1
|
Drobac Backović D, Tokodi N. Blue revolution turning green? A global concern of cyanobacteria and cyanotoxins in freshwater aquaculture: A literature review. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 360:121115. [PMID: 38749125 DOI: 10.1016/j.jenvman.2024.121115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 04/25/2024] [Accepted: 05/06/2024] [Indexed: 06/05/2024]
Abstract
To enhance productivity, aquaculture is intensifying, with high-density fish ponds and increased feed input, contributing to nutrient load and eutrophication. Climate change further exacerbates cyanobacterial blooms and cyanotoxin production that affect aquatic organisms and consumers. A review was conducted to outline this issue from its inception - eutrophication, cyanobacterial blooms, their harmful metabolites and consequential effects (health and economic) in aquacultures. The strength of evidence regarding the relationship between cyanobacteria/cyanotoxins and potential consequences in freshwater aquacultures (fish production) globally were assessed as well, while identifying knowledge gaps and suggesting future research directions. With that aim several online databases were searched through June 2023 (from 2000), and accessible publications conducted in aquacultures with organisms for human consumption, reflecting cyanotoxin exposure, were selected. Data on cyanobacteria/cyanotoxins in aquacultures and its products worldwide were extracted and analyzed. Selected 63 papers from 22 countries were conducted in Asia (48%), Africa (22%), America (22%) and Europe (8%). Microcystis aeruginosa was most frequent, among over 150 cyanobacterial species. Cyanobacterial metabolites (mostly microcystins) were found in aquaculture water and fish from 18 countries (42 and 33 papers respectively). The most affected were small and shallow fish ponds, and omnivorous or carnivorous fish species. Cyanotoxins were detected in various fish organs, including muscles, with levels exceeding the tolerable daily intake in 60% of the studies. The majority of research was done in developing countries, employing less precise detection methods, making the obtained values estimates. To assess the risk of human exposure, the precise levels of all cyanotoxins, not just microcystins are needed, including monitoring their fate in aquatic food chains and during food processing. Epidemiological research on health consequences, setting guideline values, and continuous monitoring are necessary as well. Further efforts should focus on methods for elimination, prevention, and education.
Collapse
Affiliation(s)
- Damjana Drobac Backović
- University of Novi Sad, Faculty of Sciences, Department of Biology and Ecology, Trg Dositeja Obradovića 3, Novi Sad, 21000, Serbia
| | - Nada Tokodi
- University of Novi Sad, Faculty of Sciences, Department of Biology and Ecology, Trg Dositeja Obradovića 3, Novi Sad, 21000, Serbia; Jagiellonian University, Faculty of Biochemistry, Biophysics and Biotechnology, Laboratory of Metabolomics, Gronostajowa 7, Krakow, 30387, Poland.
| |
Collapse
|
2
|
Drobac Backović D, Tokodi N. Cyanotoxins in food: Exposure assessment and health impact. Food Res Int 2024; 184:114271. [PMID: 38609248 DOI: 10.1016/j.foodres.2024.114271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 03/08/2024] [Accepted: 03/21/2024] [Indexed: 04/14/2024]
Abstract
The intricate nature of cyanotoxin exposure through food reveals a complex web of risks and uncertainties in our dietary choices. With the aim of starting to unravel this intricate nexus, a comprehensive review of 111 papers from the past two decades investigating cyanotoxin contamination in food was undertaken. It revealed a widespread occurrence of cyanotoxins in diverse food sources across 31 countries. Notably, 68% of the studies reported microcystin concentrations exceeding established Tolerable Daily Intake levels. Cyanotoxins were detected in muscles of many fish species, and while herbivorous fish exhibited the highest recorded concentration, omnivorous species displayed a higher propensity for cyanotoxin accumulation, exemplified by Oreochromis niloticus. Beyond fish, crustaceans and bivalves emerged as potent cyanotoxin accumulators. Gaps persist regarding contamination of terrestrial and exotic animals and their products, necessitating further exploration. Plant contamination under natural conditions remains underreported, yet evidence underscores irrigation-driven cyanotoxin accumulation, particularly affecting leafy vegetables. Finally, cyanobacterial-based food supplements often harbored cyanotoxins (57 % of samples were positive) warranting heightened scrutiny, especially for Aphanizomenon flos-aquae-based products. Uncertainties surround precise concentrations due to methodological variations (chemical and biochemical) and extraction limitations, along with the enigmatic fate of toxins during storage, processing, and digestion. Nonetheless, potential health consequences of cyanotoxin exposure via contaminated food include gastrointestinal and neurological disorders, organ damage (e.g. liver, kidneys, muscles), and even elevated cancer risks. While microcystins received significant attention, knowledge gaps persist regarding other cyanotoxins' accumulation, exposure, and effects, as well as combined exposure via multiple pathways. Intriguing and complex, cyanotoxin exposure through food beckons further research for our safer and healthier diets.
Collapse
Affiliation(s)
- Damjana Drobac Backović
- University of Novi Sad, Faculty of Sciences, Department of Biology and Ecology, Trg Dositeja Obradovića 3, Novi Sad 21000, Serbia
| | - Nada Tokodi
- University of Novi Sad, Faculty of Sciences, Department of Biology and Ecology, Trg Dositeja Obradovića 3, Novi Sad 21000, Serbia; Jagiellonian University, Faculty of Biochemistry, Biophysics and Biotechnology, Laboratory of Metabolomics, Gronostajowa 7, Krakow 30387, Poland.
| |
Collapse
|
3
|
Mutoti MI, Jideani AI, Madala NE, Gumbo JR. The occurrence and human health risk assessment of microcystins in diverse food matrixes during production. Heliyon 2024; 10:e29882. [PMID: 38681651 PMCID: PMC11053293 DOI: 10.1016/j.heliyon.2024.e29882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 04/15/2024] [Accepted: 04/17/2024] [Indexed: 05/01/2024] Open
Abstract
Globally, the presence of cyanotoxins in water supplies and food has been widely investigated for over a decade. Cyanotoxins are harmful metabolites produced by toxic cyanobacterial genera. These metabolites belong to diverse chemical classes, with a variety of physicochemical properties, chemical structures, and toxic activities. The present study seeks to investigate the occurrence of cyanotoxins in water supplies destined for food processing and assess the human health risk from exposure to cyanotoxins. To achieve this, a simple, sensitive, and reliable analytical method was developed for the determination of microcystins (MC-RR, MC-LR, MC-YR) in process water, raw maize meal, and cooked maize (porridge) at ppb (parts per billion) levels. These compounds were extracted using Solid Phase Extraction (SPE) with optimized parameters; thereafter, Liquid Chromatography-tandem Mass Spectrometry (LC-MS/MS) was used for the rapid determination of the analytes selected for the present study. The method developed was applied to samples collected from the meal grinding station located in Mawoni village in South Africa; and was able to detect and quantify all the target cyanotoxins. MC-LR, MC-YR and MC-RR were detected at concentrations ranging from 10 to 11.2 μg/L, 9.1-9.4 μg/L, and 2.3-3.5 μg/L, in water samples, respectively. However, MC-YR was not detected in ground water sample. Moreover, MC-LR, MC-YR, and MC-RR concentrations in maize and porridge samples ranged between 9.2 and 11.2, 5.5-8.6, and 6.3-9.3 μg/kg dry weight, respectively. The hazard quotient index (HQi) levels found in the present study ranged between 2.2 - 8.4 and 0.11-8.9 for adults and children, respectively, representing potential risks to human health. Findings from LC-MS/MS reveal that cyanotoxins can be transferred from water to food during food processing using cyanotoxins contaminated water. Furthermore, the methods developed can be used by environmental and health agencies to strengthen the monitoring of cyanotoxins in water and food.
Collapse
Affiliation(s)
- Mulalo I. Mutoti
- Department of Environmental, Water, and Earth Sciences, Faculty of Science, Tshwane University of Technology, Pretoria, 0083, South Africa
| | - Afam I.O. Jideani
- Department of Food Science and Technology, Faculty of Science, Engineering and Agriculture, University of Venda, Private Bag X5050, Thohoyandou, 0950, South Africa
| | - Ntakadzeni E. Madala
- Department of Biochemistry and Microbiology, Faculty of Science, Engineering and Agriculture, University of Venda, Private Bag X5050, Thohoyandou, 0950, South Africa
| | - Jabulani R. Gumbo
- Department of Earth Sciences, Faculty of Science, Engineering and Agriculture, University of Venda, Private Bag X5050, Thohoyandou, 0950, South Africa
| |
Collapse
|
4
|
Li SC, Gu LH, Wang YF, Wang LM, Chen L, Giesy JP, Tuo X, Xu WL, Wu QH, Liu YQ, Wu MH, Diao YY, Zeng HH, Zhang QB. A proteomic study on gastric impairment in rats caused by microcystin-LR. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 917:169306. [PMID: 38103614 DOI: 10.1016/j.scitotenv.2023.169306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 11/28/2023] [Accepted: 12/10/2023] [Indexed: 12/19/2023]
Abstract
Microcystins (MCs) are the most common cyanobacterial toxins. Epidemiological investigation showed that exposure to MCs can cause gastro-intestinal symptoms, gastroenteritis and gastric cancer. MCs can also accumulate in and cause histopathological damage to stomach. However, the exact mechanisms by which MCs cause gastric injury were unclear. In this study, Wistar rats were administrated 50, 75 or 100 μg microcystin-LR (MC-LR)/kg, body mass (bm) via tail vein, and histopathology, response of anti-oxidant system and the proteome of gastric tissues at 24 h after exposure were studied. Bleeding of fore-stomach and gastric corpus, inflammation and necrosis in gastric corpus and exfoliation of mucosal epithelial cells in gastric antrum were observed following acute MC-LR exposure. Compared with controls, activities of superoxide dismutase (SOD) were significantly greater in gastric tissues of exposed rats, while activities of catalase (CAT) were less in rats administrated 50 μg MC-LR/kg, bm, and concentrations of glutathione (GSH) and malondialdehyde (MDA) were greater in rats administrated 75 or 100 μg MC-LR/kg, bm. These results indicated that MC-LR could disrupt the anti-oxidant system and cause oxidative stress. The proteomic results revealed that MC-LR could affect expressions of proteins related to cytoskeleton, immune system, gastric functions, and some signaling pathways, including platelet activation, complement and coagulation cascades, and ferroptosis. Quantitative real-time PCR (qRT-PCR) analysis showed that transcriptions of genes for ferroptosis and gastric function were altered, which confirmed results of proteomics. Overall, this study illustrated that MC-LR could induce gastric dysfunction, and ferroptosis might be involved in MC-LR-induced gastric injury. This study provided novel insights into mechanisms of digestive diseases induced by MCs.
Collapse
Affiliation(s)
- Shang-Chun Li
- Environmental Health Effects and Risk Assessment Key Laboratory of Luzhou, School of Public Health, Southwest Medical University, Luzhou 646000, China
| | - Li-Hong Gu
- Environmental Health Effects and Risk Assessment Key Laboratory of Luzhou, School of Public Health, Southwest Medical University, Luzhou 646000, China
| | - Yan-Fang Wang
- Environmental Health Effects and Risk Assessment Key Laboratory of Luzhou, School of Public Health, Southwest Medical University, Luzhou 646000, China
| | - Li-Mei Wang
- Environmental Health Effects and Risk Assessment Key Laboratory of Luzhou, School of Public Health, Southwest Medical University, Luzhou 646000, China
| | - Liang Chen
- Qilu Lake Field Scientific Observation and Research Station for Plateau Shallow Lake in Yunnan Province, Institute for Ecological Research and Pollution Control of Plateau Lakes, School of Ecology and Environmental Science, Yunnan University, Kunming 650500, China; Donghu Experimental Station of Lake Ecosystems, State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; State Key Laboratory of Eco-hydraulics in Northwest Arid Region, Faculty of Water Resources and Hydroelectric Engineering, Xi'an University of Technology, Xi'an 710048, China.
| | - John P Giesy
- Department of Veterinary Biomedical Sciences, Toxicology Centre, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5B3, Canada
| | - Xun Tuo
- College of Chemistry, Nanchang University, Nanchang 330031, China
| | - Wen-Li Xu
- Donghu Experimental Station of Lake Ecosystems, State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qian-Hui Wu
- School of Ecology and Environment, Anhui Normal University, Wuhu 241002, China
| | - Yi-Qing Liu
- Qilu Lake Field Scientific Observation and Research Station for Plateau Shallow Lake in Yunnan Province, Institute for Ecological Research and Pollution Control of Plateau Lakes, School of Ecology and Environmental Science, Yunnan University, Kunming 650500, China
| | - Ming-Huo Wu
- Environmental Health Effects and Risk Assessment Key Laboratory of Luzhou, School of Public Health, Southwest Medical University, Luzhou 646000, China
| | - Yang-Yang Diao
- Department of Pediatrics, Southwest Medical University, Luzhou 646000, China
| | - Hao-Hang Zeng
- Environmental Health Effects and Risk Assessment Key Laboratory of Luzhou, School of Public Health, Southwest Medical University, Luzhou 646000, China
| | - Qing-Bi Zhang
- Environmental Health Effects and Risk Assessment Key Laboratory of Luzhou, School of Public Health, Southwest Medical University, Luzhou 646000, China.
| |
Collapse
|
5
|
Ren X, Mao M, Feng M, Peng T, Long X, Yang F. Fate, abundance and ecological risks of microcystins in aquatic environment: The implication of microplastics. WATER RESEARCH 2024; 251:121121. [PMID: 38277829 DOI: 10.1016/j.watres.2024.121121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Revised: 12/14/2023] [Accepted: 01/07/2024] [Indexed: 01/28/2024]
Abstract
Microcystins are highly toxic cyanotoxins and have been produced worldwide with the global expansion of harmful cyanobacterial blooms (HABs), posing serious threats to human health and ecosystem safety. Yet little knowledge is available on the underlying process occurring in the aquatic environment with microcystins. Microplastics as vectors for pollutants has received growing attention and are widely found co-existing with microcystins. On the one hand, microplastics could react with microcystins by adsorption, altering their environmental behavior and ecological risks. On the other hand, particular attention should be given to microplastics due to their implications on the outbreak of HABs and the generation and release of microcystins. However, limited reviews have been undertaken to link the co-existing microcystins and microplastics in natural water. This study aims to provide a comprehensive understanding on the environmental relevance of microcystins and microplastics and their potential interactions, with particular emphasis on the adsorption, transport, sources, ecotoxicity and environmental transformation of microcystins affected by microplastics. In addition, current knowledge gaps and future research directions on the microcystins and microplastics are presented. Overall, this review will provide novel insights into the ecological risk of microcystins associated with microplastics in real water environment and lay foundation for the effective management of HABs and microplastic pollution.
Collapse
Affiliation(s)
- Xiaoya Ren
- Hunan Province Key Laboratory of Typical Environmental Pollution and Health Hazards, School of Public Health, Hengyang Medical School, University of South China, Hengyang 421001, China
| | - Meiyi Mao
- Hunan Province Key Laboratory of Typical Environmental Pollution and Health Hazards, School of Public Health, Hengyang Medical School, University of South China, Hengyang 421001, China
| | - Mengqi Feng
- Hunan Province Key Laboratory of Typical Environmental Pollution and Health Hazards, School of Public Health, Hengyang Medical School, University of South China, Hengyang 421001, China
| | - Tangjian Peng
- Hunan Province Key Laboratory of Typical Environmental Pollution and Health Hazards, School of Public Health, Hengyang Medical School, University of South China, Hengyang 421001, China
| | - Xizi Long
- Hunan Province Key Laboratory of Typical Environmental Pollution and Health Hazards, School of Public Health, Hengyang Medical School, University of South China, Hengyang 421001, China
| | - Fei Yang
- Hunan Province Key Laboratory of Typical Environmental Pollution and Health Hazards, School of Public Health, Hengyang Medical School, University of South China, Hengyang 421001, China; Hunan Provincial Key Laboratory of Clinical Epidemiology, Xiang Ya School of Public Health, Central South University, Changsha 410078, China.
| |
Collapse
|
6
|
Li T, Fan X, Cai M, Jiang Y, Wang Y, He P, Ni J, Mo A, Peng C, Liu J. Advances in investigating microcystin-induced liver toxicity and underlying mechanisms. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 905:167167. [PMID: 37730048 DOI: 10.1016/j.scitotenv.2023.167167] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Revised: 08/27/2023] [Accepted: 09/15/2023] [Indexed: 09/22/2023]
Abstract
Microcystins (MCs) are a class of biologically active cyclic heptapeptide pollutants produced by the freshwater alga Microcystis aeruginosa. With increased environmental pollution, MCs have become a popular research topic. In recent years, the hepatotoxicity of MCs and associated effects and mechanisms have been studied extensively. Current epidemiological data indicate that long-term human exposure to MCs can lead to severe liver toxicity, acute toxicity, and death. In addition, current toxicological studies on the liver, a vital target organ of MCs, indicate that MC contamination is associated with the development of liver cancer, nonalcoholic fatty liver, and liver fibrosis. MCs produce hepatotoxicity that affects the metabolic homeostasis of the liver, induces apoptosis, and acts as a pro-cancer factor, leading to liver lesions. MCs mainly mediate the activation of signaling pathways, such as the ERK/JNK/p38 MAPK and IL-6-STAT3 pathways, which leads to oxidative damage and even carcinogenesis. Moreover, MCs can act synergistically with other pollutants to produce combined toxicity. However, few systematic reviews have been performed on these new findings. This review systematically summarizes the toxic effects and mechanisms of MCs on the liver and discusses the combined liver toxicity effects of MCs and other pollutants to provide reference for subsequent research. The toxicity of different MC isomers deserves further study. The detection methods and limit standards of MCs in agricultural and aquatic products will represent important research directions in the future. Standard protocols for fish sampling during harmful algal blooms or to evaluate the degree of MC toxicity in nature are lacking. In future, bioinformatics can be applied to offer insights into MC toxicology research and potential drug development for MC poisoning. Further research is essential to understand the molecular mechanisms of liver function damage in combined-exposure toxicology studies to establish treatment for MC-induced liver damage.
Collapse
Affiliation(s)
- Tong Li
- Department of Cell Biology and Genetics, Institute of Cytology and Genetics, School of Basic Medical Sciences, Hengyang Medical School, Key Laboratory of Hengyang City on Biological Toxicology and Ecological Restoration, Key Laboratory of Hengyang City on Ecological Impedance Technology of Heavy Metal Pollution in Cultivated Soil of Nonferrous Metal Mining Area, Key Laboratory of Ecological Environment and Critical Human Diseases Prevention of Hunan Province Department of Education, University of South China, Hengyang, Hunan 421001, China; School of Public Health, Hengyang Medical School, Hunan Key Laboratory of Typical Environmental Pollution and Health Hazards, University of South China, Hengyang, Hunan 421001, China
| | - Xinting Fan
- Department of Cell Biology and Genetics, Institute of Cytology and Genetics, School of Basic Medical Sciences, Hengyang Medical School, Key Laboratory of Hengyang City on Biological Toxicology and Ecological Restoration, Key Laboratory of Hengyang City on Ecological Impedance Technology of Heavy Metal Pollution in Cultivated Soil of Nonferrous Metal Mining Area, Key Laboratory of Ecological Environment and Critical Human Diseases Prevention of Hunan Province Department of Education, University of South China, Hengyang, Hunan 421001, China; School of Public Health, Hengyang Medical School, Hunan Key Laboratory of Typical Environmental Pollution and Health Hazards, University of South China, Hengyang, Hunan 421001, China
| | - Meihan Cai
- Department of Cell Biology and Genetics, Institute of Cytology and Genetics, School of Basic Medical Sciences, Hengyang Medical School, Key Laboratory of Hengyang City on Biological Toxicology and Ecological Restoration, Key Laboratory of Hengyang City on Ecological Impedance Technology of Heavy Metal Pollution in Cultivated Soil of Nonferrous Metal Mining Area, Key Laboratory of Ecological Environment and Critical Human Diseases Prevention of Hunan Province Department of Education, University of South China, Hengyang, Hunan 421001, China; School of Public Health, Hengyang Medical School, Hunan Key Laboratory of Typical Environmental Pollution and Health Hazards, University of South China, Hengyang, Hunan 421001, China
| | - Yuanyuan Jiang
- Department of Cell Biology and Genetics, Institute of Cytology and Genetics, School of Basic Medical Sciences, Hengyang Medical School, Key Laboratory of Hengyang City on Biological Toxicology and Ecological Restoration, Key Laboratory of Hengyang City on Ecological Impedance Technology of Heavy Metal Pollution in Cultivated Soil of Nonferrous Metal Mining Area, Key Laboratory of Ecological Environment and Critical Human Diseases Prevention of Hunan Province Department of Education, University of South China, Hengyang, Hunan 421001, China; School of Public Health, Hengyang Medical School, Hunan Key Laboratory of Typical Environmental Pollution and Health Hazards, University of South China, Hengyang, Hunan 421001, China
| | - Yaqi Wang
- Department of Cell Biology and Genetics, Institute of Cytology and Genetics, School of Basic Medical Sciences, Hengyang Medical School, Key Laboratory of Hengyang City on Biological Toxicology and Ecological Restoration, Key Laboratory of Hengyang City on Ecological Impedance Technology of Heavy Metal Pollution in Cultivated Soil of Nonferrous Metal Mining Area, Key Laboratory of Ecological Environment and Critical Human Diseases Prevention of Hunan Province Department of Education, University of South China, Hengyang, Hunan 421001, China; School of Public Health, Hengyang Medical School, Hunan Key Laboratory of Typical Environmental Pollution and Health Hazards, University of South China, Hengyang, Hunan 421001, China
| | - Peishuang He
- Department of Cell Biology and Genetics, Institute of Cytology and Genetics, School of Basic Medical Sciences, Hengyang Medical School, Key Laboratory of Hengyang City on Biological Toxicology and Ecological Restoration, Key Laboratory of Hengyang City on Ecological Impedance Technology of Heavy Metal Pollution in Cultivated Soil of Nonferrous Metal Mining Area, Key Laboratory of Ecological Environment and Critical Human Diseases Prevention of Hunan Province Department of Education, University of South China, Hengyang, Hunan 421001, China; School of Public Health, Hengyang Medical School, Hunan Key Laboratory of Typical Environmental Pollution and Health Hazards, University of South China, Hengyang, Hunan 421001, China
| | - Juan Ni
- Department of Cell Biology and Genetics, Institute of Cytology and Genetics, School of Basic Medical Sciences, Hengyang Medical School, Key Laboratory of Hengyang City on Biological Toxicology and Ecological Restoration, Key Laboratory of Hengyang City on Ecological Impedance Technology of Heavy Metal Pollution in Cultivated Soil of Nonferrous Metal Mining Area, Key Laboratory of Ecological Environment and Critical Human Diseases Prevention of Hunan Province Department of Education, University of South China, Hengyang, Hunan 421001, China; School of Public Health, Hengyang Medical School, Hunan Key Laboratory of Typical Environmental Pollution and Health Hazards, University of South China, Hengyang, Hunan 421001, China
| | - Aili Mo
- Department of Cell Biology and Genetics, Institute of Cytology and Genetics, School of Basic Medical Sciences, Hengyang Medical School, Key Laboratory of Hengyang City on Biological Toxicology and Ecological Restoration, Key Laboratory of Hengyang City on Ecological Impedance Technology of Heavy Metal Pollution in Cultivated Soil of Nonferrous Metal Mining Area, Key Laboratory of Ecological Environment and Critical Human Diseases Prevention of Hunan Province Department of Education, University of South China, Hengyang, Hunan 421001, China; School of Public Health, Hengyang Medical School, Hunan Key Laboratory of Typical Environmental Pollution and Health Hazards, University of South China, Hengyang, Hunan 421001, China
| | - Cuiying Peng
- Department of Cell Biology and Genetics, Institute of Cytology and Genetics, School of Basic Medical Sciences, Hengyang Medical School, Key Laboratory of Hengyang City on Biological Toxicology and Ecological Restoration, Key Laboratory of Hengyang City on Ecological Impedance Technology of Heavy Metal Pollution in Cultivated Soil of Nonferrous Metal Mining Area, Key Laboratory of Ecological Environment and Critical Human Diseases Prevention of Hunan Province Department of Education, University of South China, Hengyang, Hunan 421001, China; School of Public Health, Hengyang Medical School, Hunan Key Laboratory of Typical Environmental Pollution and Health Hazards, University of South China, Hengyang, Hunan 421001, China
| | - Jun Liu
- Department of Cell Biology and Genetics, Institute of Cytology and Genetics, School of Basic Medical Sciences, Hengyang Medical School, Key Laboratory of Hengyang City on Biological Toxicology and Ecological Restoration, Key Laboratory of Hengyang City on Ecological Impedance Technology of Heavy Metal Pollution in Cultivated Soil of Nonferrous Metal Mining Area, Key Laboratory of Ecological Environment and Critical Human Diseases Prevention of Hunan Province Department of Education, University of South China, Hengyang, Hunan 421001, China; School of Public Health, Hengyang Medical School, Hunan Key Laboratory of Typical Environmental Pollution and Health Hazards, University of South China, Hengyang, Hunan 421001, China.
| |
Collapse
|
7
|
Piontek M, Czyżewska W, Mazur-Marzec H. Effects of Harmful Cyanobacteria on Drinking Water Source Quality and Ecosystems. Toxins (Basel) 2023; 15:703. [PMID: 38133207 PMCID: PMC10747749 DOI: 10.3390/toxins15120703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 12/12/2023] [Accepted: 12/14/2023] [Indexed: 12/23/2023] Open
Abstract
A seasonal plethora of cyanobacteria in the plankton community can have severe implications, not only for water ecosystems but also for the availability of treated water. The catchment of the Obrzyca River (a source of drinking water) is seasonally exposed to harmful cyanobacterial bloom. Previous studies (2008-2012; 2019) revealed that the most polluted water of the Obrzyca River was Uście, close to the outlet of Rudno Lake (at the sampling point). Therefore, the effect on this lake was specifically examined in this study. Sampling was performed from May to September at that site and from July to September 2020 at Rudno Lake. The conducted analysis revealed a massive growth of Aphanizomenon gracile, especially in Rudno Lake. The results showed not only the distinct impact of cyanobacterial bloom on phytoplankton biodiversity but also the presence of microcystins and other cyanopeptides in both sampling points. The maximal total concentration of microcystins (dmMC-RR, MC-RR, dmMC-LR, MC-LR, MC-LY, MC-YR) equaled 57.3 μg/L and the presence of cyanopeptides (aeruginosin, anabaenopeptin) was originally determined in Rudno Lake, August 2021. The presence of these toxins was highlighted in our results for the first time. The same samples from the lake were the most toxic in biotoxicological investigations using the planarian Dugesia tigrina. The performed bioassays proved that D. tigrina is a sensitive bioindicator for cyanotoxins. The physical and chemical indicators of water quality, i.e., color, temperature, total suspended solids, and total nitrogen and phosphorus, showed a significant correlation among each other and towards cyanobacterial abundance and microcystin concentrations.
Collapse
Affiliation(s)
- Marlena Piontek
- Institute of Environmental Engineering, University of Zielona Góra, Licealna 9, 65-417 Zielona Góra, Poland
| | - Wanda Czyżewska
- Water and Sewage Laboratory, Water and Wastewater Treatment Plant in Zielona Góra, 65-120 Zielona Gora, Poland
| | - Hanna Mazur-Marzec
- Department of Marine Biology and Ecology, University of Gdańsk, Al. Marszałka Piłsudskiego 46, 81-378 Gdynia, Poland;
| |
Collapse
|
8
|
Thawabteh AM, Naseef HA, Karaman D, Bufo SA, Scrano L, Karaman R. Understanding the Risks of Diffusion of Cyanobacteria Toxins in Rivers, Lakes, and Potable Water. Toxins (Basel) 2023; 15:582. [PMID: 37756009 PMCID: PMC10535532 DOI: 10.3390/toxins15090582] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 08/10/2023] [Accepted: 09/18/2023] [Indexed: 09/28/2023] Open
Abstract
Blue-green algae, or cyanobacteria, may be prevalent in our rivers and tap water. These minuscule bacteria can grow swiftly and form blooms in warm, nutrient-rich water. Toxins produced by cyanobacteria can pollute rivers and streams and harm the liver and nervous system in humans. This review highlights the properties of 25 toxin types produced by 12 different cyanobacteria genera. The review also covered strategies for reducing and controlling cyanobacteria issues. These include using physical or chemical treatments, cutting back on fertilizer input, algal lawn scrubbers, and antagonistic microorganisms for biocontrol. Micro-, nano- and ultrafiltration techniques could be used for the removal of internal and extracellular cyanotoxins, in addition to powdered or granular activated carbon, ozonation, sedimentation, ultraviolet radiation, potassium permanganate, free chlorine, and pre-treatment oxidation techniques. The efficiency of treatment techniques for removing intracellular and extracellular cyanotoxins is also demonstrated. These approaches aim to lessen the risks of cyanobacterial blooms and associated toxins. Effective management of cyanobacteria in water systems depends on early detection and quick action. Cyanobacteria cells and their toxins can be detected using microscopy, molecular methods, chromatography, and spectroscopy. Understanding the causes of blooms and the many ways for their detection and elimination will help the management of this crucial environmental issue.
Collapse
Affiliation(s)
- Amin Mahmood Thawabteh
- Faculty of Pharmacy, Nursing and Health Professions, Birzeit University, Ramallah 00972, Palestine; (A.M.T.); (H.A.N.)
- General Safety Section, General Services Department, Birzeit University, Bir Zeit 71939, Palestine
| | - Hani A Naseef
- Faculty of Pharmacy, Nursing and Health Professions, Birzeit University, Ramallah 00972, Palestine; (A.M.T.); (H.A.N.)
| | - Donia Karaman
- Faculty of Pharmacy, Al-Quds University, Jerusalem 20002, Palestine;
| | - Sabino A. Bufo
- Department of Sciences, University of Basilicata, Via dell’Ateneo Lucano 10, 85100 Potenza, Italy;
- Department of Geography, Environmental Management and Energy Studies, University of Johannesburg, Auckland Park Kingsway Campus, Johannesburg 2092, South Africa
| | - Laura Scrano
- Department of European and Mediterranean Cultures, University of Basilicata, Via Lanera 20, 75100 Matera, Italy;
| | - Rafik Karaman
- Faculty of Pharmacy, Al-Quds University, Jerusalem 20002, Palestine;
- Department of Sciences, University of Basilicata, Via dell’Ateneo Lucano 10, 85100 Potenza, Italy;
| |
Collapse
|
9
|
Zhou Q, Li D, Lin W, Pan L, Qian M, Wang F, Cai R, Qu C, Tong Y. Genomic Analysis of a New Freshwater Cyanophage Lbo240-yong1 Suggests a New Taxonomic Family of Bacteriophages. Viruses 2023; 15:v15040831. [PMID: 37112811 PMCID: PMC10140849 DOI: 10.3390/v15040831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 03/18/2023] [Accepted: 03/20/2023] [Indexed: 04/29/2023] Open
Abstract
A worldwide ecological issue, cyanobacterial blooms in marine and freshwater have caused enormous losses in both the economy and the environment. Virulent cyanophages-specifically, infecting and lysing cyanobacteria-are key ecological factors involved in limiting the overall extent of the population development of cyanobacteria. Over the past three decades, reports have mainly focused on marine Prochlorococcus and Synechococcus cyanophages, while information on freshwater cyanophages remained largely unknown. In this study, a novel freshwater cyanophage, named Lbo240-yong1, was isolated via the double-layer agar plate method using Leptolyngbya boryana FACHB-240 as a host. Transmission electron microscopy observation illustrated the icosahedral head (50 ± 5 nm in diameter) and short tail (20 ± 5 nm in length) of Lbo240-yong1. Experimental infection against 37 cyanobacterial strains revealed that host-strain-specific Lbo240-yong1 could only lyse FACHB-240. The complete genome of Lbo240-yong1 is a double-stranded DNA of 39,740 bp with a G+C content of 51.99%, and it harbors 44 predicted open reading frames (ORFs). A Lbo240-yong1 ORF shared the highest identity with a gene of a filamentous cyanobacterium, hinting at a gene exchange between the cyanophage and cyanobacteria. A BLASTn search illustrated that Lbo240-yong1 had the highest sequence similarity with the Phormidium cyanophage Pf-WMP4 (89.67% identity, 84% query coverage). In the proteomic tree based on genome-wide sequence similarities, Lbo240-yong1, three Phormidium cyanophages (Pf-WMP4, Pf-WMP3, and PP), one Anabaena phage (A-4L), and one unclassified Arthronema cyanophage (Aa-TR020) formed a monophyletic group that was more deeply diverging than several other families. Pf-WMP4 is the only member of the independent genus Wumpquatrovirus that belongs to the Caudovircetes class. Pf-WMP3 and PP formed the independent genus Wumptrevirus. Anabaena phage A-4L is the only member of the independent Kozyakovvirus genus. The six cyanopodoviruses share similar gene arrangements. Eight core genes were found in them. We propose, here, to set up a new taxonomic family comprising the six freshwater cyanopodoviruses infecting filamentous cyanobacteria. This study enriched the field's knowledge of freshwater cyanophages.
Collapse
Affiliation(s)
- Qin Zhou
- Key Laboratory of Marine Biotechnology of Zhejiang Province, School of Marine Sciences, Ningbo University, Ningbo 315211, China
| | - Dengfeng Li
- Key Laboratory of Marine Biotechnology of Zhejiang Province, School of Marine Sciences, Ningbo University, Ningbo 315211, China
| | - Wei Lin
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Linting Pan
- Key Laboratory of Marine Biotechnology of Zhejiang Province, School of Marine Sciences, Ningbo University, Ningbo 315211, China
| | - Minhua Qian
- Key Laboratory of Marine Biotechnology of Zhejiang Province, School of Marine Sciences, Ningbo University, Ningbo 315211, China
| | - Fei Wang
- Key Laboratory of Marine Biotechnology of Zhejiang Province, School of Marine Sciences, Ningbo University, Ningbo 315211, China
| | - Ruqian Cai
- Key Laboratory of Marine Biotechnology of Zhejiang Province, School of Marine Sciences, Ningbo University, Ningbo 315211, China
| | - Chenxin Qu
- Key Laboratory of Marine Biotechnology of Zhejiang Province, School of Marine Sciences, Ningbo University, Ningbo 315211, China
| | - Yigang Tong
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| |
Collapse
|
10
|
Xue Q, Xie L, Cheng C, Su X, Zhao Y. Different environmental factors drive the concentrations of microcystin in particulates, dissolved water, and sediments peaked at different times in a large shallow lake. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 326:116833. [PMID: 36435125 DOI: 10.1016/j.jenvman.2022.116833] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 10/27/2022] [Accepted: 11/17/2022] [Indexed: 06/16/2023]
Abstract
Global distribution and health threats of microcystins (MCs) have received much more attention, but there are still significant knowledge gaps in the peak periods and driving factors of MC in different phases of freshwater ecosystems. Thus, we systematically analyzed the annual variation of different MC congeners (-LR, -RR, and -YR, where L, R, and Y respectively represent leucine, arginine, and tyrosine) in particulates, dissolved water, and sediments in three eutrophic bays of Lake Taihu, China. The results indicated that particulate MCs concentration was the highest, followed by dissolved and sediment MC, with the mean concentration of 7.58 μg/L, 1.48 μg/L, and 0.15 μg/g (DW), respectively. Except for particulate MC, the concentrations of the other two types of MC showed significant differences among the three bays. The dominant congeners of the three types of MCs were different, with the highest proportion of MC-LR being observed in sediment MCs and the lowest in particulate MCs. The peak period of the three types of MC was also different, with particulate MCs reaching their peak in July and October, dissolved MCs in May to July and October, and sediment MCs reaching their peak in September. Consistent with our hypothesis, the dynamics of different types of MCs were driven by different environmental factors. Particulate MCs were primarily related to biological parameters, followed by TP and dissolved carbon. By contrast, dissolved MCs strongly correlated with water temperature and dissolved oxygen. While sediment MCs were primarily driven by properties of sediments, followed by different forms of nitrogen in the water column. Our results suggested that particulate and dissolved MCs in northern Lake Taihu pose high health threats, especially in the peak period. Moreover, a more detailed and targeted risk management strategy should be designed to prevent the possible hazards posed by different types of MC.
Collapse
Affiliation(s)
- Qingju Xue
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China
| | - Liqiang Xie
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China
| | - Chen Cheng
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaomei Su
- Jiangsu Provincial Key Laboratory of Environmental Engineering, Jiangsu Provincial Academy of Environmental Sciences, Nanjing 210036, China
| | - Yanyan Zhao
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China.
| |
Collapse
|
11
|
Zhang D, Yuan L, Zhang L, Qiu T, Liao Q, Xiang J, Luo L, Xiong X. Pathological and biochemical characterizations of microcystin-LR-induced liver and kidney damage in chickens after acute exposure. Toxicon 2022; 220:106952. [DOI: 10.1016/j.toxicon.2022.106952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Revised: 09/22/2022] [Accepted: 10/13/2022] [Indexed: 11/06/2022]
|
12
|
Shu Y, Jiang H, Yuen CNT, Wang W, He J, Zhang H, Liu G, Wei L, Chen L, Wu H. Microcystin-leucine arginine induces skin barrier damage and reduces resistance to pathogenic bacteria in Lithobates catesbeianus tadpoles. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 238:113584. [PMID: 35512477 DOI: 10.1016/j.ecoenv.2022.113584] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 04/22/2022] [Accepted: 04/27/2022] [Indexed: 06/14/2023]
Abstract
Despite the importance of the skin mucosal barrier and commensal microbiota for the health of amphibians, the potential of environmental contaminants to disrupt the skin mucosal barrier and microbiota have rarely been studied in toxicology. In this study, tadpoles (Lithobates catesbeianus) were exposed to 0, 0.5, and 2 μg/L of microcystin-leucine arginine (MC-LR) for 30 days to explore the impacts of environmentally realistic MC-LR concentrations on the physical skin barrier, immune barrier, commensal microbiota, and skin resistance to pathogenic bacterial invasion. MC-LR exposure significantly reduced the collagen fibrils in the dermis of skin tissues and down-regulated tight junction and stratum corneum-related gene transcriptions, suggesting the damage caused by MC-LR to the physical barrier of the skin. Increased skin eosinophils and upregulated transcriptions of inflammation-related genes in the exposed tadpoles underline the development of skin inflammation resulting from MC-LR exposure even at environmentally realistic concentrations. Comparative transcriptome and immunobiochemical analyses found that antimicrobial peptides (Brevinin-1PLc, Brevinin-2GHc, and Ranatuerin-2PLa) and lysozyme were down-regulated in the exposed groups, while complement, pattern recognition receptor, and specific immune processes were up-regulated. However, the content of endotoxin lipopolysaccharide produced by bacteria increased in a dose-dependent pattern. The disc diffusion test showed a reduced ability of skin supernatant to inhibit pathogenic bacteria in the exposed groups. Analysis of microbial 16 S rRNA gene by high-throughput sequencing revealed that MC-LR interfered with the abundance, composition, and diversity of the skin commensal microbiota, which favored the growth of pathogen-containing genera Rhodococcus, Acinetobacter, and Gordonibacter. In summary, the current study provides the first clues about the impact of MC-LR on the integrity and function of skin barrier of amphibians. These new toxicological evidences can facilitate a more comprehensive evaluation of the ecological risk of MC-LR to amphibians.
Collapse
Affiliation(s)
- Yilin Shu
- Collaborative Innovation Center of Recovery and Reconstruction of Degraded Ecosystem in Wanjiang Basin Co-founded by Anhui Province and Ministry of Education, School of Ecology and Environment, Anhui Normal University, Wuhu 241002, China; State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Huiling Jiang
- Collaborative Innovation Center of Recovery and Reconstruction of Degraded Ecosystem in Wanjiang Basin Co-founded by Anhui Province and Ministry of Education, School of Ecology and Environment, Anhui Normal University, Wuhu 241002, China
| | - Calista N T Yuen
- State Key Laboratory in Marine Pollution, City University of Hong Kong, Department of Chemistry, Hong Kong, China
| | - Wenchao Wang
- Collaborative Innovation Center of Recovery and Reconstruction of Degraded Ecosystem in Wanjiang Basin Co-founded by Anhui Province and Ministry of Education, School of Ecology and Environment, Anhui Normal University, Wuhu 241002, China
| | - Jun He
- Collaborative Innovation Center of Recovery and Reconstruction of Degraded Ecosystem in Wanjiang Basin Co-founded by Anhui Province and Ministry of Education, School of Ecology and Environment, Anhui Normal University, Wuhu 241002, China
| | - Huijuan Zhang
- Collaborative Innovation Center of Recovery and Reconstruction of Degraded Ecosystem in Wanjiang Basin Co-founded by Anhui Province and Ministry of Education, School of Ecology and Environment, Anhui Normal University, Wuhu 241002, China
| | - Guangxuan Liu
- Collaborative Innovation Center of Recovery and Reconstruction of Degraded Ecosystem in Wanjiang Basin Co-founded by Anhui Province and Ministry of Education, School of Ecology and Environment, Anhui Normal University, Wuhu 241002, China
| | - Luting Wei
- Collaborative Innovation Center of Recovery and Reconstruction of Degraded Ecosystem in Wanjiang Basin Co-founded by Anhui Province and Ministry of Education, School of Ecology and Environment, Anhui Normal University, Wuhu 241002, China
| | - Lianguo Chen
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China.
| | - Hailong Wu
- Collaborative Innovation Center of Recovery and Reconstruction of Degraded Ecosystem in Wanjiang Basin Co-founded by Anhui Province and Ministry of Education, School of Ecology and Environment, Anhui Normal University, Wuhu 241002, China.
| |
Collapse
|
13
|
Trung B, Vollebregt ME, Lürling M. Warming and Salt Intrusion Affect Microcystin Production in Tropical Bloom-Forming Microcystis. Toxins (Basel) 2022; 14:toxins14030214. [PMID: 35324711 PMCID: PMC8948854 DOI: 10.3390/toxins14030214] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 03/04/2022] [Accepted: 03/15/2022] [Indexed: 02/01/2023] Open
Abstract
The Vietnamese Mekong Delta is predicted to be one of the regions most impacted by climate change, causing increased temperature and salinity in inland waters. We hypothesized that the increase in temperature and salinity may impact the microcystin (MC) production of two Microcystis strains isolated in this region from a freshwater pond (strain MBC) and a brackish water pond (strain MTV). The Microcystis strains were grown at low (27 °C), medium (31 °C), high (35 °C) and extremely high (37 °C) temperature in flat photobioreactors (Algaemist). At each temperature, when cultures reached a stable state, sea salt was added to increase salinity to 4‰, 8‰, 12‰ and 16‰. MC concentrations and cell quota were reduced at high and extremely high temperatures. Salinity, in general, had comparable effects on MC concentrations and quota. At a salinity of 4‰ and 8‰, concentrations of MC per mL of culture and MC cell quota (based on chlorophyll, dry-weight and particle counts) were higher than at 0.5‰, while at the highest salinities (12‰ and 16‰) these were strongly reduced. Strain MBC produced five MC variants of which MC-RR and MC-LR were most abundant, followed by MC-YR and relatively low amounts of demethylated variants dmMC-RR and dmMC-LR. In strain MTV, MC-RR was most abundant, with traces of MC-YR and dmMC-RR only in cultures grown at 16‰ salinity. Overall, higher temperature led to lower MC concentrations and cell quota, low salinity seemed to promote MC production and high salinity reduced MC production. Hence, increased temperature and higher salinity could lead to less toxic Microcystis, but since these conditions might favour Microcystis over other competitors, the overall biomass gain could offset a lower toxicity.
Collapse
|
14
|
A Summer of Cyanobacterial Blooms in Belgian Waterbodies: Microcystin Quantification and Molecular Characterizations. Toxins (Basel) 2022; 14:toxins14010061. [PMID: 35051038 PMCID: PMC8780180 DOI: 10.3390/toxins14010061] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 01/08/2022] [Accepted: 01/12/2022] [Indexed: 12/04/2022] Open
Abstract
In the context of increasing occurrences of toxic cyanobacterial blooms worldwide, their monitoring in Belgium is currently performed by regional environmental agencies (in two of three regions) using different protocols and is restricted to some selected recreational ponds and lakes. Therefore, a global assessment based on the comparison of existing datasets is not possible. For this study, 79 water samples from a monitoring of five lakes in Wallonia and occasional blooms in Flanders and Brussels, including a canal, were analyzed. A Liquid Chromatography with tandem mass spectrometry (LC-MS/MS) method allowed to detect and quantify eight microcystin congeners. The mcyE gene was detected using PCR, while dominant cyanobacterial species were identified using 16S RNA amplification and direct sequencing. The cyanobacterial diversity for two water samples was characterized with amplicon sequencing. Microcystins were detected above limit of quantification (LOQ) in 68 water samples, and the World Health Organization (WHO) recommended guideline value for microcystins in recreational water (24 µg L−1) was surpassed in 18 samples. The microcystin concentrations ranged from 0.11 µg L−1 to 2798.81 µg L−1 total microcystin. For 45 samples, the dominance of the genera Microcystis sp., Dolichospermum sp., Aphanizomenon sp., Cyanobium/Synechococcus sp., Planktothrix sp., Romeria sp., Cyanodictyon sp., and Phormidium sp. was shown. Moreover, the mcyE gene was detected in 75.71% of all the water samples.
Collapse
|
15
|
Duong TT, Nguyen TTL, Dinh THV, Hoang TQ, Vu TN, Doan TO, Dang TMA, Le TPQ, Tran DT, Le VN, Nguyen QT, Le PT, Nguyen TK, Pham TD, Bui HM. Auxin production of the filamentous cyanobacterial Planktothricoides strain isolated from a polluted river in Vietnam. CHEMOSPHERE 2021; 284:131242. [PMID: 34225111 DOI: 10.1016/j.chemosphere.2021.131242] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 05/21/2021] [Accepted: 06/14/2021] [Indexed: 06/13/2023]
Abstract
Cyanobacteria are photosynthetic microorganisms with widespread diversity and extensive global distribution. They produce a wide variety of bioactive substances (e.g., lipopeptides, fatty acids, toxins, carotenoids, vitamins and plant growth regulators) that are released into culture media. In this study, the capability of a cyanobacterial strain of Planktothricoides raciborskii to produce intra- and extracellular auxins was investigated. The filamentous cyanobacterial P. raciborskii strain was isolated from a river in Vietnam, and it was cultivated in the laboratory under the optimum conditions of the BG11 culture medium and a pH of 7.0. The auxins were identified and quantified by the Salkowski colorimetric method and high-performance liquid chromatography coupled with mass spectrometry (HPLC-MS). Colorimetric analysis revealed that P. raciborskii produces extracellular indole-3-acetic acid (IAA) in the absence and presence of l-tryptophan. The maximum extracellular IAA concentration of the culture reached 118 ± 2 μg mL-1, which was supplemented with 900 μg mL-1 of l-tryptophan. HPLC-MS analysis revealed that the isolated cyanobacteria accumulate other plant-growth-promoting hormones besides IAA, such as indole-3-carboxylic acid (ICA), indole-3 butyric acid (IBA) and indole propionic acid (IPA). This is the first report on the production of auxins in an isolated strain of cyanobacteria Planktothricoides from a polluted river. The capability of producing auxins makes the P. raciborskii strain an appropriate candidate for the formulation of a biofertilizer.
Collapse
Affiliation(s)
- Thi Thuy Duong
- Institute of Environmental Technology, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet Road, Cau Giay, Hanoi, Viet Nam; Graduate University of Science and Technology, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet Road, Cau Giay, Hanoi, Viet Nam.
| | - Thi Thu Lien Nguyen
- Institute of Biotechnology, Hue University, Provincial Road 10, Phu Thuong Commune, Phu Vang District, Thua Thien Hue province, Viet Nam
| | - Thi Hai Van Dinh
- Faculty of Environment, Vietnam National University of Agriculture, Trau Quy, Gia Lam, Hanoi, Viet Nam
| | - Thi Quynh Hoang
- Institute of Environmental Technology, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet Road, Cau Giay, Hanoi, Viet Nam
| | - Thi Nguyet Vu
- Institute of Environmental Technology, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet Road, Cau Giay, Hanoi, Viet Nam
| | - Thi Oanh Doan
- Faculty of Environment, Ha Noi University of Natural Resources and Environment, No 41A, Phu Dien Street, Bac Tu Liem, Ha Noi, Viet Nam
| | - Thi Mai Anh Dang
- Institute of Environmental Technology, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet Road, Cau Giay, Hanoi, Viet Nam
| | - Thi Phuong Quynh Le
- Institute of Natural Products Chemistry, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet Road, Cau Giay, Hanoi, Viet Nam
| | - Dang Thuan Tran
- Institute of Chemistry, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay, Hanoi, Viet Nam
| | - Van Nhan Le
- Institute of Research and Development, Duy Tan University, Da Nang, Viet Nam; Center for Research and Technology Transfer, Vietnam Academy of Science and Technology, Hanoi, Viet Nam
| | - Quang Trung Nguyen
- Center for Research and Technology Transfer, Vietnam Academy of Science and Technology, Hanoi, Viet Nam
| | - Phuong Thu Le
- University of Science and Technology of Hanoi, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet Road, Cau Giay, Hanoi, Viet Nam
| | - Trung Kien Nguyen
- Institute of Environmental Technology, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet Road, Cau Giay, Hanoi, Viet Nam
| | - Thi Dau Pham
- Faculty of Biology, VNU University of Science, 334 Nguyen Trai, Hanoi, Viet Nam
| | - Ha Manh Bui
- Department of Environmental Sciences, Saigon University, 273 An Duong Vuong Street, District 5, Ho Chi Minh City, Viet Nam.
| |
Collapse
|
16
|
Pham TL, Tran THY, Shimizu K, Li Q, Utsumi M. Toxic cyanobacteria and microcystin dynamics in a tropical reservoir: assessing the influence of environmental variables. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:63544-63557. [PMID: 32948940 DOI: 10.1007/s11356-020-10826-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Accepted: 09/13/2020] [Indexed: 06/11/2023]
Abstract
Toxic cyanobacterial blooms (TCBs) have become a growing concern worldwide. The present study investigated the dynamic of toxic cyanobacteria and microcystin (MC) concentrations in the Tri An Reservoir (TAR), a tropical system in Vietnam, with quantitative real-time polymerase chain reaction (qPCR) and high-performance liquid chromatography (HPLC), respectively. The results of the qPCR quantification revealed that Microcystis was the dominant group and the primary MC producer in the TAR. Potentially toxigenic cyanobacteria varied from 1.2 × 104 to 1.58 × 107 cells/mL, and the mean proportion of toxic Microcystis to that of the total toxic cyanobacteria varied from 21 to 88%. Microcystin concentrations in raw water and sediment samples often peaked during June to October as blooms occurred and varied from 0.27 to 6.59 μg/L and from 1.79 to 544.9 ng/g in wet weight, respectively. The results of this study indicated that conditions favoring Microcystis proliferation lead to the selection of more toxic genotypes. Water temperature and light availability were not driving factor in the formation of TCBs in the TAR. However, the high loads of total nitrogen (TN), phosphate, and total phosphorus (TP) into the water via rainfall runoff in combination with a high total suspended solid (TSS) and decreased water level during the early months of the rainy seasons did lead to a shift in Microcystis blooms and higher proportions of toxic genotypes of Microcystis in the TAR. This research may provide more insight into the occurrence mechanism of TCBs in tropical waters. The strategy to control TCB problems in tropical regions should be focused on these limnological and hydrological parameters, in addition to a reduction in nitrogen and phosphorus loading.
Collapse
Affiliation(s)
- Thanh-Luu Pham
- Ho Chi Minh City University of Technology (HUTECH), 475A Dien Bien Phu Street, Ward 25, Binh Thanh District, Ho Chi Minh City, 700000, Vietnam.
- Institute of Tropical Biology, Vietnam Academy of Science and Technology (VAST), 85 Tran Quoc Toan Street, District 3, Ho Chi Minh City, 700000, Vietnam.
| | - Thi Hoang Yen Tran
- Institute of Tropical Biology, Vietnam Academy of Science and Technology (VAST), 85 Tran Quoc Toan Street, District 3, Ho Chi Minh City, 700000, Vietnam
| | - Kazuya Shimizu
- Graduate School of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8572, Japan
| | - Qintong Li
- Toyo University, 1-1-1 Izumino, Itakura-machi, Ora-gun, Gunma, 374-0193, Japan
| | - Motoo Utsumi
- Graduate School of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8572, Japan
| |
Collapse
|
17
|
Abdallah MF, Van Hassel WHR, Andjelkovic M, Wilmotte A, Rajkovic A. Cyanotoxins and Food Contamination in Developing Countries: Review of Their Types, Toxicity, Analysis, Occurrence and Mitigation Strategies. Toxins (Basel) 2021; 13:786. [PMID: 34822570 PMCID: PMC8619289 DOI: 10.3390/toxins13110786] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 10/29/2021] [Accepted: 11/02/2021] [Indexed: 12/27/2022] Open
Abstract
Cyanotoxins have gained global public interest due to their potential to bioaccumulate in food, which threatens human health. Bloom formation is usually enhanced under Mediterranean, subtropical and tropical climates which are the dominant climate types in developing countries. In this context, we present an up-to-date overview of cyanotoxins (types, toxic effects, analysis, occurrence, and mitigation) with a special focus on their contamination in (sea)food from all the developing countries in Africa, Asia, and Latin America as this has received less attention. A total of 65 publications have been found (from 2000 until October 2021) reporting the contamination by one or more cyanotoxins in seafood and edible plants (five papers). Only Brazil and China conducted more research on cyanotoxin contamination in food in comparison to other countries. The majority of research focused on the detection of microcystins using different analytical methods. The detected levels mostly surpassed the provisional tolerable daily intake limit set by the World Health Organization, indicating a real risk to the exposed population. Assessment of cyanotoxin contamination in foods from developing countries still requires further investigations by conducting more survey studies, especially the simultaneous detection of multiple categories of cyanotoxins in food.
Collapse
Affiliation(s)
- Mohamed F. Abdallah
- Department of Food Technology, Safety and Health, Faculty of Bioscience Engineering, Ghent University, 9000 Ghent, Belgium;
| | - Wannes H. R. Van Hassel
- Sciensano, Chemical and Physical Health Risks, Organic Contaminants and Additives, Leuvensesteenweg 17, 3080 Tervuren, Belgium;
| | - Mirjana Andjelkovic
- Sciensano Research Institute, Chemical and Physical Health Risks, Risk and Health Impact Assessment, Ju-liette Wytsmanstreet 14, 1050 Brussels, Belgium;
| | - Annick Wilmotte
- BCCM/ULC Cyanobacteria Collection, InBios-Centre for Protein Engineering, Université de Liège, 4000 Liège, Belgium;
| | - Andreja Rajkovic
- Department of Food Technology, Safety and Health, Faculty of Bioscience Engineering, Ghent University, 9000 Ghent, Belgium;
| |
Collapse
|
18
|
Zuo J, Huo T, Du X, Yang Q, Wu Q, Shen J, Liu C, Hung TC, Yan W, Li G. The joint effect of parental exposure to microcystin-LR and polystyrene nanoplastics on the growth of zebrafish offspring. JOURNAL OF HAZARDOUS MATERIALS 2021; 410:124677. [PMID: 33277077 DOI: 10.1016/j.jhazmat.2020.124677] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 11/22/2020] [Accepted: 11/23/2020] [Indexed: 06/12/2023]
Abstract
The coexistence of nanoplastics (NPs) and various pollutants in the environment has become a problem that cannot be ignored. In order to identify the microcystin-LR (MCLR) bioaccumulation and the potential impacts on the early growth of F1 zebrafish (Danio rerio) offspring in the presence of polystyrene nanoplastics (PSNPs), PSNPs and MCLR were used to expose adult zebrafish for 21days. The exposure groups divided into MCLR (0, 0.9, 4.5 and 22.5μgL-1) alone groups and PSNP (100μgL-1) and MCLR co-exposure groups. F1 embryos were collected and developed to 120 h post-fertilization (hpf) in clear water. Compared with the exposure to MCLR only, the combined exposure increased the parental transfer of MCLR to the offspring and subsequently exacerbated the growth inhibition of F1 larvae. Further research clarified that combined exposure of PSNPs and MCLR could reduce the levels of thyroxine (T4) and 3, 5, 3'-triiodothyronine (T3) by altering the expression of hypothalamus-pituitary-thyroid (HPT) axis-related genes, eventually leading to growth inhibition of F1 larvae. Our results also exhibited combined exposure of PSNPs and MCLR could change the transcription of key genes of the GH/IGF axis compared with MCLR single exposure, suggesting the GH/IGF axis was a potential target for the growth inhibition of F1 larvae in PSNPs and MCLR co-exposure groups. The present study highlights the potential risks of coexistence of MCLR and PSNPs on development of fish offspring, and the environmental risks to aquatic ecosystems.
Collapse
Affiliation(s)
- Junli Zuo
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China
| | - Tangbin Huo
- Heilongjiang River Fishery Research Institute, Chinese Academy of Fishery Sciences, Harbin 150010, China
| | - Xue Du
- Heilongjiang River Fishery Research Institute, Chinese Academy of Fishery Sciences, Harbin 150010, China
| | - Qing Yang
- Key Laboratory of Ecological Impacts of Hydraulic-Projects and Restoration of Aquatic Ecosystem of Ministry of Water Resources, Institute of Hydroecology, Ministry of Water Resources and Chinese Academy of Sciences, Wuhan 430079, China
| | - Qin Wu
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China
| | - Jianzhong Shen
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China
| | - Chunsheng Liu
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China
| | - Tien-Chieh Hung
- Department of Biological and Agricultural Engineering, University of California-Davis, Davis, CA 95616, USA
| | - Wei Yan
- Institute of Agricultural Quality Standards & Testing Technology, Hubei Academy of Agricultural Sciences, Wuhan 430064, China
| | - Guangyu Li
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China; Hubei Provincial Engineering Laboratory for Pond Aquaculture, Wuhan 430070, China.
| |
Collapse
|
19
|
Ha NT, Nguyen HQ, Truong NCQ, Le TL, Thai VN, Pham TL. Estimation of nitrogen and phosphorus concentrations from water quality surrogates using machine learning in the Tri An Reservoir, Vietnam. ENVIRONMENTAL MONITORING AND ASSESSMENT 2020; 192:789. [PMID: 33241485 DOI: 10.1007/s10661-020-08731-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Accepted: 11/03/2020] [Indexed: 06/11/2023]
Abstract
Surface water eutrophication due to excessive nutrients has become a major environmental problem around the world in the past few decades. Among these nutrients, nitrogen and phosphorus are two of the most important harmful cyanobacterial bloom (HCB) drivers. A reliable prediction of these parameters, therefore, is necessary for the management of rivers, lakes, and reservoirs. The aim of this study is to test the suitability of the powerful machine learning (ML) algorithm, random forest (RF), to provide information on water quality parameters for the Tri An Reservoir (TAR). Three species of nitrogen and phosphorus, including nitrite (N-NO2-), nitrate (N-NO3-), and phosphate (P-PO43-), were empirically estimated using the field observation dataset (2009-2014) of six surrogates of total suspended solids (TSS), total dissolved solids (TDS), turbidity, electrical conductivity (EC), chemical oxygen demand (COD), and biochemical oxygen demand (BOD5). Field data measurement showed that water quality in the TAR was eutrophic with an up-trend of N-NO3- and P-PO43- during the study period. The RF regression model was reliable for N-NO2-, N-NO3-, and P-PO43- prediction with a high R2 of 0.812-0.844 for the training phase (2009-2012) and 0.888-0.903 for the validation phase (2013-2014). The results of land use and land cover change (LUCC) revealed that deforestation and shifting agriculture in the upper region of the basin were the major factors increasing nutrient loading in the TAR. Among the meteorological parameters, rainfall pattern was found to be one of the most influential factors in eutrophication, followed by average sunshine hour. Our results are expected to provide an advanced assessment tool for predicting nutrient loading and for giving an early warning of HCB in the TAR.
Collapse
Affiliation(s)
- Nam-Thang Ha
- Environmental Research Institute, School of Science, The University of Waikato, Hamilton, 3216, New Zealand
- Faculty of Fisheries, The University of Agriculture and Forestry, Hue University, Hue, 530000, Vietnam
| | - Hao Quang Nguyen
- Graduate School of Systems and Information Engineering, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8572, Japan
| | | | - Thi Luom Le
- Dong Nai Technical Resources and Environment Center, Dong Khoi Street, Tan Hiep Ward, Bien Hoa City, Dong Nai Province, 810000, Vietnam
| | - Van Nam Thai
- Ho Chi Minh City University of Technology (HUTECH), 475A Dien Bien Phu Street, Binh Thanh District, Ho Chi Minh City, 700000, Vietnam
| | - Thanh Luu Pham
- Institute of Tropical Biology, Vietnam Academy of Science and Technology (VAST), 85 Tran Quoc Toan Street, District 3, Ho Chi Minh City, 700000, Vietnam.
- Graduate University of Science and Technology, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet Street, Cau Giay district, Hanoi, 100000, Vietnam.
| |
Collapse
|
20
|
Czyżewska W, Piontek M, Łuszczyńska K. The Occurrence of Potential Harmful Cyanobacteria and Cyanotoxins in the Obrzyca River (Poland), a Source of Drinking Water. Toxins (Basel) 2020; 12:E284. [PMID: 32354080 PMCID: PMC7290984 DOI: 10.3390/toxins12050284] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 04/24/2020] [Accepted: 04/25/2020] [Indexed: 11/16/2022] Open
Abstract
Harmful cyanobacteria and their cyanotoxins may contaminate drinking water resources and their effective control remains challenging. The present study reports on cyanobacterial blooms and associated cyanotoxins in the Obrzyca River, a source of drinking water in Poland. The river was examined from July to October 2019 and concentrations of microcystins, anatoxin-a, and cylindrospermopsin were monitored. The toxicity of water samples was also tested using an ecotoxicological assay. All studied cyanotoxins were detected with microcystins revealing the highest levels. Maximal microcystin concentrations (3.97 μg/L) were determined in September at Uście point, exceeding the provisional guideline. Extracts from Uście point, where the dominant species were Dolichospermum flos-aquae (August), Microcystis aeruginosa (September), and Planktothrix agardhii (October), were toxic for Dugesia tigrina Girard. Microcystin concentrations (MC-LR and MC-RR) were positively correlated with cyanobacteria biovolume. Analysis of the chemical indicators of water quality has shown relationships between them and microcystins as well as cyanobacteria abundance.
Collapse
Affiliation(s)
- Wanda Czyżewska
- Water and Sewage Laboratory, Water and Wastewater Treatment Plant in Zielona Góra, Zjednoczenia 110 A, 65-120 Zielona Góra, Poland;
| | - Marlena Piontek
- Institute of Environmental Engineering, University of Zielona Góra, Licealna 9, 65-417 Zielona Góra, Poland;
| | - Katarzyna Łuszczyńska
- Institute of Environmental Engineering, University of Zielona Góra, Licealna 9, 65-417 Zielona Góra, Poland;
| |
Collapse
|
21
|
The Diversity of Cyanobacterial Toxins on Structural Characterization, Distribution and Identification: A Systematic Review. Toxins (Basel) 2019; 11:toxins11090530. [PMID: 31547379 PMCID: PMC6784007 DOI: 10.3390/toxins11090530] [Citation(s) in RCA: 73] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Revised: 09/06/2019] [Accepted: 09/09/2019] [Indexed: 11/19/2022] Open
Abstract
The widespread distribution of cyanobacteria in the aquatic environment is increasing the risk of water pollution caused by cyanotoxins, which poses a serious threat to human health. However, the structural characterization, distribution and identification techniques of cyanotoxins have not been comprehensively reviewed in previous studies. This paper aims to elaborate the existing information systematically on the diversity of cyanotoxins to identify valuable research avenues. According to the chemical structure, cyanotoxins are mainly classified into cyclic peptides, alkaloids, lipopeptides, nonprotein amino acids and lipoglycans. In terms of global distribution, the amount of cyanotoxins are unbalanced in different areas. The diversity of cyanotoxins is more obviously found in many developed countries than that in undeveloped countries. Moreover, the threat of cyanotoxins has promoted the development of identification and detection technology. Many emerging methods have been developed to detect cyanotoxins in the environment. This communication provides a comprehensive review of the diversity of cyanotoxins, and the detection and identification technology was discussed. This detailed information will be a valuable resource for identifying the various types of cyanotoxins which threaten the environment of different areas. The ability to accurately identify specific cyanotoxins is an obvious and essential aspect of cyanobacterial research.
Collapse
|