1
|
Lu T, Wang XM, Chen PX, Xi J, Yang HB, Zheng WF, Zhao YX. Adaptative responses of Neurospora crassa by histidine kinases upon the attack of the arthropod Sinella curviseta. Curr Genet 2024; 70:16. [PMID: 39276284 DOI: 10.1007/s00294-024-01302-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 08/22/2024] [Accepted: 08/26/2024] [Indexed: 09/16/2024]
Abstract
Histidine kinases (HKs) are important sensor proteins in fungi and play an essential role in environmental adaptation. However, the mechanisms by which fungi sense and respond to fungivores attack via HKs are not fully understood. In this study, we utilized Neurospora crassa to investigate the involvement of HKs in responding to fungivores attack. We found that the 11 HKs in N. crassa not only affected the growth and development, but also led to fluctuations in antioxidant production. Ten mutants in the genes encoding HKs (except ∆phy1) showed increased production of reactive oxygen species (ROS), especially upon Sinella curviseta attack. The ROS burst triggered changes in conidia and perithecial beaks formation, as well as accumulation of β-glucan, ergothioneine, ergosterol, and carotenoids. β-glucan was increased in ∆hk9, ∆os1, ∆hcp1, ∆nik2, ∆sln1, ∆phy1 and ∆phy2 mutants compared to the wild-type strain. In parallel, ergothioneine accumulation was improved in ∆phy1 and ∆hk16 mutants and further increased upon attack, except in ∆os1 and ∆hk16 mutants. Additionally, fungivores attack stimulated ergosterol and dehydroergosterol production in ∆hk9 and ∆os1 mutants. Furthermore, deletion of these genes altered carotenoid accumulation, with wild-type strain, ∆hk9, ∆os1, ∆hcp1, ∆sln1, ∆phy2, and ∆dcc1mutants showing an increase in carotenoids upon attack. Taken together, HKs are involved in regulating the production of conidia and antioxidants. Thus, HKs may act as sensors of fungivores attack and effectively improve the adaptive capacity of fungi to environmental stimuli.
Collapse
Affiliation(s)
- Ting Lu
- School of Life Sciences, Jiangsu Normal University, Xuzhou, China
| | - Xiao-Meng Wang
- School of Life Sciences, Jiangsu Normal University, Xuzhou, China
| | - Peng-Xu Chen
- School of Life Sciences, Jiangsu Normal University, Xuzhou, China
| | - Juan Xi
- School of Life Sciences, Jiangsu Normal University, Xuzhou, China
| | - Han-Bing Yang
- School of Life Sciences, Jiangsu Normal University, Xuzhou, China
| | - Wei-Fa Zheng
- School of Life Sciences, Jiangsu Normal University, Xuzhou, China.
| | - Yan-Xia Zhao
- School of Life Sciences, Jiangsu Normal University, Xuzhou, China.
| |
Collapse
|
2
|
Schamann A, Soukup ST, Geisen R, Kulling S, Schmidt-Heydt M. Comparative analysis of the genomes and aflatoxin production patterns of three species within the Aspergillus section Flavi reveals an undescribed chemotype and habitat-specific genetic traits. Commun Biol 2024; 7:1134. [PMID: 39271769 PMCID: PMC11399119 DOI: 10.1038/s42003-024-06738-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 08/14/2024] [Indexed: 09/15/2024] Open
Abstract
Aflatoxins are the most dangerous mycotoxins for food safety. They are mainly produced by Aspergillus flavus, A. parasiticus, and A. minisclerotigenes. The latter, an understudied species, was the main culprit for outbreaks of fatal aflatoxicosis in Kenya in the past. To determine specific genetic characteristics of these Aspergillus species, their genomes are comparatively analyzed. Differences reflecting the typical habitat are reported, such as an increased number of carbohydrate-active enzymes, including enzymes for lignin degradation, in the genomes of A. minisclerotigenes and A. parasiticus. Further, variations within the aflatoxin gene clusters are described, which are related to different chemotypes of aflatoxin biosynthesis. These include a substitution within the aflL gene of the A. parasiticus isolate, which leads to the translation of a stop codon, thereby switching off the production of the group 1 aflatoxins B1 and G1. In addition, we demonstrate that the inability of the A. minisclerotigenes isolates to produce group G aflatoxins is associated with a 2.2 kb deletion within the aflF and aflU genes. These findings reveal a relatively high genetic homology among the three Aspergillus species investigated. However, they also demonstrate consequential genetic differences that have an important impact on risk-assessment and food safety.
Collapse
Affiliation(s)
- Alexandra Schamann
- Department of Safety and Quality of Fruit and Vegetables, Max Rubner-Institut, Federal Research Institute of Nutrition and Food, Karlsruhe, Germany
| | - Sebastian T Soukup
- Department of Safety and Quality of Fruit and Vegetables, Max Rubner-Institut, Federal Research Institute of Nutrition and Food, Karlsruhe, Germany
| | - Rolf Geisen
- Department of Safety and Quality of Fruit and Vegetables, Max Rubner-Institut, Federal Research Institute of Nutrition and Food, Karlsruhe, Germany
| | - Sabine Kulling
- Department of Safety and Quality of Fruit and Vegetables, Max Rubner-Institut, Federal Research Institute of Nutrition and Food, Karlsruhe, Germany
| | - Markus Schmidt-Heydt
- Department of Safety and Quality of Fruit and Vegetables, Max Rubner-Institut, Federal Research Institute of Nutrition and Food, Karlsruhe, Germany.
| |
Collapse
|
3
|
Wang X, Sahibzada KI, Du R, Lei Y, Wei S, Li N, Hu Y, Lv Y. Rhein Inhibits Cell Development and Aflatoxin Biosynthesis via Energy Supply Disruption and ROS Accumulation in Aspergillus flavus. Toxins (Basel) 2024; 16:285. [PMID: 39057925 PMCID: PMC11280830 DOI: 10.3390/toxins16070285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 06/16/2024] [Accepted: 06/21/2024] [Indexed: 07/28/2024] Open
Abstract
Aspergillus flavus and its carcinogenic secondary metabolites, aflatoxins, not only cause serious losses in the agricultural economy, but also endanger human health. Rhein, a compound extracted from the Chinese herbal medicine Rheum palmatum L. (Dahuang), exhibits good anti-inflammatory, anti-tumor, and anti-oxidative effects. However, its effect and underlying mechanisms against Aspergillus flavus have not yet been fully illustrated. In this study, we characterized the inhibition effect of rhein on A. flavus mycelial growth, sporulation, and aflatoxin B1 (AFB1) biosynthesis and the potential mechanism using RNA-seq analysis. The results indicate that A. flavus mycelial growth and AFB1 biosynthesis were significantly inhibited by 50 μM rhein, with a 43.83% reduction in colony diameter and 87.2% reduction in AFB1 production. The RNA-seq findings demonstrated that the differentially expressed genes primarily participated in processes such as spore formation and development, the maintenance of cell wall and membrane integrity, management of oxidative stress, the regulation of the citric acid cycle, and the biosynthesis of aflatoxin. Biochemical verification experiments further confirmed that 50 μM rhein effectively disrupted cell wall and membrane integrity and caused mitochondrial dysfunction through disrupting energy metabolism pathways, leading to decreased ATP synthesis and ROS accumulation, resulting in impaired aflatoxin biosynthesis. In addition, a pathogenicity test showed that 50 μM rhein inhibited A. flavus spore growth in peanut and maize seeds by 34.1% and 90.4%, while AFB1 biosynthesis was inhibited by 60.52% and 99.43%, respectively. In conclusion, this research expands the knowledge regarding the antifungal activity of rhein and provides a new strategy to mitigate A. flavus contamination.
Collapse
Affiliation(s)
- Xiaoyan Wang
- College of Biological Engineering, Henan University of Technology, Zhengzhou 450001, China; (X.W.); (K.I.S.); (R.D.); (Y.L.); (S.W.); (N.L.); (Y.H.)
| | - Kashif Iqbal Sahibzada
- College of Biological Engineering, Henan University of Technology, Zhengzhou 450001, China; (X.W.); (K.I.S.); (R.D.); (Y.L.); (S.W.); (N.L.); (Y.H.)
- Department of Health Professional Technologies, Faculty of Allied Health Sciences, The University of Lahore, Lahore 54570, Pakistan
| | - Ruibo Du
- College of Biological Engineering, Henan University of Technology, Zhengzhou 450001, China; (X.W.); (K.I.S.); (R.D.); (Y.L.); (S.W.); (N.L.); (Y.H.)
| | - Yang Lei
- College of Biological Engineering, Henan University of Technology, Zhengzhou 450001, China; (X.W.); (K.I.S.); (R.D.); (Y.L.); (S.W.); (N.L.); (Y.H.)
| | - Shan Wei
- College of Biological Engineering, Henan University of Technology, Zhengzhou 450001, China; (X.W.); (K.I.S.); (R.D.); (Y.L.); (S.W.); (N.L.); (Y.H.)
| | - Na Li
- College of Biological Engineering, Henan University of Technology, Zhengzhou 450001, China; (X.W.); (K.I.S.); (R.D.); (Y.L.); (S.W.); (N.L.); (Y.H.)
| | - Yuansen Hu
- College of Biological Engineering, Henan University of Technology, Zhengzhou 450001, China; (X.W.); (K.I.S.); (R.D.); (Y.L.); (S.W.); (N.L.); (Y.H.)
| | - Yangyong Lv
- College of Biological Engineering, Henan University of Technology, Zhengzhou 450001, China; (X.W.); (K.I.S.); (R.D.); (Y.L.); (S.W.); (N.L.); (Y.H.)
| |
Collapse
|
4
|
Ijaz MU, Ishtiaq A, Tahir A, Alvi MA, Rafique A, Wang P, Zhu GP. Antioxidant, anti-inflammatory, and anti-apoptotic effects of genkwanin against aflatoxin B 1-induced testicular toxicity. Toxicol Appl Pharmacol 2023; 481:116750. [PMID: 37980962 DOI: 10.1016/j.taap.2023.116750] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Revised: 10/30/2023] [Accepted: 11/02/2023] [Indexed: 11/21/2023]
Abstract
Aflatoxin B1 (AFB1) is the most hazardous aflatoxin that causes significant damage to the male reproductive system. Genkwanin (GNK) is a bioactive flavonoid that shows antioxidant and anti-inflammatory potential. Therefore, the current study was planned to evaluate the effects of GNK against AFB1-induced testicular toxicity. Forty-eight male rats were distributed into four groups (n = 12 rats). AFB1 (50 μg/kg) and GNK (20 mg/kg) were administered to the rats for eight weeks. Results of the current study revealed that AFB1 exposure induced adverse effects on the Nrf2/Keap1 pathway and reduced the expressions and activities of antioxidant enzymes. Additionally, it increased the levels of oxidative stress markers. Furthermore, expressions of steroidogenic enzymes were down-regulated by AFB1 intoxication. Besides, AFB1 exposure reduced the levels of gonadotropins and plasma testosterone, which subsequently reduced the epididymal sperm count, motility, and hypo-osmotic swelled (HOS) sperms, while increasing the number of dead sperms and causing morphological anomalies of the head, midpiece, and tail of the sperms. In addition, AFB1 decreased the activities of testicular function marker enzymes and the levels of inflammatory markers. Moreover, it severely affected the apoptotic profile by up-regulating the expressions of Bax and Casp3, while down-regulating the Bcl2 expression. Besides, AFB1 significantly damaged the histoarchitecture of testicular tissues. However, GNK treatment reversed all the AFB1-induced damages in the rats. Taken together, the current study reports the potential use of GNK as a therapeutic agent to prevent AFB1-induced testicular toxicity due to its antioxidant, anti-inflammatory, and anti-apoptotic properties.
Collapse
Affiliation(s)
- Muhammad Umar Ijaz
- Department of Zoology, Wildlife and Fisheries, University of Agriculture, Faisalabad, Pakistan.
| | - Ayesha Ishtiaq
- Anhui Provincial Key Laboratory of Molecular Enzymology and Mechanism of Major Diseases, Auhui Provincial Engineering Research Centre for Molecular Detection and Diagnostics, College of Life Sciences, Anhui Normal University, Wuhu, Anhui, China
| | - Arfa Tahir
- Department of Zoology, Wildlife and Fisheries, University of Agriculture, Faisalabad, Pakistan
| | - Mughees Aizaz Alvi
- Department of Clinical Medicine and Surgery, University of Agriculture, Faisalabad, Pakistan
| | - Azhar Rafique
- Department of Zoology, Government College University, Faisalabad, Pakistan
| | - Peng Wang
- Anhui Provincial Key Laboratory of Molecular Enzymology and Mechanism of Major Diseases, Auhui Provincial Engineering Research Centre for Molecular Detection and Diagnostics, College of Life Sciences, Anhui Normal University, Wuhu, Anhui, China
| | - Guo-Ping Zhu
- Anhui Provincial Key Laboratory of Molecular Enzymology and Mechanism of Major Diseases, Auhui Provincial Engineering Research Centre for Molecular Detection and Diagnostics, College of Life Sciences, Anhui Normal University, Wuhu, Anhui, China.
| |
Collapse
|
5
|
Jesmin R, Cary JW, Lebar MD, Majumdar R, Gummadidala PM, Dias T, Chandler S, Basu P, Decho AW, Keller NP, Chanda A. Vibrio gazogenes-dependent disruption of aflatoxin biosynthesis in Aspergillus flavus: the connection with endosomal uptake and hyphal morphogenesis. Front Microbiol 2023; 14:1208961. [PMID: 37744918 PMCID: PMC10516221 DOI: 10.3389/fmicb.2023.1208961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 08/07/2023] [Indexed: 09/26/2023] Open
Abstract
Aflatoxins, a family of fungal secondary metabolites, are toxic and carcinogenic compounds that pose an enormous threat to global food safety and agricultural sustainability. Specifically agricultural products in African, Southeast Asian and hot and humid regions of American countries suffer most damage from aflatoxin producing molds due to the ideal climate conditions promoting their growth. Our recent studies suggest that Vibrio gazogenes (Vg), an estuarine bacterium non-pathogenic to plants and humans, can significantly inhibit aflatoxin biosynthesis in the producers. In this study, we investigated the mechanism underlying Vg-dependent aflatoxin inhibition using the prominent aflatoxin producer, Aspergillus flavus. We show that aflatoxin inhibition upon Vg treatment was associated with fungal uptake of Vg-prodigiosin, a red pigment, which was consistently visible inside fungal hyphae during treatment. The association of prodigiosin with aflatoxin inhibition was further evident as Serratia marcescens, another prodigiosin producer, significantly inhibited aflatoxin, while non-producers like Escherichia coli, Staphylococcus aureus, Vibrio harveyi, and Vibrio fischeri did not. Also, pure prodigiosin significantly inhibited aflatoxin biosynthesis. Endocytosis inhibitors, filipin and natamycin, reduced the Vg-prodigiosin uptake by the fungus leading to a significant increase in aflatoxin production, suggesting that uptake is endocytosis-dependent. The Vg treatment also reduced hyphal fusion (>98% inhibition) and branching, which are both endosome-dependent processes. Our results, therefore, collectively support our theory that Vg-associated aflatoxin inhibition is mediated by an endocytosis-dependent uptake of Vg-prodigiosin, which possibly leads to a disruption of normal endosomal functions.
Collapse
Affiliation(s)
| | - Jeffrey W. Cary
- Food and Feed Safety Research Unit, USDA/ARS, Southern Regional Research Center, New Orleans, LA, United States
| | - Matthew D. Lebar
- Food and Feed Safety Research Unit, USDA/ARS, Southern Regional Research Center, New Orleans, LA, United States
| | - Rajtilak Majumdar
- Northwest Irrigation and Soils Research, United States Department of Agriculture, Kimberly, ID, United States
| | - Phani M. Gummadidala
- University of North Carolina School of Medicine, Chapell Hill, NC, United States
| | - Travis Dias
- University of South Carolina School of Medicine, Greenville, NC, United States
| | - Savannah Chandler
- Department of Environmental Health Sciences, University of South Carolina, Columbia, SC, United States
| | - Paramita Basu
- New York College of Podiatric Medicine, New York, NY, United States
| | - Alan W. Decho
- Department of Environmental Health Sciences, University of South Carolina, Columbia, SC, United States
| | - Nancy P. Keller
- Department of Medical Microbiology and Immunology, Department of Plant Pathology, University of Wisconsin-Madison, Madison, WI, United States
| | | |
Collapse
|
6
|
Yu W, Pei R, Zhou J, Zeng B, Tu Y, He B. Molecular regulation of fungal secondary metabolism. World J Microbiol Biotechnol 2023; 39:204. [PMID: 37209190 DOI: 10.1007/s11274-023-03649-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 05/15/2023] [Indexed: 05/22/2023]
Abstract
Many bioactive secondary metabolites synthesized by fungi have important applications in many fields, such as agriculture, food, medical and others. The biosynthesis of secondary metabolites is a complex process involving a variety of enzymes and transcription factors, which are regulated at different levels. In this review, we describe our current understanding on molecular regulation of fungal secondary metabolite biosynthesis, such as environmental signal regulation, transcriptional regulation and epigenetic regulation. The effects of transcription factors on the secondary metabolites produced by fungi were mainly introduced. It was also discussed that new secondary metabolites could be found in fungi and the production of secondary metabolites could be improved. We also highlight the importance of understanding the molecular regulation mechanisms to activate silent secondary metabolites and uncover their physiological and ecological functions. By comprehensively understanding the regulatory mechanisms involved in secondary metabolite biosynthesis, we can develop strategies to improve the production of these compounds and maximize their potential benefits.
Collapse
Affiliation(s)
- Wenbin Yu
- Jiangxi Key Laboratory of Bioprocess Engineering, College of Life Sciences, Jiangxi Science & Technology Normal University, Nanchang, 330013, Jiangxi, China
| | - Rongqiang Pei
- Jiangxi Key Laboratory of Bioprocess Engineering, College of Life Sciences, Jiangxi Science & Technology Normal University, Nanchang, 330013, Jiangxi, China
| | - Jingyi Zhou
- Zhanjiang Preschool Education College, Zhanjiang, 524084, Guangdong, China
| | - Bin Zeng
- Jiangxi Key Laboratory of Bioprocess Engineering, College of Life Sciences, Jiangxi Science & Technology Normal University, Nanchang, 330013, Jiangxi, China
- College of Pharmacy, Shenzhen Technology University, Shenzhen, 518000, Guangdong, China
| | - Yayi Tu
- Jiangxi Key Laboratory of Bioprocess Engineering, College of Life Sciences, Jiangxi Science & Technology Normal University, Nanchang, 330013, Jiangxi, China.
| | - Bin He
- Jiangxi Key Laboratory of Bioprocess Engineering, College of Life Sciences, Jiangxi Science & Technology Normal University, Nanchang, 330013, Jiangxi, China.
| |
Collapse
|
7
|
González-Hernández RA, Valdez-Cruz NA, Macías-Rubalcava ML, Trujillo-Roldán MA. Overview of fungal terpene synthases and their regulation. World J Microbiol Biotechnol 2023; 39:194. [PMID: 37169980 PMCID: PMC10175467 DOI: 10.1007/s11274-023-03635-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 04/28/2023] [Indexed: 05/13/2023]
Abstract
Terpenes and terpenoids are a group of isoprene-derived molecules that constitute the largest group of natural products and secondary metabolites produced by living things, with more than 25,000 compounds reported. These compounds are synthesized by enzymes called terpene synthases, which include several families of cyclases and enzymes. These are responsible for adding functional groups to cyclized structures. Fungal terpenoids are of great interest for their pharmacological properties; therefore, understanding the mechanisms that regulate their synthesis (regulation of the mevalonate pathway, regulation of gene expression, and availability of cofactors) is essential to direct their production. For this reason, this review addresses the detailed study of the biosynthesis of fungal terpenoids and their regulation by various physiological and environmental factors.
Collapse
Affiliation(s)
- Ricardo A González-Hernández
- Departamento de Biología Molecular y Biotecnología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad Universitaria, Coyoacán, C.P. 04510, Ciudad de México, México.
- Posgrado en Ciencias Biológicas, Universidad Nacional Autónoma de México, Ciudad de México, México.
| | - Norma A Valdez-Cruz
- Departamento de Biología Molecular y Biotecnología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad Universitaria, Coyoacán, C.P. 04510, Ciudad de México, México
| | - Martha L Macías-Rubalcava
- Departamento de Productos Naturales, Instituto de Química, Universidad Nacional Autónoma de México (UNAM), Ciudad Universitaria, Delegación Coyoacán, 04510, Ciudad de México, México
| | - Mauricio A Trujillo-Roldán
- Departamento de Biología Molecular y Biotecnología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad Universitaria, Coyoacán, C.P. 04510, Ciudad de México, México.
| |
Collapse
|
8
|
Zhang D, Yang Y, Yao B, Hu T, Ma Z, Shi W, Ye Y. Curcumin inhibits Aspergillus flavus infection and aflatoxin production possibly by inducing ROS burst. Food Res Int 2023; 167:112646. [PMID: 37087237 DOI: 10.1016/j.foodres.2023.112646] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 01/13/2023] [Accepted: 02/22/2023] [Indexed: 02/27/2023]
Abstract
Aspergillus flavus contamination is common in various food and feed ingredients, and it poses to serious threats to human and animal health. Curcumin is a plant-derived polyphenol that exhibits antifungal activity. In this study, the antifungal effect of curcumin on A. flavus was evaluated, and the underlying mechanism was investigated. Curcumin effectively decreased aflatoxin B1 synthesis and suppressed A. flavus infection in peanut. Curcumin inhibited the mycelial growth and sporulation of A. flavus. Ergosterol biosynthesis in A. flavus was suppressed, and cell membrane permeability was enhanced. The pathogenicity of A. flavus was also reduced by curcumin treatment. Curcumin induced ROS burst in the hyphae of A. flavus, and those damages could be reversed by exogenous superoxide dismutase, suggesting that curcumin inhibited A. flavus possibly via inducing oxidative stress. These results indicate that curcumin has the potential to be used as a preservative to control A. flavus contamination in food and feedstuff.
Collapse
|
9
|
Elhamouly NA, Hewedy OA, Zaitoon A, Miraples A, Elshorbagy OT, Hussien S, El-Tahan A, Peng D. The hidden power of secondary metabolites in plant-fungi interactions and sustainable phytoremediation. FRONTIERS IN PLANT SCIENCE 2022; 13:1044896. [PMID: 36578344 PMCID: PMC9790997 DOI: 10.3389/fpls.2022.1044896] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 11/16/2022] [Indexed: 06/17/2023]
Abstract
The global environment is dominated by various small exotic substances, known as secondary metabolites, produced by plants and microorganisms. Plants and fungi are particularly plentiful sources of these molecules, whose physiological functions, in many cases, remain a mystery. Fungal secondary metabolites (SM) are a diverse group of substances that exhibit a wide range of chemical properties and generally fall into one of four main family groups: Terpenoids, polyketides, non-ribosomal peptides, or a combination of the latter two. They are incredibly varied in their functions and are often related to the increased fitness of the respective fungus in its environment, often competing with other microbes or interacting with plant species. Several of these metabolites have essential roles in the biological control of plant diseases by various beneficial microorganisms used for crop protection and biofertilization worldwide. Besides direct toxic effects against phytopathogens, natural metabolites can promote root and shoot development and/or disease resistance by activating host systemic defenses. The ability of these microorganisms to synthesize and store biologically active metabolites that are a potent source of novel natural compounds beneficial for agriculture is becoming a top priority for SM fungi research. In this review, we will discuss fungal-plant secondary metabolites with antifungal properties and the role of signaling molecules in induced and acquired systemic resistance activities. Additionally, fungal secondary metabolites mimic plant promotion molecules such as auxins, gibberellins, and abscisic acid, which modulate plant growth under biotic stress. Moreover, we will present a new trend regarding phytoremediation applications using fungal secondary metabolites to achieve sustainable food production and microbial diversity in an eco-friendly environment.
Collapse
Affiliation(s)
- Neveen Atta Elhamouly
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
- Department of Botany, Faculty of Agriculture, Menoufia University, Shibin El-Kom, Egypt
| | - Omar A. Hewedy
- Department of Plant Agriculture, University of Guelph, Guelph, ON, Canada
| | - Amr Zaitoon
- Department of Food Science, University of Guelph, Guelph, ON, Canada
| | - Angelica Miraples
- Department of Plant Agriculture, University of Guelph, Guelph, ON, Canada
| | - Omnia T. Elshorbagy
- School of Natural and Environmental Sciences, Faculty of Science, Agriculture & Engineering, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Suzan Hussien
- Botany Department Faculty of Science, Mansoura University, Mansoura, Egypt
| | - Amira El-Tahan
- Plant Production Department, Arid Lands Cultivation Research Institute, the City of Scientific Research and Technological Applications, City of Scientific Research and Technological Applications (SRTA-City), Borg El Arab, Alexandria, Egypt
| | - Deliang Peng
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
10
|
Corrêa ANR, Ferreira CD. Mycotoxins in Grains and Cereals Intended for Human Consumption: Brazilian Legislation, Occurrence Above Maximum Levels and Co-Occurrence. FOOD REVIEWS INTERNATIONAL 2022. [DOI: 10.1080/87559129.2022.2098318] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
11
|
Gomaa OM, Jassim AY, Chanda A. Bioremoval of PVP-coated silver nanoparticles using Aspergillus niger: the role of exopolysaccharides. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:31501-31510. [PMID: 35001269 PMCID: PMC8743098 DOI: 10.1007/s11356-021-18018-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Accepted: 12/05/2021] [Indexed: 05/10/2023]
Abstract
Extensive use of engineered nanoparticles has led to their eventual release in the environment. The present work aims to study the removal of Polyvinylpyrrolidone-coated silver nanoparticles (PVP-Ag-NPs) using Aspergillus niger and depict the role of exopolysaccharides in the removal process. Our results show that the majority of PVP-Ag-NPs were attached to fungal pellets. About 74% and 88% of the PVP-Ag-NPs were removed when incubated with A. niger pellets and exopolysaccharide-induced A. niger pellets, respectively. Ionized Ag decreased by 553 and 1290-fold under the same conditions as compared to stock PVP-Ag-NP. PVP-Ag-PVP resulted in an increase in reactive oxygen species (ROS) in 24 h. Results show an increase in PVP-Ag-NPs size from 28.4 to 115.9 nm for A. niger pellets and 160.3 nm after removal by stress-induced A. niger pellets and further increased to 650.1 nm for in vitro EPS removal. The obtained findings show that EPS can be used for nanoparticle removal, by increasing the net size of nanoparticles in aqueous media. This will, in turn, facilitate its removal through conventional filtration techniques commonly used at wastewater treatment plants.
Collapse
Affiliation(s)
- Ola M Gomaa
- Microbiology Department, National Center for Radiation Research and Technology (NCRRT), Egyptian Atomic Energy Authority (EAEA), Cairo, Egypt.
| | - Amar Yasser Jassim
- SmartState Center for Environmental Nanoscience and Risk (CENR), Department of Environmental Health Sciences, University of South Carolina, Columbia, SC, USA
- Marine Science Center, University of Basrah, Basrah, Iraq
| | - Anindya Chanda
- Integrative Mycology Lab, Department of Environmental Health Sciences, University of South Carolina, Columbia, SC, USA
- Myclogics LLC., Alexandria, VA, USA
- Broadwell College of Business and Economics, Fayetteville State University, Fayetteville, NC, USA
| |
Collapse
|
12
|
Severn-Ellis AA, Schoeman MH, Bayer PE, Hane JK, Rees DJG, Edwards D, Batley J. Genome Analysis of the Broad Host Range Necrotroph Nalanthamala psidii Highlights Genes Associated With Virulence. FRONTIERS IN PLANT SCIENCE 2022; 13:811152. [PMID: 35283890 PMCID: PMC8914235 DOI: 10.3389/fpls.2022.811152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 01/18/2022] [Indexed: 06/14/2023]
Abstract
Guava wilt disease is caused by the fungus Nalanthamala psidii. The wilt disease results in large-scale destruction of orchards in South Africa, Taiwan, and several Southeast Asian countries. De novo assembly, annotation, and in-depth analysis of the N. psidii genome were carried out to facilitate the identification of characteristics associated with pathogenicity and pathogen evolution. The predicted secretome revealed a range of CAZymes, proteases, lipases and peroxidases associated with plant cell wall degradation, nutrient acquisition, and disease development. Further analysis of the N. psidii carbohydrate-active enzyme profile exposed the broad-spectrum necrotrophic lifestyle of the pathogen, which was corroborated by the identification of putative effectors and secondary metabolites with the potential to induce tissue necrosis and cell surface-dependent immune responses. Putative regulatory proteins including transcription factors and kinases were identified in addition to transporters potentially involved in the secretion of secondary metabolites. Transporters identified included important ABC and MFS transporters involved in the efflux of fungicides. Analysis of the repetitive landscape and the detection of mechanisms linked to reproduction such as het and mating genes rendered insights into the biological complexity and evolutionary potential of N. psidii as guava pathogen. Hence, the assembly and annotation of the N. psidii genome provided a valuable platform to explore the pathogenic potential and necrotrophic lifestyle of the guava wilt pathogen.
Collapse
Affiliation(s)
- Anita A. Severn-Ellis
- School of Biological Sciences, Institute of Agriculture, The University of Western Australia, Crawley, WA, Australia
- Aquaculture Research and Development, Department of Primary Industries and Regional Development, Indian Ocean Marine Research Centre, Watermans Bay, WA, Australia
| | - Maritha H. Schoeman
- Institute for Tropical and Subtropical Crops, Agricultural Research Council, Nelspruit, South Africa
| | - Philipp E. Bayer
- School of Biological Sciences, Institute of Agriculture, The University of Western Australia, Crawley, WA, Australia
| | - James K. Hane
- Centre for Crop and Disease Management, School of Molecular and Life Sciences, Curtin University, Bentley, WA, Australia
| | - D. Jasper G. Rees
- Agricultural Research Council, Biotechnology Platform, Pretoria, South Africa
- Botswana University of Agriculture and Natural Resources, Gaborone, Botswana
| | - David Edwards
- School of Biological Sciences, Institute of Agriculture, The University of Western Australia, Crawley, WA, Australia
| | - Jacqueline Batley
- School of Biological Sciences, Institute of Agriculture, The University of Western Australia, Crawley, WA, Australia
| |
Collapse
|
13
|
de Obeso Fernandez del Valle A, Scheckhuber CQ. Superoxide Dismutases in Eukaryotic Microorganisms: Four Case Studies. Antioxidants (Basel) 2022; 11:antiox11020188. [PMID: 35204070 PMCID: PMC8868140 DOI: 10.3390/antiox11020188] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 01/12/2022] [Accepted: 01/16/2022] [Indexed: 01/08/2023] Open
Abstract
Various components in the cell are responsible for maintaining physiological levels of reactive oxygen species (ROS). Several different enzymes exist that can convert or degrade ROS; among them are the superoxide dismutases (SODs). If left unchecked, ROS can cause damage that leads to pathology, can contribute to aging, and may, ultimately, cause death. SODs are responsible for converting superoxide anions to hydrogen peroxide by dismutation. Here we review the role of different SODs on the development and pathogenicity of various eukaryotic microorganisms relevant to human health. These include the fungal aging model, Podospora anserina; various members of the genus Aspergillus that can potentially cause aspergillosis; the agents of diseases such as Chagas and sleeping disease, Trypanosoma cruzi and Trypanosoma brucei, respectively; and, finally, pathogenic amoebae, such as Acanthamoeba spp. In these organisms, SODs fulfill essential and often regulatory functions that come into play during processes such as the development, host infection, propagation, and control of gene expression. We explore the contribution of SODs and their related factors in these microorganisms, which have an established role in health and disease.
Collapse
|
14
|
Jassim AY, Wang J, Chung KW, Loosli F, Chanda A, Scott GI, Baalousha M. Comparative assessment of the fate and toxicity of chemically and biologically synthesized silver nanoparticles to juvenile clams. Colloids Surf B Biointerfaces 2021; 209:112173. [PMID: 34749192 DOI: 10.1016/j.colsurfb.2021.112173] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 10/12/2021] [Accepted: 10/19/2021] [Indexed: 10/20/2022]
Abstract
Nanoparticles (NPs) can be produced via physical, chemical, or biological approaches. Yet, the impact of the synthesis approaches on the environmental fate and effects of NPs is poorly understood. Here, we synthesized AgNPs through chemical and biological approaches (cit-AgNPs and bio-AgNPs), characterized their properties, and toxicities relative to commercially available Ag nanopowder (np-AgNPs) to the clam Mercenaria mercenaria. The chemical synthesis is based on the reduction of ionic silver using sodium borohydride as a reducing agent and trisodium citrate as a capping agent. The biological synthesis is based on the reduction of ionic silver using biomolecules extracted from an atoxigenic strain of a filamentous fungus Aspergillus parasiticus. The properties of AgNPs were determined using UV-vis, dynamic light scattering, laser Doppler electrophoresis, (single particle)-inductively coupled plasma-mass spectroscopy, transmission electron microscopy, and asymmetric flow-field flow fractionation. Both chemical and biological synthesis approaches generated spherical AgNPs. The chemical synthesis produced AgNPs with narrower size distributions than those generated through biological synthesis. The polydispersity of bio-AgNPs decreased with increases in cell free extract (CFE):Ag ratios. The magnitude of the zeta potential of the cit-AgNPs was higher than those of bio-AgNPs. All AgNPs formed aggregates in the test media i.e., natural seawater. Based on the same total Ag concentrations, all AgNPs were less toxic than AgNO3. The toxicity of AgNPs toward the juvenile clam, Mercenaria mercenaria, decreased following the order np-AgNPs > cit-AgNPs > bio-AgNPs. Expressed as a function of dissolved Ag concentrations, the toxicity of Ag decreased following the order cit-AgNPs > bio-AgNPs > AgNO3 ~ np-AgNPs. Therefore, the toxicity of AgNP suspensions can be attributed to a combined effect of dissolved and particulate Ag forms. These results indicate that AgNP synthesis methods determine their environmental and biological behaviors and should be considered for a more comprehensive environmental risk assessment of AgNPs.
Collapse
Affiliation(s)
- Amar Yasser Jassim
- Center for Environmental Nanoscience and Risk, Department of Environmental Health Sciences, Arnold School of Public Health, University of South Carolina, Columbia, SC 29223, USA; Department of Marine Vertebrates, Marine Science Center, University of Basrah, Iraq
| | - Jingjing Wang
- Center for Environmental Nanoscience and Risk, Department of Environmental Health Sciences, Arnold School of Public Health, University of South Carolina, Columbia, SC 29223, USA
| | - Katy W Chung
- NOAA/National Ocean Service, Center for Coastal Environmental Health and Biomolecular Research, Charleston, SC 29412, USA
| | - Frédéric Loosli
- Center for Environmental Nanoscience and Risk, Department of Environmental Health Sciences, Arnold School of Public Health, University of South Carolina, Columbia, SC 29223, USA
| | - Anindya Chanda
- Center for Environmental Nanoscience and Risk, Department of Environmental Health Sciences, Arnold School of Public Health, University of South Carolina, Columbia, SC 29223, USA; Mycologics LLC, Alexandria, VA 22306, USA
| | - Geoffrey I Scott
- Center for Environmental Nanoscience and Risk, Department of Environmental Health Sciences, Arnold School of Public Health, University of South Carolina, Columbia, SC 29223, USA
| | - Mohammed Baalousha
- Center for Environmental Nanoscience and Risk, Department of Environmental Health Sciences, Arnold School of Public Health, University of South Carolina, Columbia, SC 29223, USA
| |
Collapse
|
15
|
Karaca A, Yilmaz S, Kaya E, Altun S. The effect of lycopene on hepatotoxicity of aflatoxin B1 in rats. Arch Physiol Biochem 2021; 127:429-436. [PMID: 31378089 DOI: 10.1080/13813455.2019.1648516] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Revised: 07/11/2019] [Accepted: 07/22/2019] [Indexed: 12/15/2022]
Abstract
Oxidative damage caused by aflatoxin (AF) in rat liver tissue and the inhibition effect of lycopene against this injury was investigated. Groups were formed as; control group (not treated), lycopene group (5 mg/kg/day, gavage for 15 days), AFB1 group (0.5 mg/kg/day, gavage for 7 days) and AFB1 + lycopene group. Lycopene administered simultaneously with AFB1. It was observed significant increase in malondialdehyde level, decrease in glutathione level, antioxidant enzyme activities in liver tissue of AFB1 group when compared with control group. It was determined to significantly increase in plasma aspartate transaminase, alanine transaminase, lactate dehydrogenase activities in AFB1 group when compared with control group. It was determined significant decrease in malondialdehyde level, plasma aspartate transaminase, alanine transaminase, lactate dehydrogenase activities and increase in glutathione level, antioxidant enzyme activities in AFB1 + lycopene group when compared with AFB1 group. This study suggests that lycopene which has antioxidant properties can be prevented from AFB1 induced hepatotoxicity.
Collapse
Affiliation(s)
- Aysegul Karaca
- Faculty of Pharmacy, Department of Biochemistry, Inonu University, Malatya, Turkey
| | - Seval Yilmaz
- Faculty of Veterinary Medicine, Department of Biochemistry, Firat University, Elazig, Turkey
| | - Emre Kaya
- Faculty of Veterinary Medicine, Department of Biochemistry, Firat University, Elazig, Turkey
| | - Serdar Altun
- Faculty of Veterinary Medicine, Department of Pathology, Ataturk University, Erzurum, Turkey
| |
Collapse
|
16
|
Badr AN, Ali HS, Abdel-Razek AG, Shehata MG, Albaridi NA. Bioactive Components of Pomegranate Oil and Their Influence on Mycotoxin Secretion. Toxins (Basel) 2020; 12:toxins12120748. [PMID: 33260849 PMCID: PMC7759867 DOI: 10.3390/toxins12120748] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2020] [Revised: 10/22/2020] [Accepted: 10/30/2020] [Indexed: 12/17/2022] Open
Abstract
Pomegranate, similar to other fruits, has juice-extraction by-products. Pomegranate seed oil (PGO) is a non-traditional oil with health benefits, rich in bioactive components. This study was aimed to assess PGO phytochemicals and their influence as bioactive components to reduce mycotoxin secretion. The encapsulation was applied in micro and nanoforms to protect the quality and enhance the efficacy of the oil. The PGO was extracted using ultrasound-assisted methods. Carotenoids, tocochromanols, sterols, phenolic, flavonoid, antioxidant, and antimicrobial activity were determined. The fatty acid profile was analyzed by the GC-MS, while mycotoxin was determined utilizing the HPLC apparatus. The toxicity and protective action of oil were examined using the hepatocytes' cell line. The resultant oil acts as oleoresin that is rich in bioactive molecules. Phenolics and antioxidant potency recorded higher values compared to traditional vegetable oils, whereas polyunsaturated fatty acids were 87.51%. The major fatty acid was conjugated punicic acid (81.29%), which has high biological effects. Application of the PGO on fungal media reduced aflatoxins secretion up to 63%, and zearalenone up to 78.5%. These results confirm the bio-functionality of oil to regulate the fungal secondary metabolites process. The PGO is a unique prospective non-traditional oil and has several functionalities in food, which achieve nutritional, antioxidant, and anti-mycotoxigenic activities.
Collapse
Affiliation(s)
- Ahmed Noah Badr
- National Research Centre, Department of Food Toxicology and Contaminants, Cairo 12622, Egypt
- Correspondence: (A.N.B.); (H.S.A.); Tel.: +2-01000-327-640 (A.N.B.); +966-56513-327-0841 (H.S.A.)
| | - Hatem Salama Ali
- Department of Food Science and Nutrition, College of Food Science and Agriculture, King Saud University, Riyadh 11451, Saudi Arabia
- National Research Centre, Department of Food Technology, Cairo 12622, Egypt
- Correspondence: (A.N.B.); (H.S.A.); Tel.: +2-01000-327-640 (A.N.B.); +966-56513-327-0841 (H.S.A.)
| | | | - Mohamed Gamal Shehata
- Department of Food Technology, Arid Lands Cultivation Research Institute, the City of Scientific Research and Technological Application (SRTA-City), New Borg El-Arab 21934, Alexandria, Egypt;
| | - Najla A. Albaridi
- Department of Physical Sport Science, Nutrition and Food Science, Princess Nourah Bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia;
| |
Collapse
|
17
|
The Potential of Plant-Based Bioactive Compounds on Inhibition of Aflatoxin B1 Biosynthesis and Down-regulation of aflR, aflM and aflP Genes. Antibiotics (Basel) 2020; 9:antibiotics9110728. [PMID: 33113979 PMCID: PMC7690750 DOI: 10.3390/antibiotics9110728] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 10/12/2020] [Accepted: 10/21/2020] [Indexed: 01/11/2023] Open
Abstract
The use of plant extracts in pre- and post-harvest disease management of agricultural crops to cope with aflatoxin B1 contamination has shown great promise due to their capability in managing toxins and safe-keeping the quality. We investigated the anti-aflatoxigenic effect of multiple doses of eight plant extracts (Heracleum persicum, Peganum harmala, Crocus sativus, Trachyspermum ammi, Rosmarinus officinalis, Anethum graveolens, Berberis vulgaris, Berberis thunbergii) on Aspergillus flavus via LC-MS and the down-regulatory effect of them on aflR, aflM and aflP genes involved in the aflatoxin B1 biosynthesis pathway using RT-qPCR analyses. Our results showed that H. persicum (4 mg/mL), P. harmala (6 mg/mL) and T. ammi (2 mg/mL) completely stopped the production of aflatoxin B1, without inducing significant changes in A. flavus growth. Furthermore, our findings showed a highly significant correlation between the gene expression and the aflatoxin B1 biosynthesis, such that certain doses of the extracts reduced or blocked the expression of the aflR, aflM and aflP and consequently reduced the synthesis of aflatoxin B1. Interestingly, compared to the regulatory gene (aflR), the down-regulation of expression in the structural genes (aflM and aflP) was more consistent and correlated with the inhibition of aflatoxin B1 production. Overall, this study reveals the anti-aflatoxigenic mechanisms of the selected plant extracts at the gene expression level and provides evidence for their use in plant and crop protection.
Collapse
|
18
|
Nitrate reductase-dependent nitric oxide plays a key role on MeJA-induced ganoderic acid biosynthesis in Ganoderma lucidum. Appl Microbiol Biotechnol 2020; 104:10737-10753. [PMID: 33064185 DOI: 10.1007/s00253-020-10951-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 09/29/2020] [Accepted: 10/05/2020] [Indexed: 10/23/2022]
Abstract
Ganoderma lucidum, which contains numerous biologically active compounds, is known worldwide as a medicinal basidiomycete. Because of its application for the prevention and treatment of various diseases, most of artificially cultivated G. lucidum is output to many countries as food, tea, and dietary supplements for further processing. Methyl jasmonate (MeJA) has been reported as a compound that can induce ganoderic acid (GA) biosynthesis, an important secondary metabolite of G. lucidum. Herein, MeJA was found to increase the intracellular level of nitric oxide (NO). In addition, upregulation of GA biosynthesis in the presence of MeJA was abolished when NO was depleted from the culture. This result demonstrated that MeJA-regulated GA biosynthesis might occur via NO signaling. To elucidate the underlying mechanism, we used gene-silenced strains of nitrate reductase (NR) and the inhibitor of NR to illustrate the role of NO in MeJA induction. The results indicated that the increase in GA biosynthesis induced by MeJA was activated by NR-generated NO. Furthermore, the findings indicated that the reduction of NO could induce GA levels in the control group, but NO could also activate GA biosynthesis upon MeJA treatment. Further results indicated that NR silencing reversed the increased enzymatic activity of NOX to generate ROS due to MeJA induction. Importantly, our results highlight the NR-generated NO functions in signaling crosstalk between reactive oxygen species and MeJA. These results provide a good opportunity to determine the potential pathway linking NO to the ROS signaling pathway in fungi treated with MeJA. KEY POINTS: • MeJA increased the intracellular level of nitric oxide (NO) in G. lucidum. • The increase in GA biosynthesis induced by MeJA is activated by NR-generated NO. • NO acts as a signaling molecule between reactive oxygen species (ROS) and MeJA.
Collapse
|
19
|
Barrios-González J, Pérez-Sánchez A, Bibián ME. New knowledge about the biosynthesis of lovastatin and its production by fermentation of Aspergillus terreus. Appl Microbiol Biotechnol 2020; 104:8979-8998. [PMID: 32930839 DOI: 10.1007/s00253-020-10871-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 08/10/2020] [Accepted: 08/31/2020] [Indexed: 12/21/2022]
Abstract
Lovastatin, and its semisynthetic derivative simvastatine, has great medical and economic importance, besides great potential for other uses. In the last years, a deeper and more complex view of secondary metabolism regulation has emerged, with the incorporation of cluster-specific and global transcription factors, and their relation to signaling cascades, as well as the new level of epigenetic regulation. Recently, a new mechanism, which regulates lovastatin biosynthesis, at transcriptional level, has been discovered: reactive oxygen species (ROS) regulation; also new unexpected environmental stimuli have been identified, which induce the synthesis of lovastatin, like quorum sensing-type molecules and support stimuli. The present review describes this new panorama and uses this information, together with the knowledge on lovastatin biosynthesis and genomics, as the foundation to analyze literature on optimization of fermentation parameters and medium composition, and also to fully understand new strategies for strain genetic improvement. This new knowledge has been applied to the development of more effective culture media, with the addition of molecules like butyrolactone I, oxylipins, and spermidine, or with addition of ROS-generating molecules to increase internal ROS levels in the cell. It has also been applied to the development of new strategies to generate overproducing strains of Aspergillus terreus, including engineering of the cluster-specific transcription factor (lovE), global transcription factors like the ones implicated in ROS regulation (or even mitochondrial alternative respiration aox gen), or the global regulator LaeA. Moreover, there is potential to apply some of these findings to the development of novel unconventional production systems. KEY POINTS: • New findings in regulation of lovastatin biosynthesis, like ROS regulation. • Induction by unexpected stimuli: autoinducer molecules and support stimuli. • Recent reports on culture medium and process optimization from this stand point. • Applications to molecular genetic strain improvement methods and production systems.
Collapse
Affiliation(s)
- Javier Barrios-González
- Departamento de Biotecnología, Universidad Autónoma Metropolitana -Iztapalapa, Av. San Rafael Atlixco 186, Col. Vicentina, 09340, Iztapalapa, Ciudad de México, Mexico.
| | - Ailed Pérez-Sánchez
- Departamento de Biotecnología, Universidad Autónoma Metropolitana -Iztapalapa, Av. San Rafael Atlixco 186, Col. Vicentina, 09340, Iztapalapa, Ciudad de México, Mexico
| | - María Esmeralda Bibián
- Departamento de Biotecnología, Universidad Autónoma Metropolitana -Iztapalapa, Av. San Rafael Atlixco 186, Col. Vicentina, 09340, Iztapalapa, Ciudad de México, Mexico
| |
Collapse
|
20
|
Xiang F, Zhao Q, Zhao K, Pei H, Tao F. The Efficacy of Composite Essential Oils against Aflatoxigenic Fungus Aspergillus flavus in Maize. Toxins (Basel) 2020; 12:E562. [PMID: 32882838 PMCID: PMC7551089 DOI: 10.3390/toxins12090562] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 08/27/2020] [Accepted: 08/28/2020] [Indexed: 12/19/2022] Open
Abstract
The efficacy of eleven essential oils (EOs) against Aspergillus flavus NRRL 3357 was investigated. The highest antifungal activity against this aflatoxigenic fungus was exhibited by cinnamon, oregano and lemongrass, which showed low minimum inhibitory concentration (MIC) values under vapor conditions. Interactions of the three EOs were evaluated by the fractional inhibition concentration index (FICI), and the composite essential oils (CEO) showed synergistic inhibitory activities. Chemical analysis of the composite essential oils of cinnamon, oregano, and lemongrass (COL-CEO) revealed that (Z)-citral (33.44%), (E)-citral (32.88%) and carvacrol (19.84%) were the dominant components, followed by limonene (4.29%) and cinnamaldehyde (3.76%). COL-CEO not only inhibited fungal growth but also decreased aflatoxin B1 production by A. flavus. Downregulation of the relative expression of aflatoxin genes in the aflatoxin biosynthetic pathway by COL-CEO revealed its anti-aflatoxigenic mechanism. COL-CEO could also affect the colonization of A. flavus on maize grains. Therefore, COL-CEO may be considered as a potential natural antifungal agent, which could be used for the storage of maize and other grains.
Collapse
Affiliation(s)
| | | | | | | | - Fang Tao
- School of Life Sciences, Anhui Agricultural University, Hefei 230036, China; (F.X.); (Q.Z.); (K.Z.); (H.P.)
| |
Collapse
|
21
|
Zhang F, Huang L, Deng J, Tan C, Geng L, Liao Y, Yuan J, Wang S. A Cell Wall Integrity-Related MAP Kinase Kinase Kinase AflBck1 Is Required for Growth and Virulence in Fungus Aspergillus flavus. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2020; 33:680-692. [PMID: 31922927 DOI: 10.1094/mpmi-11-19-0327-r] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Aspergillus flavus represents an important fungal pathogen, causing severe economic losses in crops. The mitogen-activated protein (MAP) kinase signaling pathway contributes to many physiological processes, but its precise role in A. flavus is not yet fully understood. In this study, we focused on the AflBck1 gene, which encodes a MAP kinase kinase kinase of the Slt2-MAPK pathway. Targeted deletion of AflBck1 led to a significant defect in growth and development, and a AflBck1-deleted mutant (∆AflBck1) showed higher sensitivity to cell-wall stress than wild type (WT). Importantly, we observed that ∆AflBck1 displayed an enhanced ability to produce aflatoxin, a potential carcinogenic mycotoxin. However, the pathogenicity of the ∆AflBck1 mutant was markedly reduced in peanut seeds. We also presented evidence that AflBck1 was genetically epistatic to AflMkk2 in the Slt2-MAPK pathway. Finally, we found that loss of the proline-rich region at the N terminus of AflBck1 affected the reproduction of A. flavus. Collectively, this study not only extended the understanding that the MAPK pathway regulated A. flavus pathogenicity but also provided a possible strategy to control A. flavus contamination.
Collapse
Affiliation(s)
- Feng Zhang
- Key Laboratory of Pathogenic Fungi and Mycotoxins of Fujian Province, Key Laboratory of Biopesticide and Chemical Biology of Education Ministry, and School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- School of Biological Science and Biotechnology, Minnan Normal University, Zhangzhou 363055, China
| | - Luhua Huang
- Key Laboratory of Pathogenic Fungi and Mycotoxins of Fujian Province, Key Laboratory of Biopesticide and Chemical Biology of Education Ministry, and School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Jili Deng
- Key Laboratory of Pathogenic Fungi and Mycotoxins of Fujian Province, Key Laboratory of Biopesticide and Chemical Biology of Education Ministry, and School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Can Tan
- Key Laboratory of Pathogenic Fungi and Mycotoxins of Fujian Province, Key Laboratory of Biopesticide and Chemical Biology of Education Ministry, and School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Longpo Geng
- Key Laboratory of Pathogenic Fungi and Mycotoxins of Fujian Province, Key Laboratory of Biopesticide and Chemical Biology of Education Ministry, and School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yun Liao
- Key Laboratory of Pathogenic Fungi and Mycotoxins of Fujian Province, Key Laboratory of Biopesticide and Chemical Biology of Education Ministry, and School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Jun Yuan
- Key Laboratory of Pathogenic Fungi and Mycotoxins of Fujian Province, Key Laboratory of Biopesticide and Chemical Biology of Education Ministry, and School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Shihua Wang
- Key Laboratory of Pathogenic Fungi and Mycotoxins of Fujian Province, Key Laboratory of Biopesticide and Chemical Biology of Education Ministry, and School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| |
Collapse
|
22
|
Restricting mycotoxins without killing the producers: a new paradigm in nano-fungal interactions. Appl Microbiol Biotechnol 2020; 104:2803-2813. [PMID: 32025763 DOI: 10.1007/s00253-020-10373-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Revised: 12/23/2019] [Accepted: 01/12/2020] [Indexed: 12/31/2022]
Abstract
Over the past several years, numerous studies have demonstrated the feasibility of using engineered nanoparticles as antifungals, especially against those fungal pathogens that produce mycotoxins and infect plants, animals, and humans. The high dosage of nanoparticles has been a concern in such antifungal applications due to the potential toxicological and ecotoxicological impacts. To address such concerns, we have recently introduced the idea of inhibiting mycotoxin biosynthesis using low doses of engineered nanoparticles. At such low doses these particles are minimally toxic to humans and the environment. From our studies we realize that for the effective use of nanotechnology to intervene in the biology of fungal pathogens and for an accurate evaluation of the impacts of the increasingly growing nanomaterials in the environment on fungi and their interacting biotic partners, there is a pressing need for a rigorous understanding of nano-fungal interactions, which is currently far from complete. In this minireview, we build on the available evidence from nano-bio interaction research and our recent interaction studies with Aspergillus cells and engineered silver nanoparticles to introduce a potential theoretical model for nano-fungal interactions. The aim of the proposed model is to provide an initial insight on how nanoparticle uptake and their transformation inside fungal cells, possibly influence the production of mycotoxins and other secondary metabolites of filamentous fungi .
Collapse
|
23
|
Penicillin and cephalosporin biosyntheses are also regulated by reactive oxygen species. Appl Microbiol Biotechnol 2020; 104:1773-1783. [PMID: 31900551 DOI: 10.1007/s00253-019-10330-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2019] [Revised: 12/10/2019] [Accepted: 12/18/2019] [Indexed: 12/12/2022]
Abstract
In an earlier work on lovastatin production by Aspergillus terreus, we found that reactive oxygen species (ROS) concentration increased to high levels precisely at the start of the production phase (idiophase) and that these levels were sustained during all idiophase. Moreover, it was shown that ROS regulate lovastatin biosynthesis. ROS regulation has also been reported for aflatoxins. It has been suggested that, due to their antioxidant activity, aflatoxins are regulated and synthesized like a second line of defense against oxidative stress. To study the possible ROS regulation of other industrially important secondary metabolites, we analyzed the relationship between ROS and penicillin biosynthesis by Penicillium chrysogenum and cephalosporin biosynthesis by Acremonium chrysogenum. Results revealed a similar ROS accumulation in idiophase in penicillin and cephalosporin fermentations. Moreover, when intracellular ROS concentrations were decreased by the addition of antioxidants to the cultures, penicillin and cephalosporin production were drastically reduced. When intracellular ROS were increased by the addition of exogenous ROS (H2O2) to the cultures, proportional increments in penicillin and cephalosporin biosyntheses were obtained. It was also shown that lovastatin, penicillin, and cephalosporin are not antioxidants. Taken together, our results provide evidence that ROS regulation is a general mechanism controlling secondary metabolism in fungi.
Collapse
|
24
|
Hanano A, Almousally I, Shaban M. Exposure of Aspergillus flavus NRRL 3357 to the Environmental Toxin, 2,3,7,8-Tetrachlorinated Dibenzo- p-Dioxin, Results in a Hyper Aflatoxicogenic Phenotype: A Possible Role for Caleosin/Peroxygenase (AfPXG). Front Microbiol 2019; 10:2338. [PMID: 31681203 PMCID: PMC6803392 DOI: 10.3389/fmicb.2019.02338] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Accepted: 09/25/2019] [Indexed: 12/19/2022] Open
Abstract
Aflatoxins (AFs) as potent food contaminants are highly detrimental to human and animal health. The production of such biological toxins is influenced by environmental factors including pollutants, such as dioxins. Here, we report the biological feedback of an active AF-producer strain of A. flavus upon in vitro exposure to the most toxic congener of dioxins, the 2,3,7,8-tetrachlorinated dibenzo-p-dioxin (TCDD). The phenotype of TCDD-exposed A. flavus was typified by a severe limitation in vegetative growth, activation of conidia formation and a significant boost in AF production. Furthermore, the level of reactive oxygen species (ROS) in fungal protoplast was increased (3.1- to 3.8-fold) in response to TCDD exposure at 10 and 50 ng mL-1, respectively. In parallel, superoxide dismutase (SOD) and catalase (CAT) activities were, respectively, increased by a factor of 2 and 3. In contrast to controls, transcript, protein and enzymatic activity of caleosin/peroxygenase (AfPXG) was also significantly induced in TCDD-exposed fungi. Subsequently, fungal cells accumulated fivefold more lipid droplets (LDs) than controls. Moreover, the TCDD-exposed fungi exhibited twofold higher levels of AFB1. Interestingly, TCDD-induced hyperaflatoxicogenicity was drastically abolished in the AfPXG-silencing strain of A. flavus, suggesting a role for AfPXG in fungal response to TCDD. Finally, TCDD-exposed fungi showed an increased in vitro virulence in terms of sporulation and AF production. The data highlight the possible effects of dioxin on aflatoxicogenicity of A. flavus and suggest therefore that attention should be paid in particular to the potential consequences of climate change on global food safety.
Collapse
Affiliation(s)
- Abdulsamie Hanano
- Department of Molecular Biology and Biotechnology, Atomic Energy Commission of Syria, Damascus, Syria
| | | | | |
Collapse
|
25
|
Fang Y, Klosterman SJ, Tian C, Wang Y. Insights into VdCmr1-mediated protection against high temperature stress and UV irradiation in Verticillium dahliae. Environ Microbiol 2019; 21:2977-2996. [PMID: 31136051 DOI: 10.1111/1462-2920.14695] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Revised: 05/21/2019] [Accepted: 05/24/2019] [Indexed: 12/21/2022]
Abstract
The fungus Verticillium dahliae causes vascular wilt disease on more than 200 plant species worldwide. This fungus can survive for years in soil as melanized microsclerotia. We found that VdCmr1, a transcription factor, is required for the melanin production and increased survival following UV irradiation in V. dahliae but not for microsclerotia production or virulence. Here, we provided evidence how VdCmr1 protects against high temperature (HT) and UV irradiation in V. dahliae. The results indicate that VdCmr1 mediates entry to the diapause period in V. dahliae in response to HT and contributes to the expression of proteins to minimize protein misfolding and denaturation. VdCmr1 deletion results in the misregulation of DNA repair machinery, suggestive of reduced DNA repair capacity following UV irradiation and in correlation with the low survival rate of UV-treated VdCmr1 mutants. We discovered a putative VdCmr1-dependent gene cluster associated with secondary metabolism and stress responses. We also functionally characterized two VdCmr1-responsive genes participating in HT and UV response. These results shed further light on the roles of VdCmr1 in protection from HT or UV irradiation, and the additional insights into the mechanisms of this protection may be useful to exploit for more effective disease control.
Collapse
Affiliation(s)
- Yulin Fang
- Beijing Key Laboratory for Forest Pest Control, College of Forestry, Beijing Forestry University, Beijing, China
| | - Steven J Klosterman
- U.S. Department of Agriculture-Agricultural Research Service, Salinas, CA, 93905, USA
| | - Chengming Tian
- Beijing Key Laboratory for Forest Pest Control, College of Forestry, Beijing Forestry University, Beijing, China
| | - Yonglin Wang
- Beijing Key Laboratory for Forest Pest Control, College of Forestry, Beijing Forestry University, Beijing, China
| |
Collapse
|
26
|
Devi MS, Sashidhar RB. Antiaflatoxigenic effects of selected antifungal peptides. Peptides 2019; 115:15-26. [PMID: 30776385 DOI: 10.1016/j.peptides.2019.02.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2018] [Revised: 02/08/2019] [Accepted: 02/14/2019] [Indexed: 12/11/2022]
Abstract
Aflatoxins are potent carcinogenic mycotoxins produced as secondary metabolites mainly by the fungi Aspergillus flavus and Aspergillus parasiticus. Control measures to curtail the contamination of aflatoxin in food products is still a challenge. Although there are several reports on the antifungal peptides, there is no specific study on the action of antifungal peptides on aflatoxin synthesis. This work details the effect of four antimicrobial peptides (AMPs) - PPD1 (FRLHF), 66-10 (FRLKFH), 77-3 (FRLKFHF) and D4E1 (FKLRAKIKVRLRAKIKL) on the aflatoxin production by A. flavus and A. parasiticus. Results of the investigations suggests that AMPs at near minimum inhibitory concentrations (MIC) were effectively inhibiting aflatoxins, without hindering the growth of the fungi. These AMPs, at concentrations near MIC, induced membrane permeabilisation, without inducing cellular leakage. The involvement of oxidative stress for the aflatoxin synthesis was reversed by the antioxidant nature of the peptides as evidenced by the 2,2-diphenyl-1-picrylhydrazyl (DPPH) and 2,2'-azino-bis (3-ethylbenzothiazoline-6-sulphonic acid (ABTS) assay, reactive oxygen species production, malondialdehyde and antioxidant enzymes analysis. Quantitative real time polymerase chain reaction (RT-qPCR) analysis of the aflatoxin gene cluster showed that 'aflR' and its downstream genes expressions were significantly down regulated. Conidiation of the fungi were negatively influenced by the peptides as evidenced by scanning electron microscopy analysis and RT-qPCR. mRNA levels of Manganese-superoxide dismutase (Mn-SOD) showed a decrease in the expression in RT-qPCR. The effect of these peptides on aflatoxin inhibition provides insight into their use as novel antiaflatoxigenic molecules.
Collapse
Affiliation(s)
- Manju S Devi
- Department of Biochemistry, University College of Science, Osmania University, Hyderabad-500 007, Telangana State, India
| | - R B Sashidhar
- Department of Biochemistry, University College of Science, Osmania University, Hyderabad-500 007, Telangana State, India.
| |
Collapse
|
27
|
Abstract
One of the exciting movements in microbial sciences has been a refocusing and revitalization of efforts to mine the fungal secondary metabolome. The magnitude of biosynthetic gene clusters (BGCs) in a single filamentous fungal genome combined with the historic number of sequenced genomes suggests that the secondary metabolite wealth of filamentous fungi is largely untapped. Mining algorithms and scalable expression platforms have greatly expanded access to the chemical repertoire of fungal-derived secondary metabolites. In this Review, I discuss new insights into the transcriptional and epigenetic regulation of BGCs and the ecological roles of fungal secondary metabolites in warfare, defence and development. I also explore avenues for the identification of new fungal metabolites and the challenges in harvesting fungal-derived secondary metabolites.
Collapse
|
28
|
Song P, Zhang K, Zhang S, Huang BQ, Ji XJ, Ren LJ, Gao S, Wen JP, Huang H. Enhancement of Pneumocandin B 0 Production in Glarea lozoyensis by Low-Temperature Adaptive Laboratory Evolution. Front Microbiol 2018; 9:2788. [PMID: 30519220 PMCID: PMC6259640 DOI: 10.3389/fmicb.2018.02788] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Accepted: 10/30/2018] [Indexed: 12/22/2022] Open
Abstract
The production of pneumocandin B0 is limited by feedback inhibition. Here, low-temperature adaptive laboratory evolution (ALE) was used to improve the production capacity of Glarea lozoyensis by enhancing its membrane permeability. After 50 cycles of ALE, the pneumocandin B0 production of the endpoint strain (ALE50) reached 2131 g/L, which was 32% higher than the starting strain (ALE0). ALE50 showed a changed fatty acid composition of the cell membrane, which-+h increased its permeability by 14%, which in turn increased the secretion ratio threefold. Furthermore, ALE50 showed increased intracellular proline and acetyl-CoA concentrations, superoxide dismutase (SOD), and catalase (CAT) activity, as well as total antioxidant capacity. The slight biomass decrease in ALE50 was accompanied by decreased isocitrate dehydrogenase (ICDH) and glucose-6-phosphate dehydrogenase (G6PDH) activity. Finally, a putative model of the accumulation and secretion of pneumocandin B0 in ALE50 was established. ALE is a promising method to release intracellular feedback inhibition.
Collapse
Affiliation(s)
- Ping Song
- Jiangsu Collaboration Innovation Center of Chinese Medical Resources Industrialization, College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
- School of Chemical Engineering and Technology, Department of Biochemical Engineering, Tianjin University, Tianjin, China
- Jiangsu Synergetic Innovation Center for Advanced Bio-Manufacture, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, China
| | - Ke Zhang
- Jiangsu Synergetic Innovation Center for Advanced Bio-Manufacture, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, China
| | - Sen Zhang
- Jiangsu Collaboration Innovation Center of Chinese Medical Resources Industrialization, College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Bao-Qi Huang
- Jiangsu Synergetic Innovation Center for Advanced Bio-Manufacture, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, China
| | - Xiao-Jun Ji
- Jiangsu Synergetic Innovation Center for Advanced Bio-Manufacture, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, China
| | - Lu-Jing Ren
- Jiangsu Synergetic Innovation Center for Advanced Bio-Manufacture, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, China
| | - Song Gao
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Huaihai Institute of Technology, Lianyungang, China
| | - Jian-Ping Wen
- School of Chemical Engineering and Technology, Department of Biochemical Engineering, Tianjin University, Tianjin, China
| | - He Huang
- Jiangsu Synergetic Innovation Center for Advanced Bio-Manufacture, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, China
| |
Collapse
|
29
|
Song P, Huang B, Zhang S, Zhang K, Yuan K, Ji X, Ren L, Wen J, Huang H. Novel osmotic stress control strategy for improved pneumocandin B 0 production in Glarea lozoyensis combined with a mechanistic analysis at the transcriptome level. Appl Microbiol Biotechnol 2018; 102:10729-10742. [PMID: 30413850 DOI: 10.1007/s00253-018-9440-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Revised: 08/18/2018] [Accepted: 10/04/2018] [Indexed: 11/26/2022]
Abstract
Pneumocandin B0, the precursor of the antifungal drug caspofungin, is a secondary metabolite of the fungus Glarea lozoyensis. In this study, we investigated the effects of mannitol as the sole carbon source on pneumocandin B0 production by G. lozoyensis. The osmotic pressure is more important in enhancing pneumocandin B0 production than is the substrate concentration. Based on the kinetic analysis, an osmotic stress control fed-batch strategy was developed. This strategy led to a maximum pneumocandin B0 concentration of 2711 mg/L with a productivity of 9.05 mg/L/h, representing 34.67 and 6.47% improvements, respectively, over the best result achieved by the one-stage fermentation. Furthermore, G. lozoyensis accumulated glutamate and proline as compatible solutes to resist osmotic stress, and these amino acids also provided the precursors for the enhanced pneumocandin B0 production. Osmotic stress also activated ROS (reactive oxygen species)-dependent signal transduction by upregulating the levels of related genes and increasing intracellular ROS levels by 20%. We also provided a possible mechanism for pneumocandin B0 accumulation based on signal transduction. These findings will improve our understanding of the regulatory mechanisms of pneumocandin B0 biosynthesis and may be applied to improve secondary metabolite production.
Collapse
Affiliation(s)
- Ping Song
- SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), School of Chemical Engineering and Technology, Tianjin University, 92 Weijin Road, Tianjin, 300072, China
- Jiangsu Synergetic Innovation Center for Advanced Bio-Manufacture, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, 30 South Puzhu Road, Nanjing, 211816, China
| | - Baoqi Huang
- Jiangsu Synergetic Innovation Center for Advanced Bio-Manufacture, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, 30 South Puzhu Road, Nanjing, 211816, China
| | - Sen Zhang
- Jiangsu Collaboration Innovation Center of Chinese Medical Resources Industrialization, College of Pharmacy, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, 210023, China
| | - Ke Zhang
- Jiangsu Synergetic Innovation Center for Advanced Bio-Manufacture, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, 30 South Puzhu Road, Nanjing, 211816, China
| | - Kai Yuan
- Jiangsu Synergetic Innovation Center for Advanced Bio-Manufacture, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, 30 South Puzhu Road, Nanjing, 211816, China
| | - Xiaojun Ji
- Jiangsu Synergetic Innovation Center for Advanced Bio-Manufacture, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, 30 South Puzhu Road, Nanjing, 211816, China
| | - Lujing Ren
- Jiangsu Synergetic Innovation Center for Advanced Bio-Manufacture, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, 30 South Puzhu Road, Nanjing, 211816, China
| | - Jianping Wen
- SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), School of Chemical Engineering and Technology, Tianjin University, 92 Weijin Road, Tianjin, 300072, China
| | - He Huang
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing, 211816, China.
| |
Collapse
|
30
|
Zhang F, Geng L, Huang L, Deng J, Fasoyin OE, Yao G, Wang S. Contribution of peroxisomal protein importer AflPex5 to development and pathogenesis in the fungus Aspergillus flavus. Curr Genet 2018; 64:1335-1348. [PMID: 29869688 DOI: 10.1007/s00294-018-0851-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2018] [Revised: 05/31/2018] [Accepted: 06/01/2018] [Indexed: 10/14/2022]
Abstract
Peroxisomes are important organelles that have diverse metabolic functions and participate in the pathogenicity of fungal pathogens. Previous studies indicate that most functions of peroxisomes are dependent on peroxisomal matrix proteins, which are delivered from the cytoplasm into peroxisomes by peroxisomal protein importers. In this study, the roles of peroxisomal protein importer AflPex5 were investigated in Aspergillus flavus with the application of gene disruption. AflPex5 deletion mutants failed to localize the fluorescently fused peroxisomal targeting signal 1 (PTS1) proteins to peroxisomes. Deletion of AflPex5 caused defects in sporulation, sclerotial formation, aflatoxin biosynthesis, stress response, and plant infection. Moreover, AflPex5 null mutants exhibited a significant defect in carbon metabolism and oxidants' clearance. These results indicate that the PTS1 pathway mediated by AflPex5 serves as an important role in the development, metabolism, and pathogenesis of A. flavus.
Collapse
Affiliation(s)
- Feng Zhang
- Key Laboratory of Pathogenic Fungi and Mycotoxins of Fujian Province, and School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Longpo Geng
- Key Laboratory of Pathogenic Fungi and Mycotoxins of Fujian Province, and School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Luhua Huang
- Key Laboratory of Pathogenic Fungi and Mycotoxins of Fujian Province, and School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Jili Deng
- Key Laboratory of Pathogenic Fungi and Mycotoxins of Fujian Province, and School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Opemipo Esther Fasoyin
- Key Laboratory of Pathogenic Fungi and Mycotoxins of Fujian Province, and School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Guangshan Yao
- Key Laboratory of Pathogenic Fungi and Mycotoxins of Fujian Province, and School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Shihua Wang
- Key Laboratory of Pathogenic Fungi and Mycotoxins of Fujian Province, and School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China.
| |
Collapse
|
31
|
Analysis of the Relationship between Alternative Respiration and Sterigmatocystin Formation in Aspergillus nidulans. Toxins (Basel) 2018; 10:toxins10040168. [PMID: 29677138 PMCID: PMC5923334 DOI: 10.3390/toxins10040168] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2018] [Revised: 04/16/2018] [Accepted: 04/17/2018] [Indexed: 01/14/2023] Open
Abstract
Aspergillus nidulans has one gene for alternative oxidase (EC 1.10.3.11). To investigate the relationship between this mitochondrial terminal oxidase and the formation of the mycotoxin sterigmatocystin, the encoding aodA gene was both deleted and overexpressed. Relative to the wild-type, the cyanide-resistant fraction of respiration in the late stationary stage—when sterigmatocystin production occurs—doubled in the overexpressing mutant carrying three aodA gene copies, but decreased to 10% in the deletant. Essentially identical results were obtained regardless whether the cultures were illuminated or protected from light. In contrast, sterigmatocystin yield in the aodA deletant was about half of that in the control when grown in the dark, while aodA overexpression resulted in up to 70% more sterigmatocystin formed, the yield increasing with alternative oxidase activity. Results were quite different when cultures were illuminated: under those conditions, sterigmatocystin volumetric yields were considerably lower, and statistically unvarying, regardless of the presence, absence, or the copy number of aodA. We conclude that the copy number of aodA, and hence, the balance between alternative- and cytochrome C-mediated respiration, appears to correlate with sterigmatocystin production in A. nidulans, albeit only in the absence of light.
Collapse
|