1
|
Zhao H, Chen J, Fan S, He X, Tan L, Wang J. Spatiotemporal variations of domoic acid: New findings in the sedimentary environment of a typical nearshore mariculture bay, China. ENVIRONMENTAL RESEARCH 2024; 261:119646. [PMID: 39032622 DOI: 10.1016/j.envres.2024.119646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 07/04/2024] [Accepted: 07/17/2024] [Indexed: 07/23/2024]
Abstract
Domoic acid (DA) is a neurotoxin produced by marine microalgae. It tends to accumulate in marine shellfish and fish, posing a threat to aquaculture and seafood consumers' health. In this study, DA in the surface and bottom seawater, sediment, and porewater of the Jiaozhou Bay, a typical mariculture bay in China, was systematically investigated for the first time over different seasons. Surprisingly, a high concentration of DA was discovered in the marine sediment porewater (maximum detected concentration: 289.49 ng/L) for the first time. DA was found to be extensively distributed in the water body and sedimentary environment of the Jiaozhou Bay. DA in the surface and bottom seawater of Jiaozhou Bay in spring was uniformly distributed, whereas DA showed obvious spatial variations in summer and winter. The high concentration areas of DA are located in the north of Jiaozhou Bay and decreased to the south areas. DA was also distributed in the sediment (spring mean: 316.57 ng/kg; summer mean: 10.22 ng/kg; winter mean: 237.08 ng/kg) and porewater (spring mean: 129.70 ng/L; summer mean: 53.54 ng/L; winter mean: 19.90 ng/L) of Jiaozhou Bay. The DA concentrations in the surface sediment and porewater were higher in the spring than in the winter and summer, contrary to the seasonal variation pattern observed in the surface and bottom seawater. The DA concentration in porewater was significantly higher than in the surface and bottom seawater, indicating that the risk of pollution contamination from DA to benthic fishery organisms may be underestimated. Overall, DA is widely distributed in the seawater and also in the benthic environment of Jiaozhou Bay and exhibited potential harm to fishery organisms varied greatly with seasons. It is an important discovery for marine algae toxins and has important guiding significance and important indicative role for the routine monitoring and management of DA pollution in water and benthic environment.
Collapse
Affiliation(s)
- Hao Zhao
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao, 266100, China; Qingdao Key Laboratory of Analytical Technology Development and Offshore Eco-Environment Conservation, The First Institute of Oceanography, Ministry of Natural Resources, Qingdao, 266061, China
| | - Junhui Chen
- Qingdao Key Laboratory of Analytical Technology Development and Offshore Eco-Environment Conservation, The First Institute of Oceanography, Ministry of Natural Resources, Qingdao, 266061, China; Laboratory for Marine Ecology and Environmental Science, Qingdao Marine Science and Technology Center, Qingdao, 266071, China
| | - Shengqing Fan
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao, 266100, China; Qingdao Key Laboratory of Analytical Technology Development and Offshore Eco-Environment Conservation, The First Institute of Oceanography, Ministry of Natural Resources, Qingdao, 266061, China
| | - Xiuping He
- Qingdao Key Laboratory of Analytical Technology Development and Offshore Eco-Environment Conservation, The First Institute of Oceanography, Ministry of Natural Resources, Qingdao, 266061, China; Laboratory for Marine Ecology and Environmental Science, Qingdao Marine Science and Technology Center, Qingdao, 266071, China.
| | - Liju Tan
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao, 266100, China
| | - Jiangtao Wang
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao, 266100, China
| |
Collapse
|
2
|
Soliño L, Braga AC, Lobo-Arteaga J, Costa PR. Lipophilic marine toxins in sediments from Arrábida marine protected area, Portugal (NE Atlantic). MARINE POLLUTION BULLETIN 2024; 208:117096. [PMID: 39378546 DOI: 10.1016/j.marpolbul.2024.117096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 09/03/2024] [Accepted: 10/02/2024] [Indexed: 10/10/2024]
Abstract
During the development and senescence of harmful algal blooms (HAB), most of the algae cells not ingested by grazers or filter-feeding organisms sink to the bottom, making sediments important reservoirs of algae toxins. In this study, lipophilic marine toxins were determined in the sediments collected from depths ranging from 5 to 145 m depth in the marine protected area of Arrábida (southwest Portuguese coast). Sediments were characterized in terms of granulometry, water and organic matter content. The toxins were determined by liquid chromatography with tandem mass spectrometry. Okadaic acid (OA), dinophysistoxin-2 (DTX2), and azaspiracid-2 (AZA2), reaching concentrations up to 3.4, 1.3, and 0.13 ng/g, respectively, were found. A trend in the occurrence of DTX2 and AZA2 with sediment water and organic matter content was observed, as well as with AZA2 and depth. This study highlights the need to further investigate sediment deposition of toxins and their availability for bottom-dwelling organisms and its contamination.
Collapse
Affiliation(s)
- Lucía Soliño
- IPMA, I.P. - Portuguese Institute for Sea and Atmosphere, Av. Dr. Alfredo Magalhães Ramalho, 6, 1495-165 Lisboa, Portugal; CCMAR - Centre of Marine Sciences, Campus of Gambelas, University of Algarve, 8005-139 Faro, Portugal
| | - Ana Catarina Braga
- IPMA, I.P. - Portuguese Institute for Sea and Atmosphere, Av. Dr. Alfredo Magalhães Ramalho, 6, 1495-165 Lisboa, Portugal; S2AQUA - Collaborative Laboratory, Association for a Sustainable and Smart Aquaculture, Av. Parque Natural da Ria Formosa s/n, 8700-194 Olhão, Portugal
| | - Jorge Lobo-Arteaga
- IPMA, I.P. - Portuguese Institute for Sea and Atmosphere, Av. Dr. Alfredo Magalhães Ramalho, 6, 1495-165 Lisboa, Portugal; MARE - Marine and Environmental Sciences Centre/ARNET - Aquatic Research Network Associate Laboratory, NOVA School of Science and Technology, NOVA University Lisbon, Portugal
| | - Pedro Reis Costa
- IPMA, I.P. - Portuguese Institute for Sea and Atmosphere, Av. Dr. Alfredo Magalhães Ramalho, 6, 1495-165 Lisboa, Portugal; CCMAR - Centre of Marine Sciences, Campus of Gambelas, University of Algarve, 8005-139 Faro, Portugal; S2AQUA - Collaborative Laboratory, Association for a Sustainable and Smart Aquaculture, Av. Parque Natural da Ria Formosa s/n, 8700-194 Olhão, Portugal.
| |
Collapse
|
3
|
Li Z, Wang J, Yue H, Du M, Jin Y, Fan J. Marine toxin domoic acid alters nitrogen cycling in sediments. Nat Commun 2023; 14:7873. [PMID: 38036528 PMCID: PMC10689436 DOI: 10.1038/s41467-023-43265-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 11/03/2023] [Indexed: 12/02/2023] Open
Abstract
As a red tide algal toxin with intense neurotoxicity distributed worldwide, domoic acid (DA) has attracted increasing concerns. In this work, the integrative analysis of metagenome and metabolome are applied to investigate the impact of DA on nitrogen cycling in coastal sediments. Here we show that DA can act as a stressor to induce the variation of nitrogen (N) cycling by altering the abundance of functional genes and electron supply. Moreover, microecology theory revealed that DA can increase the role of deterministic assembly in microbial dynamic succession, resulting in the shift of niches and, ultimately, the alteration in N cycling. Notably, denitrification and Anammox, the important process for sediment N removal, are markedly limited by DA. Also, variation of N cycling implies the modification in cycles of other associated elements. Overall, DA is capable of ecosystem-level effects, which require further evaluation of its potential cascading effects.
Collapse
Affiliation(s)
- Zelong Li
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian, 116024, PR China
| | - Jing Wang
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian, 116024, PR China.
| | - Hao Yue
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian, 116024, PR China
| | - Miaomiao Du
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian, 116024, PR China
| | - Yuan Jin
- Marine Ecology Department, National Marine Environmental Monitoring Center, Dalian, 116023, PR China
| | - Jingfeng Fan
- Marine Ecology Department, National Marine Environmental Monitoring Center, Dalian, 116023, PR China.
| |
Collapse
|
4
|
Trapp A, Hayashi K, Fiechter J, Kudela RM. What happens in the shadows - Influence of seasonal and non-seasonal dynamics on domoic acid monitoring in the Monterey Bay upwelling shadow. HARMFUL ALGAE 2023; 129:102522. [PMID: 37951621 DOI: 10.1016/j.hal.2023.102522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Revised: 09/28/2023] [Accepted: 09/29/2023] [Indexed: 11/14/2023]
Abstract
Domoic acid produced by toxigenic Pseudo-nitzschia species is the main toxin threat from harmful algal blooms in Monterey Bay and the larger California Current region on the West Coast of the United States. Toxin monitoring in Monterey Bay includes a long-running time series of weekly measurements of domoic acid from water samples, sentinel mussels, and solid phase adsorption toxin tracking (SPATT) at the Santa Cruz Municipal Wharf (SCW). The SCW sampling site is unusual because of its position in the Monterey Bay upwelling shadow in the north bay. The upwelling shadow circulation pattern has been previously characterized as a bloom incubator for dinoflagellates, but it has not yet been analyzed in the context of long-term monitoring methods. In data collected from the SCW from 2012 - 2020, domoic acid from water samples and sentinel mussels had a different temporal distribution than domoic acid from SPATT. Here we explore the discrepancy through a seasonal and non-seasonal analysis including physical oceanography of the region. Results show that domoic acid from water samples and sentinel mussels are related to seasonal upwelling and Pseudo-nitzschia blooms. Domoic acid monitored by SPATT, on the other hand, is correlated to anomalous upwelling and warmer than usual temperatures during the relaxation season. This work builds on previous analyses of the SCW time series and contributes to understanding of the circulation of dissolved toxin in the environment. Results lend rationale for the continuation of rigorous domoic acid monitoring in Monterey Bay and encourage stakeholders to consider local physical dynamics when interpreting toxin monitoring data.
Collapse
Affiliation(s)
- Aubrey Trapp
- University of California Santa Cruz, Dept. of Ocean Sciences, 1156 High St, Santa Cruz, CA 95064, United States of America.
| | - Kendra Hayashi
- University of California Santa Cruz, Dept. of Ocean Sciences, 1156 High St, Santa Cruz, CA 95064, United States of America
| | - Jerome Fiechter
- University of California Santa Cruz, Dept. of Ocean Sciences, 1156 High St, Santa Cruz, CA 95064, United States of America
| | - Raphael M Kudela
- University of California Santa Cruz, Dept. of Ocean Sciences, 1156 High St, Santa Cruz, CA 95064, United States of America
| |
Collapse
|
5
|
Li Z, Wang J, Fan J, Yue H, Zhang X. Marine toxin domoic acid alters protistan community structure and assembly process in sediments. MARINE ENVIRONMENTAL RESEARCH 2023; 191:106131. [PMID: 37579703 DOI: 10.1016/j.marenvres.2023.106131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 07/31/2023] [Accepted: 08/09/2023] [Indexed: 08/16/2023]
Abstract
Domoic acid (DA)-producing algal blooms have been the issue of worldwide concerns in recent decades, but there has never been any attempt to investigate the effects of DA on microbial ecology in marine environments. Protists are considered to be key regulators of microbial activity, community structure and evolution, we therefore explore the effect of DA on the ecology of protists via metagenome in this work. The results indicate that trace amounts of DA can act as a stressor to alter alpha and beta diversity of protistan community. Among trophic functional groups, consumers and phototrophs are negative responders of DA, implying DA is potentially capable of functional-level effects in the ocean. Moreover, microecological theory reveals that induction of DA increases the role of deterministic processes in microbial community assembly, thus altering the biotic relationships and successional processes in symbiotic patterns. Finally, we demonstrate that the mechanism by which DA shapes protistan ecological network is by acting on phototrophs, which triggers cascading effects in networks and eventually leading to shifts in ecological succession of protists. Overall, our results present the first perspective regarding the effects of DA on marine microbial ecology, which will supplement timely information on the ecological impacts of DA in the ocean.
Collapse
Affiliation(s)
- Zelong Li
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian, 116024, PR China
| | - Jing Wang
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian, 116024, PR China.
| | - Jingfeng Fan
- Marine Ecology Department, National Marine Environmental Monitoring Center, Dalian, 116023, PR China
| | - Hao Yue
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian, 116024, PR China
| | - Xiuhong Zhang
- School of Chemical Engineering, Dalian University of Technology, Dalian, 116024, PR China
| |
Collapse
|
6
|
Sandoval-Belmar M, Smith J, Moreno AR, Anderson C, Kudela RM, Sutula M, Kessouri F, Caron DA, Chavez FP, Bianchi D. A cross-regional examination of patterns and environmental drivers of Pseudo-nitzschia harmful algal blooms along the California coast. HARMFUL ALGAE 2023; 126:102435. [PMID: 37290883 DOI: 10.1016/j.hal.2023.102435] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 04/05/2023] [Accepted: 04/16/2023] [Indexed: 06/10/2023]
Abstract
Pseudo-nitzschia species with the ability to produce the neurotoxin domoic acid (DA) are the main cause of harmful algal blooms (HABs) along the U.S. West Coast, with major impacts on ecosystems, fisheries, and human health. While most Pseudo-nitzschia (PN) HAB studies to date have focused on their characteristics at specific sites, few cross-regional comparisons exist, and mechanistic understanding of large-scale HAB drivers remains incomplete. To close these gaps, we compiled a nearly 20-year time series of in situ particulate DA and environmental observations to characterize similarities and differences in PN HAB drivers along the California coast. We focus on three DA hotspots with the greatest data density: Monterey Bay, the Santa Barbara Channel, and the San Pedro Channel. Coastwise, DA outbreaks are strongly correlated with upwelling, chlorophyll-a, and silicic acid limitation relative to other nutrients. Clear differences also exist across the three regions, with contrasting responses to climate regimes across a north to south gradient. In Monterey Bay, PN HAB frequency and intensity increase under relatively nutrient-poor conditions during anomalously low upwelling intensities. In contrast, in the Santa Barbara and San Pedro Channels, PN HABs are favored under cold, nitrogen-rich conditions during more intense upwelling. These emerging patterns provide insights on ecological drivers of PN HABs that are consistent across regions and support the development of predictive capabilities for DA outbreaks along the California coast and beyond.
Collapse
Affiliation(s)
- Marco Sandoval-Belmar
- Department of Atmospheric and Oceanic Sciences, University of California, Los Angeles, CA 90095-1565, United States of America.
| | - Jayme Smith
- Southern California Coastal Water Research Project, 3535 Harbor Blvd, Suite 110, Costa Mesa, CA 92626-1437, United States of America
| | - Allison R Moreno
- Department of Atmospheric and Oceanic Sciences, University of California, Los Angeles, CA 90095-1565, United States of America
| | - Clarissa Anderson
- Southern California Coastal Ocean Observing System, Scripps Institution of Oceanography, La Jolla, CA, United States of America
| | - Raphael M Kudela
- Ocean Sciences Department, University of California Santa Cruz, Santa Cruz, CA, United States of America
| | - Martha Sutula
- Southern California Coastal Water Research Project, 3535 Harbor Blvd, Suite 110, Costa Mesa, CA 92626-1437, United States of America
| | - Fayçal Kessouri
- Department of Atmospheric and Oceanic Sciences, University of California, Los Angeles, CA 90095-1565, United States of America; Southern California Coastal Water Research Project, 3535 Harbor Blvd, Suite 110, Costa Mesa, CA 92626-1437, United States of America
| | - David A Caron
- Department of Biological Sciences, University of Southern California, 3616 Trousdale Parkway, Los Angeles, CA 90089-0371, United States of America
| | - Francisco P Chavez
- Monterey Bay Aquarium Research Institute, Moss Landing, California, United States of America
| | - Daniele Bianchi
- Department of Atmospheric and Oceanic Sciences, University of California, Los Angeles, CA 90095-1565, United States of America
| |
Collapse
|
7
|
Howard MDA, Smith J, Caron DA, Kudela RM, Loftin K, Hayashi K, Fadness R, Fricke S, Kann J, Roethler M, Tatters A, Theroux S. Integrative monitoring strategy for marine and freshwater harmful algal blooms and toxins across the freshwater-to-marine continuum. INTEGRATED ENVIRONMENTAL ASSESSMENT AND MANAGEMENT 2023; 19:586-604. [PMID: 35748667 PMCID: PMC11539047 DOI: 10.1002/ieam.4651] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 06/06/2022] [Accepted: 06/07/2022] [Indexed: 06/15/2023]
Abstract
Many coastal states throughout the USA have observed negative effects in marine and estuarine environments caused by cyanotoxins produced in inland waterbodies that were transported downstream or produced in the estuaries. Estuaries and other downstream receiving waters now face the dual risk of impacts from harmful algal blooms (HABs) that occur in the coastal ocean as well as those originating in inland watersheds. Despite this risk, most HAB monitoring efforts do not account for hydrological connections in their monitoring strategies and designs. Monitoring efforts in California have revealed the persistent detection of cyanotoxins across the freshwater-to-marine continuum. These studies underscore the importance of inland waters as conduits for the transfer of cyanotoxins to the marine environment and highlight the importance of approaches that can monitor across hydrologically connected waterbodies. A HAB monitoring strategy is presented for the freshwater-to-marine continuum to inform HAB management and mitigation efforts and address the physical and hydrologic challenges encountered when monitoring in these systems. Three main recommendations are presented based on published studies, new datasets, and existing monitoring programs. First, HAB monitoring would benefit from coordinated and cohesive efforts across hydrologically interconnected waterbodies and across organizational and political boundaries and jurisdictions. Second, a combination of sampling modalities would provide the most effective monitoring for HAB toxin dynamics and transport across hydrologically connected waterbodies, from headwater sources to downstream receiving waterbodies. Third, routine monitoring is needed for toxin mixtures at the land-sea interface including algal toxins of marine origins as well as cyanotoxins that are sourced from inland freshwater or produced in estuaries. Case studies from California are presented to illustrate the implementation of these recommendations, but these recommendations can also be applied to inland states or regions where the downstream receiving waterbody is a freshwater lake, reservoir, or river. Integr Environ Assess Manag 2023;19:586-604. © 2022 The Authors. Integrated Environmental Assessment and Management published by Wiley Periodicals LLC on behalf of Society of Environmental Toxicology & Chemistry (SETAC).
Collapse
Affiliation(s)
- Meredith D. A. Howard
- Central Valley Regional Water Quality Control Board, Rancho Cordova, California, USA
| | - Jayme Smith
- Southern California Coastal Water Research Project, Costa Mesa, California, USA
| | - David A. Caron
- University of Southern California, Los Angeles, California, USA
| | | | - Keith Loftin
- U.S. Geological Survey, Kansas Water Science Center, Lawrence, Kansas, USA
| | | | - Rich Fadness
- North Coast Regional Water Quality Control Board, Santa Rosa, California, USA
| | | | - Jacob Kann
- Aquatic Ecosystem Sciences, Ashland, Oregon, USA
| | | | - Avery Tatters
- Avery Tatters, U.S. Environmental Protection Agency Gulf Ecosystem Measurement and Modeling Division Laboratory, Gulf Breeze, Florida, USA
| | - Susanna Theroux
- Southern California Coastal Water Research Project, Costa Mesa, California, USA
| |
Collapse
|
8
|
Moreno AR, Anderson C, Kudela RM, Sutula M, Edwards C, Bianchi D. Development, calibration, and evaluation of a model of Pseudo-nitzschia and domoic acid production for regional ocean modeling studies. HARMFUL ALGAE 2022; 118:102296. [PMID: 36195423 DOI: 10.1016/j.hal.2022.102296] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 07/22/2022] [Accepted: 08/01/2022] [Indexed: 06/16/2023]
Abstract
Pseudo-nitzschia species are one of the leading causes of harmful algal blooms (HABs) along the western coast of the United States. Approximately half of known Pseudo-nitzschia strains can produce domoic acid (DA), a neurotoxin that can negatively impact wildlife and fisheries and put human life at risk through amnesic shellfish poisoning. Production and accumulation of DA, a secondary metabolite synthesized during periods of low primary metabolism, is triggered by environmental stressors such as nutrient limitation. To quantify and estimate the feedbacks between DA production and environmental conditions, we designed a simple mechanistic model of Pseudo-nitzschia and domoic acid dynamics, which we validate against batch and chemostat experiments. Our results suggest that, as nutrients other than nitrogen (i.e., silicon, phosphorus, and potentially iron) become limiting, DA production increases. Under Si limitation, we found an approximate doubling in DA production relative to N limitation. Additionally, our model indicates a positive relationship between light and DA production. These results support the idea that the relationship with nutrient limitation and light is based on direct impacts on Pseudo-nitzschia biosynthesis and biomass accumulation. Because it can easily be embedded within existing coupled physical-ecosystem models, our model represents a step forward toward modeling the occurrence of Pseudo-nitzschia HABs and DA across the U.S. West Coast.
Collapse
Affiliation(s)
- Allison R Moreno
- Atmospheric and Oceanic Sciences Department, University of California Los Angeles, Box 951565, Los Angeles 90095-1565, CA, USA.
| | - Clarissa Anderson
- Southern California Coastal Ocean Observing System, Scripps Institution of Oceanography, La Jolla, CA, USA
| | - Raphael M Kudela
- Ocean Sciences Department, University of California Santa Cruz, Santa Cruz, CA, USA
| | - Martha Sutula
- Southern California Coastal Water Research Project Authority, Costa Mesa, CA, USA
| | - Christopher Edwards
- Ocean Sciences Department, University of California Santa Cruz, Santa Cruz, CA, USA
| | - Daniele Bianchi
- Atmospheric and Oceanic Sciences Department, University of California Los Angeles, Box 951565, Los Angeles 90095-1565, CA, USA
| |
Collapse
|
9
|
Interactions between Filter-Feeding Bivalves and Toxic Diatoms: Influence on the Feeding Behavior of Crassostrea gigas and Pecten maximus and on Toxin Production by Pseudo-nitzschia. Toxins (Basel) 2021; 13:toxins13080577. [PMID: 34437448 PMCID: PMC8402372 DOI: 10.3390/toxins13080577] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 08/10/2021] [Accepted: 08/10/2021] [Indexed: 11/17/2022] Open
Abstract
Among Pseudo-nitzschia species, some produce the neurotoxin domoic acid (DA), a source of serious health problems for marine organisms. Filter-feeding organisms—e.g., bivalves feeding on toxigenic Pseudo-nitzschia spp.—are the main vector of DA in humans. However, little is known about the interactions between bivalves and Pseudo-nitzschia. In this study, we examined the interactions between two juvenile bivalve species—oyster (Crassostrea gigas) and scallop (Pecten maximus)—and two toxic Pseudo-nitzschia species—P. australis and P. fraudulenta. We characterized the influence of (1) diet composition and the Pseudo-nitzschia DA content on the feeding rates of oysters and scallops, and (2) the presence of bivalves on Pseudo-nitzschia toxin production. Both bivalve species fed on P. australis and P. fraudulenta. However, they preferentially filtered the non-toxic Isochrysis galbana compared to Pseudo-nitzschia. The presence of the most toxic P. australis species resulted in a decreased clearance rate in C. gigas. The two bivalve species accumulated DA in their tissues (up to 0.35 × 10−3 and 5.1 × 10−3 µg g−1 for C. gigas and P. maximus, respectively). Most importantly, the presence of bivalves induced an increase in the cellular DA contents of both Pseudo-nitzschia species (up to 58-fold in P. fraudulenta in the presence of C. gigas). This is the first evidence of DA production by Pseudo-nitzschia species stimulated in the presence of filter-feeding bivalves. The results of this study highlight complex interactions that can influence toxin production by Pseudo-nitzschia and accumulation in bivalves. These results will help to better understand the biotic factors that drive DA production by Pseudo-nitzschia and bivalve contamination during Pseudo-nitzschia blooms.
Collapse
|
10
|
Smith J, Shultz D, Howard MDA, Robertson G, Phonsiri V, Renick V, Caron DA, Kudela RM, McLaughlin K. Persistent domoic acid in marine sediments and benthic infauna along the coast of Southern California. HARMFUL ALGAE 2021; 108:102103. [PMID: 34588124 DOI: 10.1016/j.hal.2021.102103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 08/05/2021] [Accepted: 08/30/2021] [Indexed: 06/13/2023]
Abstract
Blooms of the diatom genus Pseudo-nitzschia occur annually in the Southern California Bight (SCB), and domoic acid (DA) associated with these events can contaminate fisheries, presenting both human and wildlife health risks. Recent studies have suggested that marine sediments may act as a reservoir for DA, extending the risk of food web contamination long after water column blooms have ended. In this study, we conducted a regional assessment of the extent and magnitude of DA in the benthic environment, and monthly observations of sediments and benthic infauna at multiple stations over a 16-month period. DA was widespread in continental shelf sediments of the SCB. The toxin was detected in 54% of all shelf habitats sampled. Detectable concentrations ranged from 0.11 ng/g to 1.36 ng/g. DA was consistently detected in benthic infauna tissues over the monthly timeseries, while the DA concentrations in sediments during the same period were commonly below detection or at low concentrations. The presence of DA in the benthic environment did not always have an apparent water column source, raising the possibility of lateral transport, retention/preservation in sediments or undetected blooms in subsurface waters. In most cases, DA was detected in tissues but not in the co-located surface sediments. Coarse taxonomic sorting of the infauna revealed that the accumulation of DA varied among taxa. We observed that DA was widespread among lower trophic level organisms in this study, potentially acting as a persistent source of DA to higher trophic levels in the benthos.
Collapse
Affiliation(s)
- Jayme Smith
- Southern California Coastal Water Research Project, Costa Mesa, CA, United States.
| | - Dana Shultz
- Southern California Coastal Water Research Project, Costa Mesa, CA, United States
| | - Meredith D A Howard
- Central Valley Regional Water Quality Control Board, Rancho Cordova, CA, United States
| | - George Robertson
- Orange County Sanitation District, Fountain Valley, CA, United States
| | - Vanh Phonsiri
- Orange County Sanitation District, Fountain Valley, CA, United States
| | - Violet Renick
- Orange County Sanitation District, Fountain Valley, CA, United States
| | - David A Caron
- University of Southern California, Los Angeles, CA, United States
| | - Raphael M Kudela
- University of California, Santa Cruz, Santa Cruz, CA, United States
| | - Karen McLaughlin
- Southern California Coastal Water Research Project, Costa Mesa, CA, United States
| |
Collapse
|
11
|
Dursun F. Occurence and Variability of Domoic Acid in Mussel (Mytilus galloprovincialis) Samples from the Golden Horn Estuary, Sea of Marmara (Turkey). BULLETIN OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2021; 106:318-326. [PMID: 33394065 DOI: 10.1007/s00128-020-03082-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 12/06/2020] [Indexed: 06/12/2023]
Abstract
The occurrence and variability of domoic acid (DA) levels in wild Mytilus galloprovincialis samples, compared with the Pseudo-nitzschia spp. abundance and particulate DA (pDA) concentrations in relation to the environmental changes in the Golden Horn Estuary, Turkey from October 2018 to September 2019. Biotoxin analysis were performed by high-performance liquid chromatography with diode-array detection (HPLC-DAD). DA concentrations in particulate matter (pDA) and mussel samples were found between 0.090-0.685 µg L-1 and 0.905-2.413 µg g-1, respectively. Accumulation of DA in wild mussel samples could be the result of the increasing tendency of P.nitzschia spp. abundances between April and May. Maximum DA levels were detected in particulate matter when the salinity was measured as the lowest in May. Thus, it can be said that the DA production was driven by the significant salinity decrease in the GHE. This is the first attempt regarding the presence of DA in M. galloprovincialis samples collected from Turkish coasts.
Collapse
Affiliation(s)
- Fuat Dursun
- Department of Physical Oceanography and Marine Biology, Institute of Marine Sciences and Management, Istanbul University, Vefa, 34134, Istanbul, Turkey.
| |
Collapse
|
12
|
Marquez IA, Abraham A, Krause JW. Organic polymer consumption facilitates domoic acid entry into the marine food web without direct ingestion of Pseudo-nitzschia. HARMFUL ALGAE 2020; 98:101891. [PMID: 33129467 DOI: 10.1016/j.hal.2020.101891] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2020] [Revised: 08/04/2020] [Accepted: 08/09/2020] [Indexed: 06/11/2023]
Abstract
Domoic acid (DA) is a neurotoxin produced by diatoms from the genera Pseudo-nitzschia and Nitzschia. DA is transferred through the food web when consumed by organisms such as copepods (e.g., Acartia tonsa). DA bioaccumulates in higher trophic levels and poses a threat to human health through amnesic shellfish poisoning. Laboratory experiments using a DA reference standard demonstrated that mild turbulence facilitates formation of organic polymer aggregates >0.6 µm in-vivo that can scavenge dissolved DA (dDA). Using A. tonsa, we demonstrate that DA can be assimilated through consumption of these organic polymers which scavenged dDA -a pathway which does not require direct ingestion of the toxin-producer Pseudo-nitzschia. In filtered seawater with spiked DA, copepods accumulated 24.8 ± 4.7 pg DA copepod-1 (2.1 ppm) on average by consuming organic polymers. This was validated in one out of five experiments using ambient DA concentrations. Copepods were suspended in particle-free seawater and accumulated 14.4 ± 3.8 pg DA copepod-1 (1.20 ppm), and in particle-concentrated seawater they accumulated 40.9 ± 3.8 pg DA copepod-1 (3.42 ppm). Data from this experiment suggests that ~34% of the total assimilated DA entered via an organic polymer-bound DA pathway. This experiment had the highest Pseudo-nitzschia spp. abundance (~225,000 cells L - 1) and cellular toxin quota, up to 0.88 pg DA cell-1, relative to the other four ambient DA experiments. These results demonstrate the potential for DA to enter the marine food web through an alternate pathway and may have considerable implications to understanding the flow of DA through marine food webs, and how we monitor DA and its potential vectors into the food web.
Collapse
Affiliation(s)
- Israel A Marquez
- Department of Marine Sciences, University of South Alabama, 307N. University Blvd. Mobile, AL 36688, United States; Dauphin Island Sea Lab, 101 Bienville Blvd Dauphin Island, AL 36528, United States.
| | - Ann Abraham
- FDA, Division of Seafood Science and Technology, Gulf Coast Seafood Laboratory, 1 Iberville Dr. Dauphin Island, AL 36528, United States.
| | - Jeffrey W Krause
- Department of Marine Sciences, University of South Alabama, 307N. University Blvd. Mobile, AL 36688, United States; Dauphin Island Sea Lab, 101 Bienville Blvd Dauphin Island, AL 36528, United States.
| |
Collapse
|
13
|
Kudela RM, Hayashi K, Caceres CG. Is San Francisco Bay resistant to Pseudo-nitzschia and domoic acid? HARMFUL ALGAE 2020; 92:101617. [PMID: 32113607 DOI: 10.1016/j.hal.2019.05.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Revised: 05/22/2019] [Accepted: 05/23/2019] [Indexed: 06/10/2023]
Abstract
San Francisco Bay (SFB), California, USA is the largest estuary in the western United States and is home to more than 7 million people in nine counties and 101 cities. It is highly nutrient enriched and is directly connected to the Gulf of the Farallones and coastal Pacific ocean through the Golden Gate strait. The Gulf of the Farallones is one of several "hotspots" for the neurotoxin domoic acid, produced by members of the genus Pseudo-nitzschia. Despite the close proximity, SFB has few reports of harmful algal blooms and low concentrations of domoic acid, suggesting that SFB is somehow resistant to toxic blooms. Here we evaluate the potential growth and toxicity of the dominant toxigenic species in California coastal waters, P. australis and P. multiseries, to directly test the hypothesis that SFB waters confer resistance to blooms. We specifically evaluate the effect of varying temperature, salinity, and to a lesser extent, nutrients on growth and toxin production. Results show equivalent growth in SFB water (maximum growth rates of 0.71 and 1.35 d-1 for P. multiseries and P. australis) compared to open-coast water, and comparable or greater toxicity (0 to >100 pg DA cell-1). The historical resistance to blooms in SFB is hypothesized to be caused by a combination of insufficient acclimation time for advected Pseudo-nitzschia populations to become established and suppression of toxin production in warm waters.
Collapse
Affiliation(s)
- Raphael M Kudela
- Ocean Sciences Department, 1156 High Street, University of California, Santa Cruz, CA 95064, United States.
| | - Kendra Hayashi
- Ocean Sciences Department, 1156 High Street, University of California, Santa Cruz, CA 95064, United States
| | - Cristian Garrido Caceres
- Ocean Sciences Department, 1156 High Street, University of California, Santa Cruz, CA 95064, United States
| |
Collapse
|
14
|
Likumahua S, de Boer MK, Krock B, Nieuwenhuizen T, Tatipatta WM, Hehakaya S, Imu L, Abdul MS, Moniharapon E, Buma AGJ. First record of the dynamics of domoic acid producing Pseudo-nitzschia spp. in Indonesian waters as a function of environmental variability. HARMFUL ALGAE 2019; 90:101708. [PMID: 31806164 DOI: 10.1016/j.hal.2019.101708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Revised: 11/04/2019] [Accepted: 11/05/2019] [Indexed: 06/10/2023]
Abstract
Within the past few decades, harmful algal blooms (HABs) have occurred frequently in Indonesian waters, resulting in environmental degradation, economic loss and human health problems. So far, HAB related studies mainly addressed ecological traits and species distribution, yet toxin measurements were virtually absent for Indonesian waters. The aim of the present study was to explore variability of the potentially toxic marine diatom genus Pseudo-nitzschia, as well as its neurotoxin domoic acid as a function of environmental conditions in Ambon Bay, eastern Indonesia. Weekly phytoplankton samples, oceanographic (CTD, nutrients) and meteorological (precipitation, wind) parameters were analyzed at 5 stations in the bay during the dry and wet seasons of 2018. Liquid chromatography - tandem mass spectrometry (LC-MS/MS) was used to detect particulate DA (pDA). Vegetative cells of Pseudo-nitzschia spp. and pDA were found in 98.6% and 51.4% of the samples, respectively. pDA levels were low, yet detected throughout the campaign, implying that Ambon Bay might potentially be subject to amnesic shellfish poisoning. The highest levels of both Pseudo-nitzschia spp. cell abundance and pDA were found in the wet season, showing a strong positive correlation between both parameters, compared to the dry season, (r = 0.87 and r = 0.66 (p < 0.01), respectively). Statistical analyses revealed that temperature and mixed layer depth positively correlated with Pseudo-nitzschia spp. and pDA during the dry season, while ammonium showed positive correlations in both seasons. This study represents the first successful investigation of the presence and variability of Pseudo-nitzschia spp. and its neurotoxin DA in Indonesian waters.
Collapse
Affiliation(s)
- Sem Likumahua
- Department of Ocean Ecosystems, Energy and Sustainability Research Institute Groningen, Faculty of Science and Engineering, University of Groningen, Nijenborgh 7, 9747AG Groningen, the Netherlands; Centre for Deep Sea Research-LIPI, Jl. Y. Syaranamual Guru-guru-Poka, 97233 Ambon, Indonesia.
| | - M Karin de Boer
- Department of Ocean Ecosystems, Energy and Sustainability Research Institute Groningen, Faculty of Science and Engineering, University of Groningen, Nijenborgh 7, 9747AG Groningen, the Netherlands; Beta Science Shop, Faculty of Science and Engineering, University of Groningen, Nijenborgh 6, 9747AG Groningen, the Netherlands
| | - Bernd Krock
- Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research, Am Handelshafen 12, 27570 Bremerhaven, Germany
| | - Tomas Nieuwenhuizen
- Department of Ocean Ecosystems, Energy and Sustainability Research Institute Groningen, Faculty of Science and Engineering, University of Groningen, Nijenborgh 7, 9747AG Groningen, the Netherlands
| | - Willem M Tatipatta
- Centre for Deep Sea Research-LIPI, Jl. Y. Syaranamual Guru-guru-Poka, 97233 Ambon, Indonesia
| | - Salomy Hehakaya
- Centre for Deep Sea Research-LIPI, Jl. Y. Syaranamual Guru-guru-Poka, 97233 Ambon, Indonesia
| | - La Imu
- Centre for Deep Sea Research-LIPI, Jl. Y. Syaranamual Guru-guru-Poka, 97233 Ambon, Indonesia
| | - Malik S Abdul
- Centre for Deep Sea Research-LIPI, Jl. Y. Syaranamual Guru-guru-Poka, 97233 Ambon, Indonesia
| | - Eduard Moniharapon
- Centre for Deep Sea Research-LIPI, Jl. Y. Syaranamual Guru-guru-Poka, 97233 Ambon, Indonesia
| | - Anita G J Buma
- Department of Ocean Ecosystems, Energy and Sustainability Research Institute Groningen, Faculty of Science and Engineering, University of Groningen, Nijenborgh 7, 9747AG Groningen, the Netherlands
| |
Collapse
|