1
|
Mesterhazy A, Szabo B, Szieberth D, Tóth S, Nagy Z, Meszlenyi T, Herczig B, Berenyi A, Tóth B. Stability of Resistance of Maize to Ear Rots ( Fusarium graminearum, F. verticillioides and Aspergillus flavus) and Their Resistance to Toxin Contamination and Conclusions for Variety Registration. Toxins (Basel) 2024; 16:390. [PMID: 39330848 PMCID: PMC11435759 DOI: 10.3390/toxins16090390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 09/02/2024] [Accepted: 09/07/2024] [Indexed: 09/28/2024] Open
Abstract
All major ear rots (F. graminearum, F. verticillioides, and Aspergillus flavus) and their toxins are present in maize of preharvest origin in Hungary. Resistance can be an important tool in reducing the infection and toxin contamination from these rots in maize. Previous results identified resistance differences in maize hybrids that were suitable for use in evaluating their risk from toxigenic fungi and their toxins. During the tests, two methodical improvements were achieved: the use of three isolates of the fungus secured and a more precise estimation of resistance to ear rots and their resistance to toxin accumulation or overproduction. The improvement in sampling and the tests of subsamples made the evaluation for the statistics much more exact. This way, we were able to reduce the Within value, providing a statistically more reliable method of evaluation. Earlier data had confirmed that toxin contamination could not be predicted well from visual ear rot severity data. Contradictory results for hybrid ranking were often identified between isolates. The resistance to disease and toxin contamination is not generally valid. The new suggested methodology compares the performance of hybrids in a large number of epidemic situations to identify adaptable hybrids that can respond to diverse conditions; therefore, the stability of resistance and toxin response is decisive information to evaluate risk analyses. The increased number of disease toxin data allowed for lower LSD 5% values for toxins, a much finer analysis of toxin overproduction and underproduction, and a wider database for stability analyses. This way, we obtained important additional separated information about resistance to accumulation of toxins and about maize resistance to these pathogens that is suitable to provide much more reliable testing than was possible until now. Globally, about 50-100 million metric tons can be saved by excluding susceptible hybrids from commercial production.
Collapse
Affiliation(s)
- Akos Mesterhazy
- Cereal Research Non-Profit Ltd., P.O. Box 391, 6701 Szeged, Hungary
| | - Balazs Szabo
- Cereal Research Non-Profit Ltd., P.O. Box 391, 6701 Szeged, Hungary
| | - Denes Szieberth
- Hungarian Maize Club, Kazinczy Street 12, 8152 Kőszárhegy, Hungary
| | - Szabolcs Tóth
- Bonafarm Dalmand Inc., Felszabadulás Street 42, 7214 Dalmand, Hungary
| | - Zoltan Nagy
- Cereal Research Non-Profit Ltd., P.O. Box 391, 6701 Szeged, Hungary
| | - Tamas Meszlenyi
- Cereal Research Non-Profit Ltd., P.O. Box 391, 6701 Szeged, Hungary
| | - Beata Herczig
- Bonafarm-Babolna Feed Ltd., Laboratory Branch, 2942 Nagyigmand, Hungary
| | - Attila Berenyi
- Cereal Research Non-Profit Ltd., P.O. Box 391, 6701 Szeged, Hungary
| | - Beata Tóth
- Cereal Research Non-Profit Ltd., P.O. Box 391, 6701 Szeged, Hungary
| |
Collapse
|
2
|
Nyandi MS, Pepó P. Aspergillus and Fusarium Mycotoxin Contamination in Maize ( Zea mays L.): The Interplay of Nitrogen Fertilization and Hybrids Selection. Toxins (Basel) 2024; 16:318. [PMID: 39057958 PMCID: PMC11281323 DOI: 10.3390/toxins16070318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 07/03/2024] [Accepted: 07/11/2024] [Indexed: 07/28/2024] Open
Abstract
Maize plays a significant global role as a food source, feed, and as a raw material in industry. However, it is affected by toxin-producing fungi, mainly Fusarium graminearum, Fusarium verticillioides, and Aspergillus flavus, which compromise its quality. This study, conducted in 2022 and 2023 at the Látókép long-term research site of the University of Debrecen, Hungary, investigated the effects of different nitrogen fertilization rates (0, 90 and 150 Kgha-1 N) on mycotoxin contamination (DON vs. FB vs. AFB1) in the kernels of three (3) maize hybrids: DKC4590 (tolerant), GKT376 (sensitive), and P9610 (undefined). The results showed a significant (p = 0.05) influence of nitrogen fertilization and maize genotype on mycotoxin levels. Sole nitrogen impacts were complex and did not define a clear trend, contrary to the hybrids selected, which followed superiority to resistance. Increased nitrogen fertilization was associated with higher DON production, while hybrid selection demonstrated a clearer trend in resistance to mycotoxins. Therefore, to maximize yield and minimize mycotoxin contamination, future research should focus on optimizing nitrogen application rates and breeding for resistance to balance yield and mycotoxin management. These results suggest that while nitrogen fertilization is crucial for maximizing yield, selecting less susceptible maize hybrids remains vital for minimizing mycotoxin contamination.
Collapse
Affiliation(s)
- Muhoja Sylivester Nyandi
- Kálmán Kerpely Doctoral School of Crop Production and Horticultural Science, University of Debrecen, Böszörményi Street 138, H-4032 Debrecen, Hungary
- Department of Crop Science and Beekeeping Technology, College of Agriculture and Food Technology, University of Dar es Salaam, P.O. Box 35134, Dar es Salaam 14115, Tanzania
| | - Péter Pepó
- Institute of Crop Sciences, Faculty of Agricultural, Food Sciences and Environmental Management, University of Debrecen, Böszörményi Street 138, H-4032 Debrecen, Hungary
| |
Collapse
|
3
|
Mesterhazy A. Food Safety Aspects of Breeding Maize to Multi-Resistance against the Major (Fusarium graminearum, F. verticillioides, Aspergillus flavus) and Minor Toxigenic Fungi ( Fusarium spp.) as Well as to Toxin Accumulation, Trends, and Solutions-A Review. J Fungi (Basel) 2024; 10:40. [PMID: 38248949 PMCID: PMC10817526 DOI: 10.3390/jof10010040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 12/23/2023] [Accepted: 12/26/2023] [Indexed: 01/23/2024] Open
Abstract
Maize is the crop which is most commonly exposed to toxigenic fungi that produce many toxins that are harmful to humans and animals alike. Preharvest grain yield loss, preharvest toxin contamination (at harvest), and storage loss are estimated to be between 220 and 265 million metric tons. In the past ten years, the preharvest mycotoxin damage was stable or increased mainly in aflatoxin and fumonisins. The presence of multiple toxins is characteristic. The few breeding programs concentrate on one of the three main toxigenic fungi. About 90% of the experiments except AFB1 rarely test toxin contamination. As disease resistance and resistance to toxin contamination often differ in regard to F. graminearum, F. verticillioides, and A. flavus and their toxins, it is not possible to make a food safety evaluation according to symptom severity alone. The inheritance of the resistance is polygenic, often mixed with epistatic and additive effects, but only a minor part of their phenotypic variation can be explained. All tests are made by a single inoculum (pure isolate or mixture). Genotype ranking differs between isolates and according to aggressiveness level; therefore, the reliability of such resistance data is often problematic. Silk channel inoculation often causes lower ear rot severity than we find in kernel resistance tests. These explain the slow progress and raise skepticism towards resistance breeding. On the other hand, during genetic research, several effective putative resistance genes were identified, and some overlapped with known QTLs. QTLs were identified as securing specific or general resistance to different toxicogenic species. Hybrids were identified with good disease and toxin resistance to the three toxigenic species. Resistance and toxin differences were often tenfold or higher, allowing for the introduction of the resistance and resistance to toxin accumulation tests in the variety testing and the evaluation of the food safety risks of the hybrids within 2-3 years. Beyond this, resistance breeding programs and genetic investigations (QTL-analyses, GWAM tests, etc.) can be improved. All other research may use it with success, where artificial inoculation is necessary. The multi-toxin data reveal more toxins than we can treat now. Their control is not solved. As limits for nonregulated toxins can be introduced, or the existing regulations can be made to be stricter, the research should start. We should mention that a higher resistance to F. verticillioides and A. flavus can be very useful to balance the detrimental effect of hotter and dryer seasons on aflatoxin and fumonisin contamination. This is a new aspect to secure food and feed safety under otherwise damaging climatic conditions. The more resistant hybrids are to the three main agents, the more likely we are to reduce the toxin losses mentioned by about 50% or higher.
Collapse
Affiliation(s)
- Akos Mesterhazy
- Cereal Research Non-Profit Ltd., Alsokikotosor 9, 6726 Szeged, Hungary
| |
Collapse
|
4
|
Molnár K, Rácz C, Dövényi-Nagy T, Bakó K, Pusztahelyi T, Kovács S, Adácsi C, Pócsi I, Dobos A. The Effect of Environmental Factors on Mould Counts and AFB1 Toxin Production by Aspergillus flavus in Maize. Toxins (Basel) 2023; 15:227. [PMID: 36977118 PMCID: PMC10055717 DOI: 10.3390/toxins15030227] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 03/08/2023] [Accepted: 03/16/2023] [Indexed: 03/19/2023] Open
Abstract
The toxins produced by Aspergillus flavus can significantly inhibit the use of maize. As a result of climate change, toxin production is a problem not only in tropical and subtropical areas but in an increasing number of European countries, including Hungary. The effect of meteorological factors and irrigation on mould colonization and aflatoxin B1 (AFB1) mycotoxin production by A. flavus were investigated in natural conditions, as well as the inoculation with a toxigenic isolate in a complex field experiment for three years. As a result of irrigation, the occurrence of fungi increased, and toxin production decreased. The mould count of fungi and toxin accumulation showed differences during the examined growing seasons. The highest AFB1 content was found in 2021. The main environmental factors in predicting mould count were temperature (Tavg, Tmax ≥ 30 °C, Tmax ≥ 32 °C, Tmax ≥ 35 °C) and atmospheric drought (RHmin ≤ 40%). Toxin production was determined by extremely high daily maximum temperatures (Tmax ≥ 35 °C). At natural contamination, the effect of Tmax ≥ 35 °C on AFB1 was maximal (r = 0.560-0.569) in the R4 stage. In the case of artificial inoculation, correlations with environmental factors were stronger (r = 0.665-0.834) during the R2-R6 stages.
Collapse
Affiliation(s)
- Krisztina Molnár
- Centre for Precision Farming R&D Services, FAFSEM, University of Debrecen, H4032 Debrecen, Hungary
| | - Csaba Rácz
- Centre for Precision Farming R&D Services, FAFSEM, University of Debrecen, H4032 Debrecen, Hungary
| | - Tamás Dövényi-Nagy
- Centre for Precision Farming R&D Services, FAFSEM, University of Debrecen, H4032 Debrecen, Hungary
| | - Károly Bakó
- Centre for Precision Farming R&D Services, FAFSEM, University of Debrecen, H4032 Debrecen, Hungary
| | - Tünde Pusztahelyi
- Central Laboratory of Agricultural and Food Products, FAFSEM, University of Debrecen, H4032 Debrecen, Hungary
| | - Szilvia Kovács
- Central Laboratory of Agricultural and Food Products, FAFSEM, University of Debrecen, H4032 Debrecen, Hungary
| | - Cintia Adácsi
- Central Laboratory of Agricultural and Food Products, FAFSEM, University of Debrecen, H4032 Debrecen, Hungary
| | - István Pócsi
- Department of Molecular Biotechnology and Microbiology, Institute of Biotechnology, Faculty of Science and Technology, University of Debrecen, H4032 Debrecen, Hungary
| | - Attila Dobos
- Centre for Precision Farming R&D Services, FAFSEM, University of Debrecen, H4032 Debrecen, Hungary
| |
Collapse
|
5
|
Assessment of Maize Hybrids Resistance to Aspergillus Ear Rot and Aflatoxin Production in Environmental Conditions in Serbia. Toxins (Basel) 2022; 14:toxins14120887. [PMID: 36548784 PMCID: PMC9781229 DOI: 10.3390/toxins14120887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Revised: 12/11/2022] [Accepted: 12/13/2022] [Indexed: 12/23/2022] Open
Abstract
Aflatoxin, a naturally occurring toxin produced by the fungus Aspergillus flavus, is the most economically important mycotoxin in the world, with harmful effects on human and animal health. Preventive measures such as irrigation and planting dates can minimize aflatoxin contamination most years. However, no control strategy is completely effective when environmental conditions are extremely favorable for growth of the fungus. The most effective control method is growing maize hybrids with genetic resistance to aflatoxin contamination. The aim of this research was to evaluate the sensitivity of different maize hybrids to A. flavus infection and aflatoxin accumulation. Twenty commercial maize hybrids were evaluated in field trials with artificial inoculations using the colonized toothpicks method. The mycotoxin production potential of A. flavus isolates was confirmed by cluster amplification patterns (CAPs) analysis. The results of this research indicated the existence of significant differences in maize hybrids susceptibility to Aspergillus ear rot and aflatoxin B1 accumulation. No hybrid included in this research showed complete resistance in all conditions, but some hybrids showed partial resistance. Different hybrids also responded differently depending on the sowing date. This research showed that infection intensity is not always consistent with aflatoxin levels, and therefore visual evaluation is not enough to assess maize safety.
Collapse
|
6
|
Akohoue F, Miedaner T. Meta-analysis and co-expression analysis revealed stable QTL and candidate genes conferring resistances to Fusarium and Gibberella ear rots while reducing mycotoxin contamination in maize. FRONTIERS IN PLANT SCIENCE 2022; 13:1050891. [PMID: 36388551 PMCID: PMC9662303 DOI: 10.3389/fpls.2022.1050891] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 10/13/2022] [Indexed: 06/16/2023]
Abstract
Fusarium (FER) and Gibberella ear rots (GER) are the two most devastating diseases of maize (Zea mays L.) which reduce yield and affect grain quality worldwide, especially by contamination with mycotoxins. Genetic improvement of host resistance to effectively tackle FER and GER diseases requires the identification of stable quantitative trait loci (QTL) to facilitate the application of genomics-assisted breeding for improving selection efficiency in breeding programs. We applied improved meta-analysis algorithms to re-analyze 224 QTL identified in 15 studies based on dense genome-wide single nucleotide polymorphisms (SNP) in order to identify meta-QTL (MQTL) and colocalized genomic loci for fumonisin (FUM) and deoxynivalenol (DON) accumulation, silk (SR) and kernel (KR) resistances of both FER and GER, kernel dry-down rate (KDD) and husk coverage (HC). A high-resolution genetic consensus map with 36,243 loci was constructed and enabled the projection of 164 of the 224 collected QTL. Candidate genes (CG) mining was performed within the most refined MQTL, and identified CG were cross-validated using publicly available transcriptomic data of maize under Fusarium graminearum infection. The meta-analysis revealed 40 MQTL, of which 29 were associated each with 2-5 FER- and/or GER-related traits. Twenty-eight of the 40 MQTL were common to both FER and GER resistances and 19 MQTL were common to silk and kernel resistances. Fourteen most refined MQTL on chromosomes 1, 2, 3, 4, 7 and 9 harbored a total of 2,272 CG. Cross-validation identified 59 of these CG as responsive to FER and/or GER diseases. MQTL ZmMQTL2.2, ZmMQTL9.2 and ZmMQTL9.4 harbored promising resistance genes, of which GRMZM2G011151 and GRMZM2G093092 were specific to the resistant line for both diseases and encoded "terpene synthase21 (tps21)" and "flavonoid O-methyltransferase2 (fomt2)", respectively. Our findings revealed stable refined MQTL harboring promising candidate genes for use in breeding programs for improving FER and GER resistances with reduced mycotoxin accumulation. These candidate genes can be transferred into elite cultivars by integrating refined MQTL into genomics-assisted backcross breeding strategies.
Collapse
|
7
|
Mesterhazy A, Szieberth D, Tóth ET, Nagy Z, Szabó B, Herczig B, Bors I, Tóth B. The Role of Preharvest Natural Infection and Toxin Contamination in Food and Feed Safety in Maize, South-East Hungary, 2014-2021. J Fungi (Basel) 2022; 8:1104. [PMID: 36294669 PMCID: PMC9605659 DOI: 10.3390/jof8101104] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 10/15/2022] [Accepted: 10/16/2022] [Indexed: 11/20/2022] Open
Abstract
Mycotoxins originating in the preharvest period represent a less studied research problem, even though they are of the utmost practical significance in maize production, determining marketability (within EU limits), and storage ability, competitiveness, and profit rate. In this study, 18-23 commercial hybrids were tested between 2014 and 2021. Natural infection from Fusarium spp. was higher than 1.5%, and for Aspergillus spp. this was normally 0.01% or 0, much lower than would be considered as severe infection. In spite of this, many hybrids provided far higher toxin contamination than regulations allow. The maximum preharvest aflatoxin B1 was in 2020 (at 2286 μg/kg), and, in several cases, the value was higher than 1000 μg/kg. The hybrid differences were large. In Hungary, the presence of field-originated aflatoxin B1 was continuous, with three AFB1 epidemics in the 8 years. The highest DON contamination was in 2014 (at 27 mg/kg), and a detectable DON level was found in every hybrid. FUMB1+B2 were the highest in 2014 (at 45.78 mg/kg). At these low infection levels, correlations between visual symptoms and toxin contaminations were mostly non-significant, so it is not feasible to draw a conclusion about toxin contamination from ear rot coverage alone. The toxin contamination of hybrids for a percentage of visual infection is highly variable, and only toxin data can decide about food safety. Hybrids with no visual symptoms and high AFB1 contamination were also identified. Preharvest control, including breeding and variety registration, is therefore of the utmost importance to all three pathogens. Even natural ear rot and toxin data do not prove differences in resistance, so a high ear rot or toxin contamination level should be considered as a risk factor for hybrids. The toxin control of freshly harvested grain is vital for separating healthy and contaminated lots. In addition, proper growing and storage conditions must be ensured to protect the feed safety of the grain.
Collapse
Affiliation(s)
- Akos Mesterhazy
- Cereal Research Non-Profit Ltd., Fesu Street 1, 6701 Szeged, Hungary
| | - Denes Szieberth
- Hungarian Maize Club, Kazinczy Str. 12, 8152 Kőszárhegy, Hungary
| | - Eva Toldine Tóth
- Cereal Research Non-Profit Ltd., Fesu Street 1, 6701 Szeged, Hungary
| | - Zoltan Nagy
- Cereal Research Non-Profit Ltd., Fesu Street 1, 6701 Szeged, Hungary
| | - Balazs Szabó
- Cereal Research Non-Profit Ltd., Fesu Street 1, 6701 Szeged, Hungary
| | - Beata Herczig
- Bonafarm-Babolna Feed Ltd., Laboratory Branch, 2942 Nagyigmand, Hungary
| | - Istvan Bors
- Bonafarm-Babolna Feed Ltd., Laboratory Branch, 2942 Nagyigmand, Hungary
| | - Beata Tóth
- Cereal Research Non-Profit Ltd., Fesu Street 1, 6701 Szeged, Hungary
| |
Collapse
|
8
|
Mesterhazy A, Szabó B, Szél S, Nagy Z, Berényi A, Tóth B. Novel Insights into the Inheritance of Gibberella Ear Rot (GER), Deoxynivalenol (DON) Accumulation, and DON Production. Toxins (Basel) 2022; 14:toxins14090583. [PMID: 36136521 PMCID: PMC9504231 DOI: 10.3390/toxins14090583] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Revised: 08/10/2022] [Accepted: 08/19/2022] [Indexed: 11/16/2022] Open
Abstract
Gibberella ear rot (GER) is an important fungal ear pathogen of maize that causes ear rot and toxin contamination. Most previous works have only dealt with the visual symptoms, but not with the toxins of GER. As food and feed safety rankings depend on toxin contamination, including deoxynivalenol (DON), without toxins, nothing can be said about the risks involved in food and feed quality. Therefore, three susceptible, three medium-susceptible, and three medium-resistant mother lines were crossed with three testers with differing degrees of resistance and tested between 2017–2020. Two plot replicates and two fungal strains were used separately. The highest heterosis was found at the GER% with a 13% increase across 27 hybrids, including 7 hybrids showing negative heterosis (a higher hybrid performance above the parental mean), with a variance ranging between 63.5 and −55.4. For DON, the mean heterosis was negative at −35%, and only 10 of the 27 hybrids showed a positive heterosis. The mean heterosis for DON contamination, at 1% GER, was again negative (−19.6%, varying between 85% and 224%). Only 17 hybrids showed heterosis, while that of the other 17 was rated higher than the parental mean. A positive significant correlation was found only for GER% and DON; the other factors were not significant. Seven hybrids were identified with positive (2) or negative (5) heterosis for all traits, while the rest varied. For DON and GER, only 13 provided identical (positive or negative) heteroses. The majority of the hybrids appeared to diverge in the regulation of the three traits. The stability of GER and DON (variance across eight data sets) did not agree—only half of the genotypes responded similarly for the two traits. The genetic background for this trait is unknown, and there was no general agreement between traits. Thus, without toxin analyses, the evaluation of food safety is not possible. The variety in degrees of resistance to toxigenic fungi and resistance to toxin accumulation is an inevitable factor.
Collapse
|
9
|
Multi-Mycotoxin Long-Term Monitoring Survey on North-Italian Maize over an 11-Year Period (2011-2021): The Co-Occurrence of Regulated, Masked and Emerging Mycotoxins and Fungal Metabolites. Toxins (Basel) 2022; 14:toxins14080520. [PMID: 36006184 PMCID: PMC9416020 DOI: 10.3390/toxins14080520] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 07/26/2022] [Accepted: 07/27/2022] [Indexed: 11/17/2022] Open
Abstract
Maize is considered one of the most susceptible crops to mycotoxin-producing fungi throughout the world, mainly belonging to the Fusarium spp. and Aspergillus spp. Maize is mainly used as animal feeds in Italy, as well as for human consumption, being essential for all the protected designation of origin (DOP) products. Our study investigated the occurrence of regulated mycotoxins in 3769 maize grain samples collected from 88 storage centers by the National Monitoring Network over an 11-year period (2011–2021). Moreover, an in-depth survey over a 4-year period, characterized by extremely different meteorological conditions, was conducted to investigate the co-occurrence of regulated, masked, and emerging mycotoxins. The survey confirmed that Fusarium spp. was the most frequent fungi and fumonisins were the main mycotoxins that were constantly detected in the different years and areas. Moreover, the areas characterized by high fumonisin levels were also the most prone to contamination by emerging mycotoxins produced by the same Fusarium species of the Liseola section. On the other hand, as a result of climatic changes, maize grains have also been affected by the increased frequency of aflatoxin accumulation. Deoxynivalenol, zearalenone, and other emerging mycotoxins produced by the same Fusarium species as the Discolor section occurred more abundantly in some areas in Northern Italy and in years characterized by predisposing meteorological conditions.
Collapse
|
10
|
Dietary Exposure to Aflatoxins in Some Randomly Selected Foods and Cancer Risk Estimations of Cereals Consumed on a Ghanaian Market. J FOOD QUALITY 2022. [DOI: 10.1155/2022/5770836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Aflatoxins have gained so much reputation among all mycotoxins due to their notoriety in causing countless adverse health effects on humans as well as animals. It continues to be a major concern in food safety globally. In this study, total and constitutive aflatoxins levels as well as the carcinogenic risks posed by 110 food and feed samples (55 cereals, 20 nuts and oils, 18 animal feed, and 18 fruits and vegetables) collected from the Ho Central market in the Volta region, Ghana, were assessed. Using high-performance liquid chromatography connected to a fluorescent detector (HPLC-FLD), levels of total aflatoxins (AFtotal) and aflatoxins constituents, namely, AFB1, AFB2, AFG1, and AFG2, were analyzed. By using the model prescribed by Joint FAO/WHO Expert Committee on Food Additives (JECFA), the risks posed by the food and feed samples were determined. The degrees of toxicity were in the ranges of 0.78–234.73 μg/kg, 0.47–21.6 μg/kg, 1.01–13.75 μg/kg, and 0.66–5.51 μg/kg, respectively, for AFB1, AFB2, AFG1, and AFG2. Out of the samples analyzed for AFtotal, about 51 (46.4%) exceeded the limits of GSA and were in the range 10.63 ± 1.20–236.28 ± 4.2 μg/kg. While for EFSA, 71 (64.54%) exceeded and ranged between 4.72 ± 0.28 and 236.28 ± 4.2 μg/kg. Furthermore, estimated daily intake (EDI) of 27.10–283.70 ng/kg·bw/day, margin of exposure (MOE) of 1.409–14.76, average potency of 0–0.00396 ng aflatoxins/kg·bw/day, and cancer risks with a range of 0.107–1.122 cases/100,000 person/yr were observed. Taken together, it could be concluded that consuming cereals pose adverse effects on human health regardless of the age of the consumer.
Collapse
|
11
|
Updating the Methodology of Identifying Maize Hybrids Resistant to Ear Rot Pathogens and Their Toxins—Artificial Inoculation Tests for Kernel Resistance to Fusarium graminearum, F. verticillioides and Aspergillus flavus. J Fungi (Basel) 2022; 8:jof8030293. [PMID: 35330295 PMCID: PMC8954121 DOI: 10.3390/jof8030293] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 03/09/2022] [Accepted: 03/09/2022] [Indexed: 02/05/2023] Open
Abstract
Resistance to toxigenic fungi and their toxins in maize is a highly important research topic, as mean global losses are estimated at about 10% of the yield. Resistance and toxin data of the hybrids are mostly not given, so farmers are not informed about the food safety risks of their grown hybrids. According to the findings aflatoxin regularly occurs at preharvest in Hungary and possibly other countries in the region can be jeopardized. We tested, with an improved methodology (two isolates, three pathogens, and a toxin control), 18 commercial hybrids (2017–2020) for kernel resistance (%), and for toxin contamination separately by two–two isolates of F. graminearum, F. verticillioides (mg/kg), and A. flavus (μg/kg). The preharvest toxin contamination was measured in the controls. Highly significant kernel resistance and toxin content differences were identified between hybrids to the different fungi. Extreme high toxin production was found for each toxic species. Only about 10–15% of the hybrids showed higher resistance to the fungal species tested and lower contamination level of their toxins. The lacking correlations between resistance to different fungi and toxins suggest that resistance to different fungi and response to toxin contamination inherits independently, so a toxin analysis is necessary. For safety risk estimation, separated artificial and natural kernel infection and toxin data are needed against all pathogens. Higher resistance to A. flavus and F. verticillioides stabilizes or improves feed safety in hot and dry summers, balancing the harmful effect of climate changes. Resistance and toxin tests during variety registration is an utmost necessity. The exclusion of susceptible or highly susceptible hybrids from commercial production results in reduced toxin contamination.
Collapse
|
12
|
Influence of Endosperm Starch Composition on Maize Response to Fusarium temperatum Scaufl. & Munaut. Toxins (Basel) 2022; 14:toxins14030200. [PMID: 35324697 PMCID: PMC8951129 DOI: 10.3390/toxins14030200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Revised: 02/24/2022] [Accepted: 03/04/2022] [Indexed: 11/17/2022] Open
Abstract
Fusarium temperatum Scaufl. & Munaut is a newly described taxon belonging to the Fusarium fujikuroi species complex (FFSC) and a frequent causative factor of maize ear rot. The aim of the present study was to determine the responses to the disease in maize populations differing in endosperm features that were classified to flint, dent, and a group of plants with intermediate kernel characteristics. In inoculation studies, substantial variation of host response to the fungus was found among the tested maize types. The dent-type kernels contained significantly less amylose (28.27%) and exhibited significantly higher rates of infection (IFER = 2.10) and contamination by beauvericin (7.40 mg kg−1) than plants of the flint maize subpopulation. The study documents a significant positive correlation between the Fusarium ear rot intensity (IFER) and ergosterol content (the R value ranged from 0.396 in 2015 to 0.735 in 2018) and between IFER and the presence of beauvericin (the R value ranged from 0.364 in 2015 to 0.785 in 2017). The negative correlation between (IFER) and amylose content (ranging from R = −0.303 to R= −0.180) stresses the role of the endosperm starch composition in the kernel resistance to Fusarium ear rot. The conducted study indicated that the risk of kernel infection and contamination with fungal metabolites (beauvericin and ergosterol) was associated with the maize type kernels.
Collapse
|
13
|
Hay WT, McCormick SP, Vaughan MM. Effects of Atmospheric CO2 and Temperature on Wheat and Corn Susceptibility to Fusarium graminearum and Deoxynivalenol Contamination. PLANTS 2021; 10:plants10122582. [PMID: 34961056 PMCID: PMC8709488 DOI: 10.3390/plants10122582] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Revised: 11/20/2021] [Accepted: 11/22/2021] [Indexed: 11/16/2022]
Abstract
This work details the impact of atmospheric CO2 and temperature conditions on two strains of Fusarium graminearum, their disease damage, pathogen growth, mycotoxin accumulation, and production per unit fungal biomass in wheat and corn. An elevated atmospheric CO2 concentration, 1000 ppm CO2, significantly increased the accumulation of deoxynivalenol in infected plants. Furthermore, growth in cool growing conditions, 20 °C/18 °C, day and night, respectively, resulted in the highest amounts of pathogen biomass and toxin accumulation in both inoculated wheat and corn. Warm temperatures, 25 °C/23 °C, day and night, respectively, suppressed pathogen growth and toxin accumulation, with reductions as great as 99% in corn. In wheat, despite reduced pathogen biomass and toxin accumulation at warm temperatures, the fungal pathogen was more aggressive with greater disease damage and toxin production per unit biomass. Disease outcomes were also pathogen strain specific, with complex interactions between host, strain, and growth conditions. However, we found that atmospheric CO2 and temperature had essentially no significant interactions, except for greatly increased deoxynivalenol accumulation in corn at cool temperatures and elevated CO2. Plants were most susceptible to disease damage at warm and cold temperatures for wheat and corn, respectively. This work helps elucidate the complex interaction between the abiotic stresses and biotic susceptibility of wheat and corn to Fusarium graminearum infection to better understand the potential impact global climate change poses to future food security.
Collapse
|
14
|
Application of Novel Non-Thermal Physical Technologies to Degrade Mycotoxins. J Fungi (Basel) 2021; 7:jof7050395. [PMID: 34069444 PMCID: PMC8159112 DOI: 10.3390/jof7050395] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 05/12/2021] [Accepted: 05/13/2021] [Indexed: 01/04/2023] Open
Abstract
Mycotoxins cause adverse effects on human health. Therefore, it is of the utmost importance to confront them, particularly in agriculture and food systems. Non-thermal plasma, electron beam radiation, and pulsed light are possible novel non-thermal technologies offering promising results in degrading mycotoxins with potential for practical applications. In this paper, the available publications are reviewed-some of them report efficiency of more than 90%, sometimes almost 100%. The mechanisms of action, advantages, efficacy, limitations, and undesirable effects are reviewed and discussed. The first foretastes of plasma and electron beam application in the industry are in the developing stages, while pulsed light has not been employed in large-scale application yet.
Collapse
|
15
|
Leggieri MC, Toscano P, Battilani P. Predicted Aflatoxin B 1 Increase in Europe Due to Climate Change: Actions and Reactions at Global Level. Toxins (Basel) 2021; 13:292. [PMID: 33924246 PMCID: PMC8074758 DOI: 10.3390/toxins13040292] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 04/16/2021] [Accepted: 04/18/2021] [Indexed: 02/07/2023] Open
Abstract
Climate change (CC) is predicted to increase the risk of aflatoxin (AF) contamination in maize, as highlighted by a project supported by EFSA in 2009. We performed a comprehensive literature search using the Scopus search engine to extract peer-reviewed studies citing this study. A total of 224 papers were identified after step I filtering (187 + 37), while step II filtering identified 25 of these papers for quantitative analysis. The unselected papers (199) were categorized as "actions" because they provided a sounding board for the expected impact of CC on AFB1 contamination, without adding new data on the topic. The remaining papers were considered as "reactions" of the scientific community because they went a step further in their data and ideas. Interesting statements taken from the "reactions" could be summarized with the following keywords: Chain and multi-actor approach, intersectoral and multidisciplinary, resilience, human and animal health, and global vision. In addition, fields meriting increased research efforts were summarized as the improvement of predictive modeling; extension to different crops and geographic areas; and the impact of CC on fungi and mycotoxin co-occurrence, both in crops and their value chains, up to consumers.
Collapse
Affiliation(s)
- Marco Camardo Leggieri
- Department of Sustainable Crop Production (DI.PRO.VE.S.), Università Cattolica del Sacro Cuore, Via Emilia Parmense 84, 29122 Piacenza, Italy;
| | - Piero Toscano
- IBE-CNR, Institute of BioEconomy-National Research Council, Via Giovanni Caproni 8, 50145 Florence, Italy;
| | - Paola Battilani
- Department of Sustainable Crop Production (DI.PRO.VE.S.), Università Cattolica del Sacro Cuore, Via Emilia Parmense 84, 29122 Piacenza, Italy;
| |
Collapse
|
16
|
Logrieco A, Battilani P, Leggieri MC, Jiang Y, Haesaert G, Lanubile A, Mahuku G, Mesterházy A, Ortega-Beltran A, Pasti M, Smeu I, Torres A, Xu J, Munkvold G. Perspectives on Global Mycotoxin Issues and Management From the MycoKey Maize Working Group. PLANT DISEASE 2021; 105:525-537. [PMID: 32915118 DOI: 10.1094/pdis-06-20-1322-fe] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
During the last decade, there have been many advances in research and technology that have greatly contributed to expanded capabilities and knowledge in detection and measurement, characterization, biosynthesis, and management of mycotoxins in maize. MycoKey, an EU-funded Horizon 2020 project, was established to advance knowledge and technology transfer around the globe to address mycotoxin impacts in key food and feed chains. MycoKey included several working groups comprising international experts in different fields of mycotoxicology. The MycoKey Maize Working Group recently convened to gather information and strategize for the development and implementation of solutions to the maize mycotoxin problem in light of current and emerging technologies. This feature summarizes the Maize WG discussion and recommendations for addressing mycotoxin problems in maize. Discussions focused on aflatoxins, deoxynivalenol, fumonisins, and zearalenone, which are the most widespread and persistently important mycotoxins in maize. Although regional differences were recognized, there was consensus about many of the priorities for research and effective management strategies. For preharvest management, genetic resistance and selecting adapted maize genotypes, along with insect management, were among the most fruitful strategies identified across the mycotoxin groups. For postharvest management, the most important practices included timely harvest, rapid grain drying, grain cleaning, and carefully managed storage conditions. Remediation practices such as optical sorting, density separation, milling, and chemical detoxification were also suggested. Future research and communication priorities included advanced breeding technologies, development of risk assessment tools, and the development and dissemination of regionally relevant management guidelines.
Collapse
Affiliation(s)
- Antonio Logrieco
- National Council of Research, Institute of Sciences of Food Production, Bari, Italy
| | - Paola Battilani
- Department of Sustainable Crop Production, Universita Cattolica del Sacro Cuore, Campus di Piacenza, Piacenza, Italy
| | - Marco Camardo Leggieri
- Department of Sustainable Crop Production, Universita Cattolica del Sacro Cuore, Campus di Piacenza, Piacenza, Italy
| | - Yu Jiang
- Institute of Plant Protection, Liaoning Academy of Agricultural Sciences, Shenyang, China
| | - Geert Haesaert
- Faculty Bioscience Engineering, Department of Plants and Crops, Ghent University, Ghent, Belgium
| | - Alessandra Lanubile
- Department of Sustainable Crop Production, Universita Cattolica del Sacro Cuore, Campus di Piacenza, Piacenza, Italy
| | - George Mahuku
- International Institute of Tropical Agriculture, Dar es Salaam, Tanzania
| | | | | | - Marco Pasti
- Italian Corn Growers' Association, Eraclea, Italy
| | - Irina Smeu
- National Research & Development Institute for Food Bioresources-IBA Bucharest, Romania
| | - Adriana Torres
- Microbiology and Immunology Department, IMICO-Universidad Nacional de Río Cuarto, Rio Cuarto, Argentina
| | - Jing Xu
- Institute of Plant Protection, Liaoning Academy of Agricultural Sciences, Shenyang, China
| | - Gary Munkvold
- Department of Plant Pathology and Microbiology, Iowa State University, Ames, IA
| |
Collapse
|
17
|
Dövényi-Nagy T, Rácz C, Molnár K, Bakó K, Szláma Z, Jóźwiak Á, Farkas Z, Pócsi I, Dobos AC. Pre-Harvest Modelling and Mitigation of Aflatoxins in Maize in a Changing Climatic Environment-A Review. Toxins (Basel) 2020; 12:E768. [PMID: 33291729 PMCID: PMC7761929 DOI: 10.3390/toxins12120768] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 11/25/2020] [Accepted: 12/02/2020] [Indexed: 01/13/2023] Open
Abstract
Aflatoxins (AFs) are harmful secondary metabolites produced by various moulds, among which Aspergillus flavus is the major AF-producer fungus. These mycotoxins have carcinogenic or acute toxigenic effects on both humans and food producing animals and, therefore, the health risks and also the potential economic damages mounted by them have led to legal restrictions, and several countries have set maximum allowable limits for AF contaminations in food and feed. While colonization of food and feed and AF production by A. flavus are highly supported by the climatic conditions in tropical and subtropical geographic regions, countries in the temperate climate zones are also increasingly exposed to AF-derived health risks due to climate change. In the present study, we have reviewed the available mathematical models as risk assessment tools to predict the possibility of A. flavus infection and levels of AF contaminations in maize in a changing climatic environment. After highlighting the benefits and possible future improvements of these models, we summarize the current agricultural practices used to prevent or, at least, mitigate the deleterious consequences of AF contaminations.
Collapse
Affiliation(s)
- Tamás Dövényi-Nagy
- Agrometeorological and Agroecological Monitoring Centre, AKIT-DTTI, University of Debrecen, H4032 Debrecen, Hungary; (C.R.); (K.M.); (K.B.); (Z.S.); (A.C.D.)
| | - Csaba Rácz
- Agrometeorological and Agroecological Monitoring Centre, AKIT-DTTI, University of Debrecen, H4032 Debrecen, Hungary; (C.R.); (K.M.); (K.B.); (Z.S.); (A.C.D.)
| | - Krisztina Molnár
- Agrometeorological and Agroecological Monitoring Centre, AKIT-DTTI, University of Debrecen, H4032 Debrecen, Hungary; (C.R.); (K.M.); (K.B.); (Z.S.); (A.C.D.)
| | - Károly Bakó
- Agrometeorological and Agroecological Monitoring Centre, AKIT-DTTI, University of Debrecen, H4032 Debrecen, Hungary; (C.R.); (K.M.); (K.B.); (Z.S.); (A.C.D.)
| | - Zsombor Szláma
- Agrometeorological and Agroecological Monitoring Centre, AKIT-DTTI, University of Debrecen, H4032 Debrecen, Hungary; (C.R.); (K.M.); (K.B.); (Z.S.); (A.C.D.)
| | - Ákos Jóźwiak
- Digital Food Institute, University of Veterinary Medicine Budapest, H1078 Budapest, Hungary; (Á.J.); (Z.F.)
| | - Zsuzsa Farkas
- Digital Food Institute, University of Veterinary Medicine Budapest, H1078 Budapest, Hungary; (Á.J.); (Z.F.)
| | - István Pócsi
- Department of Molecular Biotechnology and Microbiology, Institute of Biotechnology, Faculty of Science and Technology, University of Debrecen, H4032 Debrecen, Hungary;
| | - Attila Csaba Dobos
- Agrometeorological and Agroecological Monitoring Centre, AKIT-DTTI, University of Debrecen, H4032 Debrecen, Hungary; (C.R.); (K.M.); (K.B.); (Z.S.); (A.C.D.)
| |
Collapse
|
18
|
Stagnati L, Martino M, Battilani P, Busconi M, Lanubile A, Marocco A. Development of early maturity maize hybrids for resistance to Fusarium and Aspergillus ear rots and their associated mycotoxins. WORLD MYCOTOXIN J 2020. [DOI: 10.3920/wmj2019.2554] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Maize is mainly affected by two fungal pathogens, Fusarium verticillioides and Aspergillus flavus, causing Fusarium ear rot (FER) and Aspergillus ear rot (AER), respectively. Both fungi are of concern to stakeholders as they affect crop yield and quality, contaminating maize grains with the mycotoxins fumonisins and aflatoxins. The easiest strategy to prevent pre-harvest contamination by F. verticillioides and A. flavus is to develop maize hybrids resistant to FER and AER, as well as to their associated mycotoxins. The objective of this investigation was to test 46 F1 hybrids, originated from different Italian, US and Canadian breeding groups, for these important traits and their agronomic performances. All hybrids were planted and artificially inoculated with toxigenic strains of F. verticillioides and A. flavus at two locations in 2017, and the best performing 17 out of 46 were also tested in 2018. Ear rots were present in all hybrids in 2017 and 2018, with percentages ranging from 6.50 to 49.50%, and 5.50 to 45.53%, for FER and AER, respectively. Seven hybrids (PC8, PC15, PC9, PC11, PC14, PC34 and PC17) presented the lowest levels of both diseases considering the overall locations and growing seasons, and three of these (PC8, PC11 and PC14) were also amongst the least mycotoxin contaminated hybrids in 2017. The inbred lines used in hybrid production may provide additional sources of resistance suitable in breeding programs targeting multiple pathogens and their mycotoxins.
Collapse
Affiliation(s)
- L. Stagnati
- Department of Sustainable Crop Production, Università Cattolica del Sacro Cuore, Via E. Parmense, 84, 29122, Piacenza, Italy
| | - M. Martino
- Department of Sustainable Crop Production, Università Cattolica del Sacro Cuore, Via E. Parmense, 84, 29122, Piacenza, Italy
| | - P. Battilani
- Department of Sustainable Crop Production, Università Cattolica del Sacro Cuore, Via E. Parmense, 84, 29122, Piacenza, Italy
| | - M. Busconi
- Department of Sustainable Crop Production, Università Cattolica del Sacro Cuore, Via E. Parmense, 84, 29122, Piacenza, Italy
- Research Centre for Biodiversity and Ancient DNA, Università Cattolica del Sacro Cuore, Via E. Parmense, 84, 29122, Piacenza, Italy
| | - A. Lanubile
- Department of Sustainable Crop Production, Università Cattolica del Sacro Cuore, Via E. Parmense, 84, 29122, Piacenza, Italy
- Research Centre for Biodiversity and Ancient DNA, Università Cattolica del Sacro Cuore, Via E. Parmense, 84, 29122, Piacenza, Italy
| | - A. Marocco
- Department of Sustainable Crop Production, Università Cattolica del Sacro Cuore, Via E. Parmense, 84, 29122, Piacenza, Italy
- Research Centre for Biodiversity and Ancient DNA, Università Cattolica del Sacro Cuore, Via E. Parmense, 84, 29122, Piacenza, Italy
| |
Collapse
|
19
|
Abstract
Global grain production needs a significant increase in output in the coming decades in order to cover the food and feed consumption needs of mankind. As sustainability is the key factor in production, the authors investigate global grain production, the losses along the value chain, and future solutions. Global wheat, maize, rice, and soybean production peaked at 2.102 million tons (mt) of harvested grain in 2018. Pre-harvest losses due to diseases, animal pests, weeds, and abiotic stresses and harvest destroy yearly amount to about 35% of the total possible biological product of 3.153 mt, with 1051.5 mt being lost before harvest. The losses during harvest and storage through toxin contamination are responsible for 690 mt, with a total of 1.741 mt or 83% of the total newly stored grain. Limited cooperation can be experienced between scientific research, plant breeding, plant protection, agronomy, and society, and in addition, their interdependence is badly understood. Plant breeding can help to reduce a significant part of field loss up to 300 mt (diseases, toxins, water and heat stress) and up to 220 mt during storage (toxin contamination). The direct and indirect impact of pest management on production lead to huge grain losses. The main task is to reduce grain losses during production and storage and consumption. Better harvest and storage conditions could prevent losses of 420 mt. The education of farmers by adopting the vocational school system is a key issue in the prevention of grain loss. In addition, extension services should be created to demonstrate farmers crop management in practice. A 50% reduction of grain loss and waste along the value chain seems to be achievable for the feeding 3–4 billion more people in a sustainable way without raising genetic yields of crop cultivars.
Collapse
|
20
|
Gaikpa DS, Miedaner T. Genomics-assisted breeding for ear rot resistances and reduced mycotoxin contamination in maize: methods, advances and prospects. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2019; 132:2721-2739. [PMID: 31440772 DOI: 10.1007/s00122-019-03412-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Accepted: 08/13/2019] [Indexed: 05/26/2023]
Abstract
Genetic mapping, genomic profiling and bioinformatic approaches were used to identify putative resistance genes for ear rots and low mycotoxin contamination in maize. Genomic selection seems to have good perspectives. Maize is globally an indispensable crop for humans and livestock. About 30% of yield is lost by fungal diseases with Gibberella, Fusarium and Aspergillus ear rots (ERs) having a high economic impact in most maize-growing regions of the world. They reduce not only yield, but also contaminate grains with mycotoxins like deoxynivalenol, zearalenone, fumonisins and aflatoxins, respectively. These mycotoxins pose serious health problems to humans and animals. A number of studies have been conducted to dissect the genetic architecture of resistance to these three major ear rots over the past decade. The review concentrates on studies carried out to locate quantitative trait loci (QTL) and candidate genes (CG) on the maize genome as well as the application of genomic selection in maize for resistance against Fusarium graminearum, Fusarium verticillioides and Aspergillus flavus. QTL studies by linkage or genome-wide association mapping, omic technologies (genomics, proteomics, transcriptomics and metabolomics) and bioinformatics are the methods used in the current studies to propose resistance genes against ear rot pathogens. Though a number of QTL and CG are reported, only a few specific genes were found to directly confer ER resistance in maize. A combination of two or more gene identification methods would provide a more powerful and reliable tool. Genomic selection seems to be promising for ER resistance breeding, but there are only a limited number of studies in this area. A strategy that can accurately validate and predict genotypes with major effect QTL and CG for selection will be worthwhile for practical breeding against ERs and mycotoxin contamination in maize.
Collapse
Affiliation(s)
- David Sewordor Gaikpa
- State Plant Breeding Institute, University of Hohenheim, Fruwirthstr. 21, 70599, Stuttgart, Germany
| | - Thomas Miedaner
- State Plant Breeding Institute, University of Hohenheim, Fruwirthstr. 21, 70599, Stuttgart, Germany.
| |
Collapse
|