.05) further implying the lack of biomass production yet an increase in light absorption. In addition, As exposure increased the energy dissipation by heat (NPQ-NSV) showing a strong relationship with the de-epoxidation ratio (DR) involving photoprotective pigments. Total As bioaccumulation by D. lutheri showed a strong affinity with Fe adsorption throughout the algal growth curve. This study suggests some prompt photo-physiological proxies signaling As contamination and endorsing its usefulness in risk assessments, given the high toxicity and ubiquitous presence of As in the ecosystem.
Collapse
Affiliation(s)
- Shagnika Das
- Univ. Lille, CNRS, Univ. Littoral Côte d'Opale, IRD, UMR 8187 - LOG - Laboratoire d'Océanologie et de Géosciences, Station marine de Wimereux, F-59000 Lille, France; Amity Institute of Marine Science and Technology, Amity Institute of Biotechnology, Amity University, Noida, UP, India.
| | - Fabrice Lizon
- Univ. Lille, CNRS, Univ. Littoral Côte d'Opale, IRD, UMR 8187 - LOG - Laboratoire d'Océanologie et de Géosciences, Station marine de Wimereux, F-59000 Lille, France
| | - François Gevaert
- Univ. Lille, CNRS, Univ. Littoral Côte d'Opale, IRD, UMR 8187 - LOG - Laboratoire d'Océanologie et de Géosciences, Station marine de Wimereux, F-59000 Lille, France
| | - Capucine Bialais
- Univ. Lille, CNRS, Univ. Littoral Côte d'Opale, IRD, UMR 8187 - LOG - Laboratoire d'Océanologie et de Géosciences, Station marine de Wimereux, F-59000 Lille, France
| | - Gwendoline Duong
- Univ. Lille, CNRS, Univ. Littoral Côte d'Opale, IRD, UMR 8187 - LOG - Laboratoire d'Océanologie et de Géosciences, Station marine de Wimereux, F-59000 Lille, France
| | - Baghdad Ouddane
- Univ. Lille, CNRS, UMR 8516 - LASIRE - Equipe Physico-chimie de l'Environnement, Bâtiment C8, F-59000 Lille, France
| | - Sami Souissi
- Univ. Lille, CNRS, Univ. Littoral Côte d'Opale, IRD, UMR 8187 - LOG - Laboratoire d'Océanologie et de Géosciences, Station marine de Wimereux, F-59000 Lille, France
| |
Collapse
|
6
|
Hu L, Liang T, Yin G, Zhao N. Quantitative Representation of Water Quality Biotoxicity by Algal Photosynthetic Inhibition. TOXICS 2023; 11:493. [PMID: 37368593 DOI: 10.3390/toxics11060493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 05/14/2023] [Accepted: 05/29/2023] [Indexed: 06/29/2023]
Abstract
The method based on the photosynthetic inhibition effect of algae offers the advantages of swift response and straightforward measurement. Nonetheless, this effect is influenced by both the environment and the state of the algae themselves. Additionally, a single parameter is vulnerable to uncertainties, rendering the measurement accuracy and stability inadequate. This paper employed currently utilized photosynthetic fluorescence parameters, including Fv/Fm(maximum photochemical quantum yield), Performance Indicator (PIabs), Comprehensive Parameter Index (CPI) and Performance Index of Comprehensive Toxicity Effect (PIcte), as quantitative toxicity characteristic parameters. The paper compared the univariate curve fitting results with the multivariate data-driven model results and investigated the effectiveness of Back Propagation(BP) Neural Network and Support Vector Machine for Regression (SVR) models to enhance the accuracy and stability of toxicity detection. Using Dichlorophenyl Dimethylurea (DCMU) samples as an example, the mean Relative Root Mean Square Error (RRMSE) corresponding to the optimal parameter PIcte for the dose-effect curve fitting was 1.246 in the concentration range of 1.25-200 µg/L. On the other hand, the mean RRMSEs corresponding to the results of the BP neural network and SVR models were 0.506 and 0.474, respectively. Notably, BP neural network exhibited excellent prediction accuracy in the medium-high concentration range of 7.5-200 µg/L, with a mean RRSME of only 0.056. Regarding the stability of the results, the mean Relative Standard Deviation (RSD) of the univariate dose-effect curve results was 15.1% within the concentration range of 50-200 µg/L. In contrast, the mean RSDs for both BP neural network and SVR results were less than 5%. In the concentration range of 1.25-200 µg/L, the mean RSDs were 6.1% and 16.5%, with the BP neural network performing well. The experimental results of Atrazine were analyzed to further validate the effectiveness of the BP neural network in improving the accuracy and stability of results. These findings provided valuable insights for the development of biotoxicity detection by using the algae photosynthetic inhibition method.
Collapse
Affiliation(s)
- Li Hu
- School of Physics and Material Engineering, Hefei Normal University, Hefei 230601, China
- Key Laboratory of Environmental Optics and Technology, Anhui Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Hefei 230031, China
| | - Tianhong Liang
- Key Laboratory of Environmental Optics and Technology, Anhui Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Hefei 230031, China
| | - Gaofang Yin
- Key Laboratory of Environmental Optics and Technology, Anhui Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Hefei 230031, China
| | - Nanjing Zhao
- Key Laboratory of Environmental Optics and Technology, Anhui Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Hefei 230031, China
| |
Collapse
|
7
|
Gan T, Yin G, Zhao N, Tan X, Wang Y. A Sensitive Response Index Selection for Rapid Assessment of Heavy Metals Toxicity to the Photosynthesis of Chlorella pyrenoidosa Based on Rapid Chlorophyll Fluorescence Induction Kinetics. TOXICS 2023; 11:toxics11050468. [PMID: 37235282 DOI: 10.3390/toxics11050468] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 05/11/2023] [Accepted: 05/17/2023] [Indexed: 05/28/2023]
Abstract
Heavy metals as toxic pollutants have important impacts on the photosynthesis of microalgae, thus seriously threatening the normal material circulation and energy flow of the aquatic ecosystem. In order to rapidly and sensitively detect the toxicity of heavy metals to microalgal photosynthesis, in this study, the effects of four typical toxic heavy metals, chromium (Cr(VI)), cadmium (Cd), mercury (Hg), and copper (Cu), on nine photosynthetic fluorescence parameters (φPo, ΨEo, φEo, δRo, ΨRo, φRo, FV/FO, PIABS, and Sm) derived from the chlorophyll fluorescence rise kinetics (OJIP) curve of microalga Chlorella pyrenoidosa, were investigated based on the chlorophyll fluorescence induction kinetics technique. By analyzing the change trends of each parameter with the concentrations of the four heavy metals, we found that compared with other parameters, φPo (maximum photochemical quantum yield of photosystem II), FV/FO (photochemical parameter of photosystem II), PIABS (photosynthetic performance index), and Sm (normalized area of the OJIP curve) demonstrated the same monotonic change characteristics with an increase in concentration of each heavy metal, indicating that these four parameters could be used as response indexes to quantitatively detect the toxicity of heavy metals. By further comparing the response performances of φPo, FV/FO, PIABS, and Sm to Cr(VI), Cd, Hg, and Cu, the results indicated that whether it was analyzed from the lowest observed effect concentration (LOEC), the influence degree by equal concentration of heavy metal, the 10% effective concentration (EC10), or the median effective concentration (EC50), the response sensitivities of PIABS to each heavy metal were all significantly superior to those of φRo, FV/FO, and Sm. Thus, PIABS was the most suitable response index for sensitive detection of heavy metals toxicity. Using PIABS as a response index to compare the toxicity of Cr(VI), Cd, Hg, and Cu to C. pyrenoidosa photosynthesis within 4 h by EC50 values, the results indicated that Hg was the most toxic, while Cr(VI) toxicity was the lowest. This study provides a sensitive response index for rapidly detecting the toxicity of heavy metals to microalgae based on the chlorophyll fluorescence induction kinetics technique.
Collapse
Affiliation(s)
- Tingting Gan
- Key Laboratory of Environmental Optics and Technology, Anhui Institute of Optics and Fine Mechanics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
- Science Island Branch of Graduate School, University of Science and Technology of China, Hefei 230026, China
- Key Laboratory of Optical Monitoring Technology for Environment of Anhui Province, Hefei 230031, China
| | - Gaofang Yin
- Key Laboratory of Environmental Optics and Technology, Anhui Institute of Optics and Fine Mechanics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
- Science Island Branch of Graduate School, University of Science and Technology of China, Hefei 230026, China
- Key Laboratory of Optical Monitoring Technology for Environment of Anhui Province, Hefei 230031, China
| | - Nanjing Zhao
- Key Laboratory of Environmental Optics and Technology, Anhui Institute of Optics and Fine Mechanics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
- Science Island Branch of Graduate School, University of Science and Technology of China, Hefei 230026, China
- Key Laboratory of Optical Monitoring Technology for Environment of Anhui Province, Hefei 230031, China
| | - Xiaoxuan Tan
- Key Laboratory of Environmental Optics and Technology, Anhui Institute of Optics and Fine Mechanics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
- Science Island Branch of Graduate School, University of Science and Technology of China, Hefei 230026, China
- Key Laboratory of Optical Monitoring Technology for Environment of Anhui Province, Hefei 230031, China
| | - Ying Wang
- Key Laboratory of Environmental Optics and Technology, Anhui Institute of Optics and Fine Mechanics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
- Science Island Branch of Graduate School, University of Science and Technology of China, Hefei 230026, China
- Key Laboratory of Optical Monitoring Technology for Environment of Anhui Province, Hefei 230031, China
| |
Collapse
|
8
|
Lysenko V, D. Rajput V, Kumar Singh R, Guo Y, Kosolapov A, Usova E, Varduny T, Chalenko E, Yadronova O, Dmitriev P, Zaruba T. Chlorophyll fluorometry in evaluating photosynthetic performance: key limitations, possibilities, perspectives and alternatives. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2022; 28:2041-2056. [PMID: 36573148 PMCID: PMC9789293 DOI: 10.1007/s12298-022-01263-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 10/25/2022] [Accepted: 12/06/2022] [Indexed: 06/17/2023]
Abstract
Non-destructive methods for the assessment of photosynthetic parameters of plants are widely applied to evaluate rapidly the photosynthetic performance, plant health, and shifts in plant productivity induced by environmental and cultivation conditions. Most of these methods are based on measurements of chlorophyll fluorescence kinetics, particularly on pulse modulation (PAM) fluorometry. In this paper, fluorescence methods are critically discussed in regard to some their possibilities and limitations inherent to vascular plants and microalgae. Attention is paid to the potential errors related to the underestimation of thylakoidal cyclic electron transport and anoxygenic photosynthesis. PAM-methods are also observed considering the color-addressed measurements. Photoacoustic methods are discussed as an alternative and supplement to fluorometry. Novel Fourier modifications of PAM-fluorometry and photoacoustics are noted as tools allowing simultaneous application of a dual or multi frequency measuring light for one sample.
Collapse
Affiliation(s)
- Vladimir Lysenko
- Academy of Biology and Biotechnology, Southern Federal University, Rostov-on-Don, Russia
| | - Vishnu D. Rajput
- Academy of Biology and Biotechnology, Southern Federal University, Rostov-on-Don, Russia
| | - Rupesh Kumar Singh
- Centre of Molecular and Environmental Biology, Department of Biology, Campus of Gualtar, University of Minho, Braga, Portugal
| | - Ya Guo
- School of IoT Engineering, Jiangnan University, Wuxi, China
| | - Alexey Kosolapov
- Russian Research Institute for the Integrated Use and Protection of Water Resources, Rostov-on-Don, Russia
| | - Elena Usova
- Russian Research Institute for the Integrated Use and Protection of Water Resources, Rostov-on-Don, Russia
| | - Tatyana Varduny
- Academy of Biology and Biotechnology, Southern Federal University, Rostov-on-Don, Russia
| | - Elizaveta Chalenko
- Academy of Biology and Biotechnology, Southern Federal University, Rostov-on-Don, Russia
| | - Olga Yadronova
- Academy of Biology and Biotechnology, Southern Federal University, Rostov-on-Don, Russia
| | - Pavel Dmitriev
- Academy of Biology and Biotechnology, Southern Federal University, Rostov-on-Don, Russia
| | - Tatyana Zaruba
- Academy of Biology and Biotechnology, Southern Federal University, Rostov-on-Don, Russia
| |
Collapse
|
9
|
Basha NJ. Therapeutic Efficacy of Benzimidazole and Its Analogs: An Update. Polycycl Aromat Compd 2022. [DOI: 10.1080/10406638.2022.2118334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
Affiliation(s)
- N. Jeelan Basha
- Department of Chemistry, Indian Academy Degree College-Autonomous Bengaluru, India
| |
Collapse
|