1
|
Costa PR, Churro C, Rodrigues SM, Frazão B, Barbosa M, Godinho L, Soliño L, Timóteo V, Gouveia N. A 15-Year Retrospective Review of Ciguatera in the Madeira Islands (North-East Atlantic, Portugal). Toxins (Basel) 2023; 15:630. [PMID: 37999493 PMCID: PMC10674775 DOI: 10.3390/toxins15110630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 10/24/2023] [Accepted: 10/24/2023] [Indexed: 11/25/2023] Open
Abstract
The first ciguatera fish poisoning (CFP) in Portugal dates from 2008 when 11 people reported CFP symptoms after consuming a 30 kg amberjack caught around the Selvagens Islands (Madeira Archipelago). Since then, 49 human poisonings have been reported. The emergence of a new threat challenged scientists and regulators, as methods for toxic microalgae analyses and ciguatoxin (CTX) detection were not implemented. To minimise the risk of ciguatera, the Madeira Archipelago authorities interdicted fisheries in Selvagens Islands and banned the capture of amberjacks weighing more than 10 kg in the entire region of Madeira Archipelago. The accurate identification and quantification of the benthic toxin-producing algae species spreading to new areas require efforts in terms of both microscopy and molecular techniques. Two ciguatera-causing dinoflagellates, Gambierdiscus excentricus and Gambierdiscus australes, were identified in the Madeira Island and Selvagens sub-archipelago, respectively. Regarding the CTX analysis (N2a cell-based assay and LC-MS) in fish, the results indicate that the Selvagens Islands are a ciguatera risk area and that fish vectoring CTX are not limited to top predator species. Nevertheless, advances and improvements in screening methods for the fast detection of toxicity in seafood along with certified reference material and sensitive and selective targeted analytical methods for the determination of CTX content are still pending. This study aims to revise the occurrence of ciguatera cases in the Madeira Archipelago since its first detection in 2008, to discuss the risk management strategy that was implemented, and to provide a summary of the available data on the bioaccumulation of CTX in marine fish throughout the marine food web, taking into consideration their ecological significance, ecosystem dynamics, and fisheries relevance.
Collapse
Affiliation(s)
- Pedro Reis Costa
- IPMA—Portuguese Institute of the Sea and Atmosphere, Rua Alfredo Magalhães Ramalho 6, 1495-165 Lisbon, Portugal; (C.C.); (S.M.R.); (B.F.); (M.B.); (L.G.); (L.S.)
- CCMAR—Centre of Marine Sciences, University of Algarve, Campus of Gambelas, 8005-139 Faro, Portugal
| | - Catarina Churro
- IPMA—Portuguese Institute of the Sea and Atmosphere, Rua Alfredo Magalhães Ramalho 6, 1495-165 Lisbon, Portugal; (C.C.); (S.M.R.); (B.F.); (M.B.); (L.G.); (L.S.)
- CIIMAR—Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos, s/n, 4450-208 Porto, Portugal
| | - Susana Margarida Rodrigues
- IPMA—Portuguese Institute of the Sea and Atmosphere, Rua Alfredo Magalhães Ramalho 6, 1495-165 Lisbon, Portugal; (C.C.); (S.M.R.); (B.F.); (M.B.); (L.G.); (L.S.)
| | - Bárbara Frazão
- IPMA—Portuguese Institute of the Sea and Atmosphere, Rua Alfredo Magalhães Ramalho 6, 1495-165 Lisbon, Portugal; (C.C.); (S.M.R.); (B.F.); (M.B.); (L.G.); (L.S.)
| | - Miguel Barbosa
- IPMA—Portuguese Institute of the Sea and Atmosphere, Rua Alfredo Magalhães Ramalho 6, 1495-165 Lisbon, Portugal; (C.C.); (S.M.R.); (B.F.); (M.B.); (L.G.); (L.S.)
| | - Lia Godinho
- IPMA—Portuguese Institute of the Sea and Atmosphere, Rua Alfredo Magalhães Ramalho 6, 1495-165 Lisbon, Portugal; (C.C.); (S.M.R.); (B.F.); (M.B.); (L.G.); (L.S.)
| | - Lucía Soliño
- IPMA—Portuguese Institute of the Sea and Atmosphere, Rua Alfredo Magalhães Ramalho 6, 1495-165 Lisbon, Portugal; (C.C.); (S.M.R.); (B.F.); (M.B.); (L.G.); (L.S.)
| | - Viriato Timóteo
- Laboratório Regional de Veterinária e Segurança Alimentar, Caminho das Quebradas de Baixo nº 79, S. Martinho, 9000-254 Funchal, Portugal; (V.T.); (N.G.)
| | - Neide Gouveia
- Laboratório Regional de Veterinária e Segurança Alimentar, Caminho das Quebradas de Baixo nº 79, S. Martinho, 9000-254 Funchal, Portugal; (V.T.); (N.G.)
| |
Collapse
|
2
|
Li Q, Mahmudiono T, Mohammadi H, Nematollahi A, Hoseinvandtabar S, Mehri F, Hasanzadeh V, Limam I, Fakhri Y, Thai VN. Concentration ciguatoxins in fillet of fish: A global systematic review and meta-analysis. Heliyon 2023; 9:e18500. [PMID: 37554806 PMCID: PMC10404960 DOI: 10.1016/j.heliyon.2023.e18500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Revised: 07/10/2023] [Accepted: 07/19/2023] [Indexed: 08/10/2023] Open
Abstract
In the current study, an attempt was made to meta-analyze and discuss the concentration of ciguatoxins (CTXs) in fillets of fish based on country and water resources subgroups. The search was conducted in Scopus and PubMed, Embase and Web of Science to retrieve papers about the concentration of CTXs in fillet fish until July 2022. Meta-analysis concentration of CTXs was conducted based on countries and water resources subgroups in the random effects model (REM). The sort of countries based on the pooled concentration of CTXs was Kiribati (3.904 μg/kg) > Vietnam (1.880 μg/kg) > Macaronesia (1.400 μg/kg) > French (1.261 μg/kg) > China (0.674 μg/kg) > Japan (0.572 μg/kg) > USA (0.463 μg/kg) > Spain (0.224 μg/kg) > UK (0.170 μg/kg) > Fiji (0.162 μg/kg) > Mexico (0.150 μg/kg) > Australia (0.138 μg/kg) > Portugal (0.011 μg/kg). CTXs concentrations in all countries are higher than the safe limits of CTX1C (0.1 μg/kg). However, based on the safe limits of CTX1P, the concentrations of CTXs in just Portugal meet the regulation level (0.01 μg/kg). The minimum and maximum concentrations of CTXs were as observed in Selvagens Islands (0.011 μg/kg) and St Barthelemy (7.875 μg/kg) respectively. CTXs concentrations in all water resources are higher than safe limits of CTX1C (0.1 μg/kg) and CTX1B (0.01 μg/kg). Therefore, it is recommended to carry out continuous control pans of CTXs concentration in fish in different countries and water sources.
Collapse
Affiliation(s)
- Qingxiao Li
- College of Grain Engineering, Henan Industry and Trade Vocational College, Zhengzhou,451191, Henan Province, China
| | - Trias Mahmudiono
- Department of Nutrition, Faculty of Public Health, Universitas Airlangga, Surabaya, Indonesia
| | - Hossein Mohammadi
- Department of Bioimaging, School of Advanced Technologies in Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Amene Nematollahi
- Department of Food Safety and Hygiene, School of Health, Fasa University of Medical Sciences, Fasa, Iran
| | - Somayeh Hoseinvandtabar
- Student Research Committee, School of Public Health, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Fereshteh Mehri
- Nutrition Health Research Center, Center of Excellence for Occupational Health, Research Center for Health Sciences, School of Public Health, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Vajihe Hasanzadeh
- Department of Environmental Health Engineering, School of Public Health and Safety, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Intissar Limam
- Laboratory of Materials, Treatment and Analysis, National Institute of Research and Physicochemical Analysis; and High School for Science and Health Techniques of Tunis, University of Tunis El Manar, Tunisia
| | - Yadolah Fakhri
- Food Health Research Center, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Van Nam Thai
- HUTECH Institute of Applied Sciences, HUTECH University, 475A, Dien Bien Phu, Ward 25, Binh Thanh District, Ho Chi Minh City, Vietnam
| |
Collapse
|
3
|
Pottier I, Lewis RJ, Vernoux JP. Ciguatera Fish Poisoning in the Caribbean Sea and Atlantic Ocean: Reconciling the Multiplicity of Ciguatoxins and Analytical Chemistry Approach for Public Health Safety. Toxins (Basel) 2023; 15:453. [PMID: 37505722 PMCID: PMC10467118 DOI: 10.3390/toxins15070453] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 06/29/2023] [Accepted: 07/01/2023] [Indexed: 07/29/2023] Open
Abstract
Ciguatera is a major circumtropical poisoning caused by the consumption of marine fish and invertebrates contaminated with ciguatoxins (CTXs): neurotoxins produced by endemic and benthic dinoflagellates which are biotransformed in the fish food-web. We provide a history of ciguatera research conducted over the past 70 years on ciguatoxins from the Pacific Ocean (P-CTXs) and Caribbean Sea (C-CTXs) and describe their main chemical, biochemical, and toxicological properties. Currently, there is no official method for the extraction and quantification of ciguatoxins, regardless their origin, mainly due to limited CTX-certified reference materials. In this review, the extraction and purification procedures of C-CTXs are investigated, considering specific objectives such as isolating reference materials, analysing fish toxin profiles, or ensuring food safety control. Certain in vitro assays may provide sufficient sensitivity to detect C-CTXs at sub-ppb levels in fish, but they do not allow for individual identification of CTXs. Recent advances in analysis using liquid chromatography coupled with low- or high-resolution mass spectrometry provide new opportunities to identify known C-CTXs, to gain structural insights into new analogues, and to quantify C-CTXs. Together, these methods reveal that ciguatera arises from a multiplicity of CTXs, although one major form (C-CTX-1) seems to dominate. However, questions arise regarding the abundance and instability of certain C-CTXs, which are further complicated by the wide array of CTX-producing dinoflagellates and fish vectors. Further research is needed to assess the toxic potential of the new C-CTX and their role in ciguatera fish poisoning. With the identification of C-CTXs in the coastal USA and Eastern Atlantic Ocean, the investigation of ciguatera fish poisoning is now a truly global effort.
Collapse
Affiliation(s)
- Ivannah Pottier
- Normandie Univ, UNICAEN, UNIROUEN, ABTE, 14000 Caen, France;
| | - Richard J. Lewis
- Institute for Molecular Bioscience, The University of Queensland, Brisbane 4072, Australia
| | | |
Collapse
|
4
|
Reverté J, Alkassar M, Diogène J, Campàs M. Detection of Ciguatoxins and Tetrodotoxins in Seafood with Biosensors and Other Smart Bioanalytical Systems. Foods 2023; 12:foods12102043. [PMID: 37238861 DOI: 10.3390/foods12102043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 05/15/2023] [Accepted: 05/16/2023] [Indexed: 05/28/2023] Open
Abstract
The emergence of marine toxins such as ciguatoxins (CTXs) and tetrodotoxins (TTXs) in non-endemic regions may pose a serious food safety threat and public health concern if proper control measures are not applied. This article provides an overview of the main biorecognition molecules used for the detection of CTXs and TTXs and the different assay configurations and transduction strategies explored in the development of biosensors and other biotechnological tools for these marine toxins. The advantages and limitations of the systems based on cells, receptors, antibodies, and aptamers are described, and new challenges in marine toxin detection are identified. The validation of these smart bioanalytical systems through analysis of samples and comparison with other techniques is also rationally discussed. These tools have already been demonstrated to be useful in the detection and quantification of CTXs and TTXs, and are, therefore, highly promising for their implementation in research activities and monitoring programs.
Collapse
Affiliation(s)
- Jaume Reverté
- Institut de Recerca i Tecnologia Agroalimentàries (IRTA), Ctra. Poble Nou km 5.5, 43540 La Ràpita, Spain
| | - Mounira Alkassar
- Institut de Recerca i Tecnologia Agroalimentàries (IRTA), Ctra. Poble Nou km 5.5, 43540 La Ràpita, Spain
| | - Jorge Diogène
- Institut de Recerca i Tecnologia Agroalimentàries (IRTA), Ctra. Poble Nou km 5.5, 43540 La Ràpita, Spain
| | - Mònica Campàs
- Institut de Recerca i Tecnologia Agroalimentàries (IRTA), Ctra. Poble Nou km 5.5, 43540 La Ràpita, Spain
| |
Collapse
|
5
|
Tartaglione L, Loeffler CR, Miele V, Varriale F, Varra M, Monti M, Varone A, Bodi D, Spielmeyer A, Capellacci S, Penna A, Dell'Aversano C. Dereplication of Gambierdiscusbalechii extract by LC-HRMS and in vitro assay: First description of a putative ciguatoxin and confirmation of 44-methylgambierone. CHEMOSPHERE 2023; 319:137940. [PMID: 36702405 DOI: 10.1016/j.chemosphere.2023.137940] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 01/19/2023] [Accepted: 01/21/2023] [Indexed: 06/18/2023]
Abstract
Marine toxins have a significant impact on seafood resources and human health. Up to date, mainly based on bioassays results, two genera of toxic microalgae, Gambierdiscus and Fukuyoa have been hypothesized to produce a suite of biologically active compounds, including maitotoxins (MTXs) and ciguatoxins (CTXs) with the latter causing ciguatera poisoning (CP) in humans. The global ubiquity of these microalgae and their ability to produce (un-)known bioactive compounds, necessitates strategies for screening, identifying, and reducing the number of target algal species and compounds selected for structural elucidation. To accomplish this task, a dereplication process is necessary to screen and profile algal extracts, identify target compounds, and support the discovery of novel bioactive chemotypes. Herein, a dereplication strategy was applied to a crude extract of a G. balechii culture to investigate for bioactive compounds with relevance to CP using liquid chromatography-high resolution mass spectrometry, in vitro cell-based bioassay, and a combination thereof via a bioassay-guided micro-fractionation. Three biologically active fractions exhibiting CTX-like and MTX-like toxicity were identified. A naturally incurred fish extract (Sphyraena barracuda) was used for confirmation where standards were unavailable. Using this approach, a putative I/C-CTX congener in G. balechii was identified for the first time, 44-methylgambierone was confirmed at 8.6 pg cell-1, and MTX-like compounds were purported. This investigative approach can be applied towards other harmful algal species of interest. The identification of a microalgal species herein, G. balechii (VGO920) which was found capable of producing a putative I/C-CTX in culture is an impactful advancement for global CP research. The large-scale culturing of G. balechii could be used as a source of I/C-CTX reference material not yet commercially available, thus, fulfilling an analytical gap that currently hampers the routine determination of CTXs in various environmental and human health-relevant matrices.
Collapse
Affiliation(s)
- Luciana Tartaglione
- Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, Via D. Montesano 49, 80131, Naples, Italy.
| | - Christopher R Loeffler
- Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, Via D. Montesano 49, 80131, Naples, Italy; Institute for Endocrinology and Experimental Oncology "G. Salvatore," National Research Council, Via P. Castellino 111, 80131, Naples, Italy; German Federal Institute for Risk Assessment, Department Safety in the Food Chain, National Reference Laboratory of Marine Biotoxins, Max-Dohrn-Str. 8-10, 10589, Berlin, Germany
| | - Valentina Miele
- Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, Via D. Montesano 49, 80131, Naples, Italy
| | - Fabio Varriale
- Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, Via D. Montesano 49, 80131, Naples, Italy
| | - Michela Varra
- Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, Via D. Montesano 49, 80131, Naples, Italy
| | - Marcello Monti
- Institute for Endocrinology and Experimental Oncology "G. Salvatore," National Research Council, Via P. Castellino 111, 80131, Naples, Italy
| | - Alessia Varone
- Institute for Endocrinology and Experimental Oncology "G. Salvatore," National Research Council, Via P. Castellino 111, 80131, Naples, Italy
| | - Dorina Bodi
- German Federal Institute for Risk Assessment, Department Safety in the Food Chain, National Reference Laboratory of Marine Biotoxins, Max-Dohrn-Str. 8-10, 10589, Berlin, Germany
| | - Astrid Spielmeyer
- German Federal Institute for Risk Assessment, Department Safety in the Food Chain, National Reference Laboratory of Marine Biotoxins, Max-Dohrn-Str. 8-10, 10589, Berlin, Germany
| | - Samuela Capellacci
- Department of Biomolecular Sciences, University of Urbino, Campus E. Mattei, Urbino, Italy
| | - Antonella Penna
- Department of Biomolecular Sciences, University of Urbino, Campus E. Mattei, Urbino, Italy
| | - Carmela Dell'Aversano
- Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, Via D. Montesano 49, 80131, Naples, Italy; NBFC, National Biodiversity Future Center, Palermo, 90133, Italy
| |
Collapse
|
6
|
Sasaki M, Seida M, Umehara A. Convergent and Scalable Synthesis of the ABCDE-Ring Fragment of Caribbean Ciguatoxin C-CTX-1. J Org Chem 2023; 88:403-418. [PMID: 36537759 DOI: 10.1021/acs.joc.2c02414] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Convergent and scalable synthesis of the ABCDE-ring fragment of Caribbean ciguatoxin C-CTX-1, the major causative toxin for ciguatera poisoning in the Caribbean Sea and the Northeast Atlantic areas, is described in detail. The key features of the synthesis include an iterative use of 2,2,6,6-tetramethyl piperidine 1-oxyl (TEMPO)/PhI(OAc)2-mediated oxidative lactonization and Suzuki-Miyaura coupling en route to the DE-ring system and a convergent fragment coupling to form the ABCDE-ring skeleton via the Suzuki-Miyaura coupling strategy.
Collapse
Affiliation(s)
- Makoto Sasaki
- Graduate School of Life Sciences, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577, Japan
| | - Miku Seida
- Graduate School of Life Sciences, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577, Japan
| | - Atsushi Umehara
- Graduate School of Life Sciences, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577, Japan
| |
Collapse
|
7
|
Alkassar M, Leonardo S, Diogène J, Campàs M. Immobilisation of Neuro-2a cells on electrodes and electrochemical detection of MTT formazan crystals to assess their viability. Bioelectrochemistry 2022; 148:108274. [DOI: 10.1016/j.bioelechem.2022.108274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 09/15/2022] [Accepted: 09/20/2022] [Indexed: 11/02/2022]
|
8
|
Campàs M, Leonardo S, Rambla-Alegre M, Sagristà N, Vaya R, Diogène J, Torréns M, Fragoso A. Cyclodextrin polymer clean-up method for the detection of ciguatoxins in fish with cell-based assays. Food Chem 2022; 401:134196. [PMID: 36115230 DOI: 10.1016/j.foodchem.2022.134196] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 08/09/2022] [Accepted: 09/08/2022] [Indexed: 12/26/2022]
Abstract
Ciguatoxins (CTXs) are marine toxins produced by microalgae of the genera Gambierdiscus and Fukuyoa, which are transferred through the food webs, reaching humans and causing a poisoning known as ciguatera. The cell-based assay (CBA) is commonly used for their detection because of its high sensitivity and the provided toxicological information. However, matrix effects may interfere in the CBA. In this work, γ-cyclodextrin-hexamethylene diisocyanate (γ-CD-HDI), γ-cyclodextrin-epichlorohydrin (γ-CD-EPI) and γ-CD-EPI conjugated to magnetic beads (γ-CD-EPI-MB) have been evaluated as clean-up materials for fish flesh extracts containing CTXs. The best results were achieved with γ-CD-HDI in column format, which showed a CTX1B recovery of 42% and 32% for Variola louti and Seriola dumerili, respectively, and allowed exposing cells to at least 400 mg/mL of fish flesh. This clean-up strategy provides at least 4.6 and 3.0-fold higher sensitivities to the assay for V.louti and S.dumerili, respectively, improving the reliability of CTX quantification.
Collapse
Affiliation(s)
- Mònica Campàs
- Marine and Continental Waters, IRTA, Ctra. Poble Nou km 5.5, 43540 La Ràpita, Spain.
| | - Sandra Leonardo
- Marine and Continental Waters, IRTA, Ctra. Poble Nou km 5.5, 43540 La Ràpita, Spain
| | - Maria Rambla-Alegre
- Marine and Continental Waters, IRTA, Ctra. Poble Nou km 5.5, 43540 La Ràpita, Spain
| | - Núria Sagristà
- Marine and Continental Waters, IRTA, Ctra. Poble Nou km 5.5, 43540 La Ràpita, Spain
| | - Raquel Vaya
- Marine and Continental Waters, IRTA, Ctra. Poble Nou km 5.5, 43540 La Ràpita, Spain
| | - Jorge Diogène
- Marine and Continental Waters, IRTA, Ctra. Poble Nou km 5.5, 43540 La Ràpita, Spain
| | - Mabel Torréns
- Departament d'Enginyeria Química, Universitat Rovira i Virgili, Av. Països Catalans 26, 43007 Tarragona, Spain
| | - Alex Fragoso
- Departament d'Enginyeria Química, Universitat Rovira i Virgili, Av. Països Catalans 26, 43007 Tarragona, Spain
| |
Collapse
|
9
|
Threshold values on environmental chemical contaminants in seafood in the European Economic Area. Food Control 2022. [DOI: 10.1016/j.foodcont.2022.108978] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
10
|
Gambierdiscus and Its Associated Toxins: A Minireview. Toxins (Basel) 2022; 14:toxins14070485. [PMID: 35878223 PMCID: PMC9324261 DOI: 10.3390/toxins14070485] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 07/11/2022] [Accepted: 07/12/2022] [Indexed: 11/17/2022] Open
Abstract
Gambierdiscus is a dinoflagellate genus widely distributed throughout tropical and subtropical regions. Some members of this genus can produce a group of potent polycyclic polyether neurotoxins responsible for ciguatera fish poisoning (CFP), one of the most significant food-borne illnesses associated with fish consumption. Ciguatoxins and maitotoxins, the two major toxins produced by Gambierdiscus, act on voltage-gated channels and TRPA1 receptors, consequently leading to poisoning and even death in both humans and animals. Over the past few decades, the occurrence and geographic distribution of CFP have undergone a significant expansion due to intensive anthropogenic activities and global climate change, which results in more human illness, a greater public health impact, and larger economic losses. The global spread of CFP has led to Gambierdiscus and its toxins being considered an environmental and human health concern worldwide. In this review, we seek to provide an overview of recent advances in the field of Gambierdiscus and its associated toxins based on the existing literature combined with re-analyses of current data. The taxonomy, phylogenetics, geographic distribution, environmental regulation, toxin detection method, toxin biosynthesis, and pharmacology and toxicology of Gambierdiscus are summarized and discussed. We also highlight future perspectives on Gambierdiscus and its associated toxins.
Collapse
|
11
|
Preparation of Ciguatoxin Reference Materials from Canary Islands (Spain) and Madeira Archipelago (Portugal) Fish. JOURNAL OF MARINE SCIENCE AND ENGINEERING 2022. [DOI: 10.3390/jmse10060835] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Ciguatoxins (CTXs) are naturally occurring neurotoxins that can accumulate in fish and cause Ciguatera Poisoning (CP) in seafood consumers. Ciguatoxic fish have been detected in tropical and subtropical regions of the world including the Pacific and Indian Oceans, the Caribbean Sea, and more recently in the northeast Atlantic Ocean. The biogeographic distribution of ciguatoxic fish appears to be expanding; however, the paucity of CTX standards and reference materials limits the ability of public health authorities to monitor for these toxins in seafood supply chains. Recent reports establish that Caribbean Ciguatoxin-1 (C-CTX1) is the principal toxin responsible for CP cases and outbreaks in the northeast Atlantic Ocean and that C-CTX congener profiles in contaminated fish samples match those from the Caribbean Sea. Therefore, in this work, C-CTX reference materials were prepared from fish obtained from the northeast Atlantic Ocean. The collection of fish specimens (e.g., amberjack, grouper, or snapper) was screened for CTX-like toxicity using the in vitro sodium channel mouse neuroblastoma cytotoxicity assay (N2a cell assay). Muscle and liver tissues from toxic specimens were pooled for extraction and purified products were ultimately profiled and quantified by comparison with authentic C-CTX1 using LC-MS/MS. This work presents a detailed protocol for the preparation of purified C-CTX reference materials to enable continued research and monitoring of the ciguatera public health hazard. To carry out this work, C-CTX1 was isolated and purified from fish muscle and liver tissues obtained from the Canary Islands (Spain) and Madeira archipelago (Portugal).
Collapse
|
12
|
Reductive Amination for LC-MS Signal Enhancement and Confirmation of the Presence of Caribbean Ciguatoxin-1 in Fish. Toxins (Basel) 2022; 14:toxins14060399. [PMID: 35737060 PMCID: PMC9245599 DOI: 10.3390/toxins14060399] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 06/03/2022] [Accepted: 06/07/2022] [Indexed: 02/04/2023] Open
Abstract
Ciguatera poisoning is a global health concern caused by the consumption of seafood containing ciguatoxins (CTXs). Detection of CTXs poses significant analytical challenges due to their low abundance even in highly toxic fish, the diverse and in-part unclarified structures of many CTX congeners, and the lack of reference standards. Selective detection of CTXs requires methods such as liquid chromatography coupled to tandem mass spectrometry (LC-MS/MS) or high-resolution MS (LC-HRMS). While HRMS data can provide greatly improved resolution, it is typically less sensitive than targeted LC-MS/MS and does not reliably comply with the FDA guidance level of 0.1 µg/kg CTXs in fish tissue that was established for Caribbean CTX-1 (C-CTX-1). In this study, we provide a new chemical derivatization approach employing a fast and simple one-pot derivatization with Girard's reagent T (GRT) that tags the C-56-ketone intermediate of the two equilibrating C-56 epimers of C-CTX-1 with a quaternary ammonium moiety. This derivatization improved the LC-MS/MS and LC-HRMS responses to C-CTX-1 by approximately 40- and 17-fold on average, respectively. These improvements in sensitivity to the GRT-derivative of C-CTX-1 are attributable to: the improved ionization efficiency caused by insertion of a quaternary ammonium ion; the absence of adduct-ions and water-loss peaks for the GRT derivative in the mass spectrometer, and; the prevention of on-column epimerization (at C-56 of C-CTX-1) by GRT derivatization, leading to much better chromatographic peak shapes. This C-CTX-1-GRT derivatization strategy mitigates many of the shortcomings of current LC-MS analyses for C-CTX-1 by improving instrument sensitivity, while at the same time adding selectivity due to the reactivity of GRT with ketones and aldehydes.
Collapse
|
13
|
In vivo subchronic effects of ciguatoxin-related compounds, reevaluation of their toxicity. Arch Toxicol 2022; 96:2621-2638. [PMID: 35657391 PMCID: PMC9325831 DOI: 10.1007/s00204-022-03315-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 05/11/2022] [Indexed: 11/22/2022]
Abstract
Ciguatoxins are marine compounds that share a ladder-shaped polyether structure produced by dinoflagellates of the genus Gambierdiscus and Fukuyoa, and include maitotoxins (MTX1 and MTX3), ciguatoxins (CTX3C) and analogues (gambierone), components of one of the most frequent human foodborne illness diseases known as ciguatera fish poisoning. This disease was previously found primarily in tropical and subtropical areas but nowadays, the dinoflagellates producers of ciguatoxins had spread to European coasts. One decade ago, the European Food Safety Authority has raised the need to complete the toxicological available data for the ciguatoxin group of compounds. Thus, in this work, the in vivo effects of ciguatoxin-related compounds have been investigated using internationally adopted guidelines for the testing of chemicals. Intraperitoneal acute toxicity was tested for maitotoxin 1 at doses between 200 and 3200 ng/kg and the acute oral toxicity of Pacific Ciguatoxin CTX3C at 330 and 1050 ng/kg and maitotoxin 1 at 800 ng/kg were also evaluated showing not effects on mice survival after a 96 h observation period. Therefore, for the following experiments the oral subchronic doses were between 172 and 1760 ng/kg for gambierone, 10 and 102 ng/kg for Pacific Ciguatoxin CTX3C, 550 and 1760 ng/kg for maitotoxin 3 and 800, 2560 and 5000 ng/kg for maitotoxin 1. The results presented here raise the need to reevaluate the in vivo activity of these agents. Although the intraperitoneal lethal dose of maitotoxin 1 is assumed to be 50 ng/kg, without chemical purity identifications and description of the bioassay procedures, in this work, an intraperitoneal lethal dose of 1107 ng/kg was obtained. Therefore, the data presented here highlight the need to use a common procedure and certified reference material to clearly establish the levels of these environmental contaminants in food.
Collapse
|
14
|
From Plates to Baits: Using a Remote Video Foraging System to Study the Impact of Foraging on Fouling Non-Indigenous Species. JOURNAL OF MARINE SCIENCE AND ENGINEERING 2022. [DOI: 10.3390/jmse10050611] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/10/2022]
Abstract
Marinas are a gateway for the introduction and establishment of non-indigenous species (NIS). In these habitats, competition and predation are crucial determinants for NIS establishment and invasiveness. However, fish trophic preferences and biotic effects inside marinas are poorly known. This study proposes a novel method that combines the deployment of settlement plates to recruit different assemblages, followed by their use as bait in remote underwater video systems. This combined approach, addressed as a remote video foraging system (RVFS), can record fish foraging behaviour, including feeding choices and their impacts on fouling assemblage composition. An experimental RVFS trial carried out in a marina of Madeira Island, Portugal (NE Atlantic), identified the Mediterranean parrotfish, Sparisoma cretense, as the most important fouling grazer in the area. S. cretense behaved as a generalist and increased the heterogeneity of fouling assemblages, which can hamper NIS dominance of the fouling and reduce the pressure of propagules from the marina to the natural environment. The RVFS tool was useful to understand the trophic links between foragers and fouling and has the potential to provide relevant information for the management of NIS introductions, establishment and spread.
Collapse
|
15
|
Darius HT, Paillon C, Mou-Tham G, Ung A, Cruchet P, Revel T, Viallon J, Vigliola L, Ponton D, Chinain M. Evaluating Age and Growth Relationship to Ciguatoxicity in Five Coral Reef Fish Species from French Polynesia. Mar Drugs 2022; 20:md20040251. [PMID: 35447924 PMCID: PMC9027493 DOI: 10.3390/md20040251] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 03/24/2022] [Accepted: 03/28/2022] [Indexed: 12/03/2022] Open
Abstract
Ciguatera poisoning (CP) results from the consumption of coral reef fish or marine invertebrates contaminated with potent marine polyether compounds, namely ciguatoxins. In French Polynesia, 220 fish specimens belonging to parrotfish (Chlorurus microrhinos, Scarus forsteni, and Scarus ghobban), surgeonfish (Naso lituratus), and groupers (Epinephelus polyphekadion) were collected from two sites with contrasted risk of CP, i.e., Kaukura Atoll versus Mangareva Island. Fish age and growth were assessed from otoliths’ yearly increments and their ciguatoxic status (negative, suspect, or positive) was evaluated by neuroblastoma cell-based assay. Using permutational multivariate analyses of variance, no significant differences in size and weight were found between negative and suspect specimens while positive specimens showed significantly greater size and weight particularly for E. polyphekadion and S. ghobban. However, eating small or low-weight specimens remains risky due to the high variability in size and weight of positive fish. Overall, no relationship could be evidenced between fish ciguatoxicity and age and growth characteristics. In conclusion, size, weight, age, and growth are not reliable determinants of fish ciguatoxicity which appears to be rather species and/or site-specific, although larger fish pose an increased risk of poisoning. Such findings have important implications in current CP risk management programs.
Collapse
Affiliation(s)
- Hélène Taiana Darius
- Institut Louis Malardé (ILM), Laboratory of Marine Biotoxins, UMR 241-EIO (IFREMER, ILM, IRD, Université de Polynésie Française), P.O. Box 30, Papeete 98713, Tahiti, French Polynesia; (A.U.); (P.C.); (T.R.); (J.V.); (M.C.)
- Correspondence: ; Tel.: +689-40-416-484
| | - Christelle Paillon
- ENTROPIE, IRD-Université de la Réunion-CNRS-Université de la Nouvelle-Calédonie-IFREMER, Labex Corail, 98848 Nouméa, New Caledonia, France; (C.P.); (G.M.-T.); (L.V.)
| | - Gérard Mou-Tham
- ENTROPIE, IRD-Université de la Réunion-CNRS-Université de la Nouvelle-Calédonie-IFREMER, Labex Corail, 98848 Nouméa, New Caledonia, France; (C.P.); (G.M.-T.); (L.V.)
| | - André Ung
- Institut Louis Malardé (ILM), Laboratory of Marine Biotoxins, UMR 241-EIO (IFREMER, ILM, IRD, Université de Polynésie Française), P.O. Box 30, Papeete 98713, Tahiti, French Polynesia; (A.U.); (P.C.); (T.R.); (J.V.); (M.C.)
| | - Philippe Cruchet
- Institut Louis Malardé (ILM), Laboratory of Marine Biotoxins, UMR 241-EIO (IFREMER, ILM, IRD, Université de Polynésie Française), P.O. Box 30, Papeete 98713, Tahiti, French Polynesia; (A.U.); (P.C.); (T.R.); (J.V.); (M.C.)
| | - Taina Revel
- Institut Louis Malardé (ILM), Laboratory of Marine Biotoxins, UMR 241-EIO (IFREMER, ILM, IRD, Université de Polynésie Française), P.O. Box 30, Papeete 98713, Tahiti, French Polynesia; (A.U.); (P.C.); (T.R.); (J.V.); (M.C.)
| | - Jérôme Viallon
- Institut Louis Malardé (ILM), Laboratory of Marine Biotoxins, UMR 241-EIO (IFREMER, ILM, IRD, Université de Polynésie Française), P.O. Box 30, Papeete 98713, Tahiti, French Polynesia; (A.U.); (P.C.); (T.R.); (J.V.); (M.C.)
| | - Laurent Vigliola
- ENTROPIE, IRD-Université de la Réunion-CNRS-Université de la Nouvelle-Calédonie-IFREMER, Labex Corail, 98848 Nouméa, New Caledonia, France; (C.P.); (G.M.-T.); (L.V.)
| | - Dominique Ponton
- ENTROPIE, IRD-Université de la Réunion-CNRS-Université de la Nouvelle-Calédonie-IFREMER, c/o Institut Halieutique et des Sciences Marines (IH.SM), Université de Toliara, Rue Dr. Rabesandratana, P.O. Box 141, Toliara 601, Madagascar;
| | - Mireille Chinain
- Institut Louis Malardé (ILM), Laboratory of Marine Biotoxins, UMR 241-EIO (IFREMER, ILM, IRD, Université de Polynésie Française), P.O. Box 30, Papeete 98713, Tahiti, French Polynesia; (A.U.); (P.C.); (T.R.); (J.V.); (M.C.)
| |
Collapse
|
16
|
Tudó À, Rambla-Alegre M, Flores C, Sagristà N, Aguayo P, Reverté L, Campàs M, Gouveia N, Santos C, Andree KB, Marques A, Caixach J, Diogène J. Identification of New CTX Analogues in Fish from the Madeira and Selvagens Archipelagos by Neuro-2a CBA and LC-HRMS. Mar Drugs 2022; 20:md20040236. [PMID: 35447910 PMCID: PMC9031360 DOI: 10.3390/md20040236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 03/25/2022] [Accepted: 03/27/2022] [Indexed: 12/10/2022] Open
Abstract
Ciguatera Poisoning (CP) is caused by consumption of fish or invertebrates contaminated with ciguatoxins (CTXs). Presently CP is a public concern in some temperate regions, such as Macaronesia (North-Eastern Atlantic Ocean). Toxicity analysis was performed to characterize the fish species that can accumulate CTXs and improve understanding of the ciguatera risk in this area. For that, seventeen fish specimens comprising nine species were captured from coastal waters inMadeira and Selvagens Archipelagos. Toxicity was analysed by screening CTX-like toxicity with the neuroblastoma cell-based assay (neuro-2a CBA). Afterwards, the four most toxic samples were analysed with liquid chromatography-high resolution mass spectrometry (LC-HRMS). Thirteen fish specimens presented CTX-like toxicity in their liver, but only four of these in their muscle. The liver of one specimen of Muraena augusti presented the highest CTX-like toxicity (0.270 ± 0.121 µg of CTX1B equiv·kg−1). Moreover, CTX analogues were detected with LC-HRMS, for M. augusti and Gymnothorax unicolor. The presence of three CTX analogues was identified: C-CTX1, which had been previously described in the area; dihydro-CTX2, which is reported in the area for the first time; a putative new CTX m/z 1127.6023 ([M+NH4]+) named as putative C-CTX-1109, and gambieric acid A.
Collapse
Affiliation(s)
- Àngels Tudó
- Institute of Agrifood Research and Technology (IRTA), Marine and Continental Waters Program, Carretera de Poble Nou, 43540 La Ràpita, Spain; (À.T.); (N.S.); (P.A.); (L.R.); (M.C.); (K.B.A.); (J.D.)
| | - Maria Rambla-Alegre
- Institute of Agrifood Research and Technology (IRTA), Marine and Continental Waters Program, Carretera de Poble Nou, 43540 La Ràpita, Spain; (À.T.); (N.S.); (P.A.); (L.R.); (M.C.); (K.B.A.); (J.D.)
- Correspondence: ; Tel.: +34-977-74-54-27 (ext. 1824)
| | - Cintia Flores
- Mass Spectrometry Laboratory, Organic Pollutants, IDAEA-CSIC, Jordi Girona 18, 08034 Barcelona, Spain; (C.F.); (J.C.)
| | - Núria Sagristà
- Institute of Agrifood Research and Technology (IRTA), Marine and Continental Waters Program, Carretera de Poble Nou, 43540 La Ràpita, Spain; (À.T.); (N.S.); (P.A.); (L.R.); (M.C.); (K.B.A.); (J.D.)
| | - Paloma Aguayo
- Institute of Agrifood Research and Technology (IRTA), Marine and Continental Waters Program, Carretera de Poble Nou, 43540 La Ràpita, Spain; (À.T.); (N.S.); (P.A.); (L.R.); (M.C.); (K.B.A.); (J.D.)
| | - Laia Reverté
- Institute of Agrifood Research and Technology (IRTA), Marine and Continental Waters Program, Carretera de Poble Nou, 43540 La Ràpita, Spain; (À.T.); (N.S.); (P.A.); (L.R.); (M.C.); (K.B.A.); (J.D.)
| | - Mònica Campàs
- Institute of Agrifood Research and Technology (IRTA), Marine and Continental Waters Program, Carretera de Poble Nou, 43540 La Ràpita, Spain; (À.T.); (N.S.); (P.A.); (L.R.); (M.C.); (K.B.A.); (J.D.)
| | - Neide Gouveia
- Regional Fisheries Management-Madeira Government, Direção de Serviços de Investigação das Pescas (DSI-DRP), Estrada da Pontinha, 9004-562 Funchal, Portugal;
| | - Carolina Santos
- Instituto das Florestas e Conservação da Natureza, IP-RAM, Secretaria Regional do Ambiente e Recursos Naturais, Regional Government of Madeira, IFCN IP-RAM, 9050-027 Funchal, Portugal;
| | - Karl B. Andree
- Institute of Agrifood Research and Technology (IRTA), Marine and Continental Waters Program, Carretera de Poble Nou, 43540 La Ràpita, Spain; (À.T.); (N.S.); (P.A.); (L.R.); (M.C.); (K.B.A.); (J.D.)
| | - Antonio Marques
- Portuguese Institute of Sea and Atmosphere (IPMA), Division of Aquaculture, Seafood Upgrading and Bioprospection (DivAV), Avenida de Brasília, 1449-006 Lisbon, Portugal;
| | - Josep Caixach
- Mass Spectrometry Laboratory, Organic Pollutants, IDAEA-CSIC, Jordi Girona 18, 08034 Barcelona, Spain; (C.F.); (J.C.)
| | - Jorge Diogène
- Institute of Agrifood Research and Technology (IRTA), Marine and Continental Waters Program, Carretera de Poble Nou, 43540 La Ràpita, Spain; (À.T.); (N.S.); (P.A.); (L.R.); (M.C.); (K.B.A.); (J.D.)
| |
Collapse
|
17
|
Ciguatoxin Detection in Flesh and Liver of Relevant Fish Species from the Canary Islands. Toxins (Basel) 2022; 14:toxins14010046. [PMID: 35051023 PMCID: PMC8781511 DOI: 10.3390/toxins14010046] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 01/01/2022] [Accepted: 01/02/2022] [Indexed: 12/28/2022] Open
Abstract
The Canary Islands are a ciguatoxin (CTX) hotspot with an established official monitoring for the detection of CTX in fish flesh from the authorised points of first sale. Fish caught by recreational fishermen are not officially tested and the consumption of toxic viscera or flesh could lead to ciguatera poisoning (CP). The objectives of this study were to determine the presence of CTX-like toxicity in relevant species from this archipelago, compare CTX levels in liver and flesh and examine possible factors involved in their toxicity. Sixty amberjack (Seriola spp.), 27 dusky grouper (Epinephelus marginatus), 11 black moray eels (Muraena helena) and 11 common two-banded seabream (Diplodus vulgaris) were analysed by cell-based assay (CBA) and Caribbean ciguatoxin-1 (C-CTX1) was detected by liquid chromatography mass spectrometry (LC-MS/MS) in all these species. Most of the liver displayed higher CTX levels than flesh and even individuals without detectable CTX in flesh exhibited hepatic toxicity. Black moray eels stand out for the large difference between CTX concentration in both tissues. None of the specimens with non-toxic liver showed toxicity in flesh. This is the first evidence of the presence of C-CTX1 in the common two-banded seabream and the first report of toxicity comparison between liver and muscle from relevant fish species captured in the Canary Islands.
Collapse
|
18
|
Nagae M, Igarashi T, Mizukoshi K, Kuniyoshi K, Oshiro N, Yasumoto T. Development and Validation of an LC-MS/MS Method for the Ultra-Trace Analysis of Pacific Ciguatoxins in Fish. J AOAC Int 2021; 104:1272-1281. [PMID: 33831184 PMCID: PMC8475085 DOI: 10.1093/jaoacint/qsab052] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 02/25/2021] [Accepted: 03/21/2021] [Indexed: 11/17/2022]
Abstract
BACKGROUND Ciguatera fish poisoning (CFP) poses a serious threat to both public health and the use of aquatic resources from the various warm-water regions of the world. Hence, a process for the efficient determination of the relevant toxins is required. OBJECTIVE We sought to develop and validate the first LC-MS/MS method to quantify the major toxins prevalent in fish from the Pacific Ocean. METHOD Toxins were extracted from fish flesh (2 g) using a methanol-water mixture (9:1, v/v). The extract was heated at 80°C, and low-polarity lipids were eliminated using hexane, initially from the basic solution and later from the acidic solution. The cleanup was performed using solid-phase extraction, Florisil, silica, reversed-phase C18, and primary secondary amine columns. A validation study was conducted by spiking fish flesh with two representative toxins having different skeletal structures and polarities and was calibrated by NMR (qNMR) spectroscopy. RESULTS The validation parameters for the ciguatera toxins CTX1B and CTX3C at spiked levels of 0.1 µg/kg were as follows: repeatabilities of 2.3-3.5% and 3.2-5.3%; intermediate precisions of 6.3-9.8% and 6.0-7.4%; recoveries of 80-107% and 95-120%, respectively. The lowest detection levels were 0.004 µg/kg for CTX1B, 0.005 µg/kg for 51-hydroxyCTX3C, and 0.009 µg/kg for CTX3C. CONCLUSIONS The described method practically clears the international action level of 0.01 µg/kg CTX1B equivalents set by the U.S. Food and Drug Administration and the European Food Safety Authority and satisfies the global standards set by Codex and AOAC INTERNATIONAL. HIGHLIGHTS A validation study for an LC-MS/MS method for ciguatoxin detection was completed for the first time using calibrated toxin standards.
Collapse
Affiliation(s)
- Mika Nagae
- Japan Food Research Laboratories, Tama Laboratory, 6-11-10 Nagayama, Tama, Tokyo 206-0025, Japan
| | - Tomoji Igarashi
- Japan Food Research Laboratories, Tama Laboratory, 6-11-10 Nagayama, Tama, Tokyo 206-0025, Japan
| | - Kazushi Mizukoshi
- Japan Food Research Laboratories, Tama Laboratory, 6-11-10 Nagayama, Tama, Tokyo 206-0025, Japan
| | - Kyoko Kuniyoshi
- National Institute of Health Sciences, 3-25-26 Tonomachi, Kawasaki, Kanagawa 210-9501, Japan
| | - Naomasa Oshiro
- National Institute of Health Sciences, 3-25-26 Tonomachi, Kawasaki, Kanagawa 210-9501, Japan
| | - Takeshi Yasumoto
- Japan Food Research Laboratories, Tama Laboratory, 6-11-10 Nagayama, Tama, Tokyo 206-0025, Japan
| |
Collapse
|
19
|
Costa PR, Estévez P, Soliño L, Castro D, Rodrigues SM, Timoteo V, Leao-Martins JM, Santos C, Gouveia N, Diogène J, Gago-Martínez A. An Update on Ciguatoxins and CTX-like Toxicity in Fish from Different Trophic Levels of the Selvagens Islands (NE Atlantic, Madeira, Portugal). Toxins (Basel) 2021; 13:toxins13080580. [PMID: 34437451 PMCID: PMC8402339 DOI: 10.3390/toxins13080580] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Revised: 07/28/2021] [Accepted: 08/17/2021] [Indexed: 11/17/2022] Open
Abstract
The Selvagens Islands, which are a marine protected area located at the southernmost point of the Portuguese maritime zone, have been associated with fish harboring ciguatoxins (CTX) and linked to ciguatera fish poisonings. This study reports the results of a field sampling campaign carried out in September 2018 in these remote and rarely surveyed islands. Fifty-six fish specimens from different trophic levels were caught for CTX-like toxicity determination by cell-based assay (CBA) and toxin content analysis by liquid chromatography with tandem mass spectrometry (LC-MS/MS). Notably, high toxicity levels were found in fish with an intermediate position in the food web, such as zebra seabream (Diplodus cervinus) and barred hogfish (Bodianus scrofa), reaching levels up to 0.75 µg CTX1B equivalent kg−1. The LC-MS/MS analysis confirmed that C-CTX1 was the main toxin, but discrepancies between CBA and LC-MS/MS in D. cervinus and top predator species, such as the yellowmouth barracuda (Sphyraena viridis) and amberjacks (Seriola spp.), suggest the presence of fish metabolic products, which need to be further elucidated. This study confirms that fish from coastal food webs of the Selvagens Islands represent a high risk of ciguatera, raising important issues for fisheries and environmental management of the Selvagens Islands.
Collapse
Affiliation(s)
- Pedro Reis Costa
- IPMA—Portuguese Institute of the Sea and Atmosphere, Av. Brasília, 1449-006 Lisbon, Portugal; (L.S.); (S.M.R.)
- CCMAR—Centre of Marine Sciences, Campus of Gambelas, University of Algarve, 8005-139 Faro, Portugal
- Correspondence: (P.R.C.); (J.D.); (A.G.-M.)
| | - Pablo Estévez
- Biomedical Research Center (CINBIO), Department of Analytical and Food Chemistry, Campus Universitario de Vigo, University of Vigo, 36310 Vigo, Spain; (P.E.); (D.C.); (J.M.L.-M.)
| | - Lucía Soliño
- IPMA—Portuguese Institute of the Sea and Atmosphere, Av. Brasília, 1449-006 Lisbon, Portugal; (L.S.); (S.M.R.)
- CCMAR—Centre of Marine Sciences, Campus of Gambelas, University of Algarve, 8005-139 Faro, Portugal
| | - David Castro
- Biomedical Research Center (CINBIO), Department of Analytical and Food Chemistry, Campus Universitario de Vigo, University of Vigo, 36310 Vigo, Spain; (P.E.); (D.C.); (J.M.L.-M.)
| | - Susana Margarida Rodrigues
- IPMA—Portuguese Institute of the Sea and Atmosphere, Av. Brasília, 1449-006 Lisbon, Portugal; (L.S.); (S.M.R.)
| | - Viriato Timoteo
- Regional Fisheries Management—Madeira Government, DSI-DRP, Estrada da Pontinha, 9004-562 Funchal, Madeira, Portugal; (V.T.); (N.G.)
| | - José Manuel Leao-Martins
- Biomedical Research Center (CINBIO), Department of Analytical and Food Chemistry, Campus Universitario de Vigo, University of Vigo, 36310 Vigo, Spain; (P.E.); (D.C.); (J.M.L.-M.)
| | - Carolina Santos
- Instituto das Florestas e Conservação da Natureza, IP-RAM, Secretaria Regional do Ambiente, e Recursos Naturais e Alterações Climáticas, Regional Government of Madeira, Rua João de Deus, n.º 12 E/F, R/C-C, 9050-027 Funchal, Madeira, Portugal;
| | - Neide Gouveia
- Regional Fisheries Management—Madeira Government, DSI-DRP, Estrada da Pontinha, 9004-562 Funchal, Madeira, Portugal; (V.T.); (N.G.)
| | - Jorge Diogène
- IRTA, Ctra Poble Nou km 5.5, 43540 Sant Carles de la Ràpita, Spain
- Correspondence: (P.R.C.); (J.D.); (A.G.-M.)
| | - Ana Gago-Martínez
- Biomedical Research Center (CINBIO), Department of Analytical and Food Chemistry, Campus Universitario de Vigo, University of Vigo, 36310 Vigo, Spain; (P.E.); (D.C.); (J.M.L.-M.)
- Correspondence: (P.R.C.); (J.D.); (A.G.-M.)
| |
Collapse
|
20
|
Gwinn JK, Uhlig S, Ivanova L, Fæste CK, Kryuchkov F, Robertson A. In Vitro Glucuronidation of Caribbean Ciguatoxins in Fish: First Report of Conjugative Ciguatoxin Metabolites. Chem Res Toxicol 2021; 34:1910-1925. [PMID: 34319092 PMCID: PMC9215509 DOI: 10.1021/acs.chemrestox.1c00181] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Ciguatoxins (CTX) are potent marine neurotoxins, which can bioaccumulate in seafood, causing a severe and prevalent human illness known as ciguatera poisoning (CP). Despite the worldwide impact of ciguatera, effective disease management is hindered by a lack of knowledge regarding the movement and biotransformation of CTX congeners in marine food webs, particularly in the Caribbean and Western Atlantic. In this study we investigated the hepatic biotransformation of C-CTX across several fish and mammalian species through a series of in vitro metabolism assays focused on phase I (CYP P450; functionalization) and phase II (UGT; conjugation) reactions. Using liquid chromatography high-resolution mass spectrometry to explore potential C-CTX metabolites, we observed two glucuronide products of C-CTX-1/-2 and provided additional evidence from high-resolution tandem mass spectrometry to support their identification. Chemical reduction experiments confirmed that the metabolites were comprised of four distinct glucuronide products with the sugar attached at two separate sites on C-CTX-1/-2 and excluded the C-56 hydroxyl group as the conjugation site. Glucuronidation is a novel biotransformation pathway not yet reported for CTX or other related polyether phycotoxins, yet its occurrence across all fish species tested suggests that it could be a prevalent and important detoxification mechanism in marine organisms. The absence of glucuronidation observed in this study for both rat and human microsomes suggests that alternate biotransformation pathways may be dominant in higher vertebrates.
Collapse
Affiliation(s)
- Jessica Kay Gwinn
- School of Marine and Environmental Sciences, University of South Alabama, Mobile, Alabama 36688, United States
- Dauphin Island Sea Lab, Dauphin Island, Alabama 36528, United States
| | - Silvio Uhlig
- Toxinology Research Group, Norwegian Veterinary Institute, Ås NO-1431, Norway
| | - Lada Ivanova
- Toxinology Research Group, Norwegian Veterinary Institute, Ås NO-1431, Norway
| | | | - Fedor Kryuchkov
- Toxinology Research Group, Norwegian Veterinary Institute, Ås NO-1431, Norway
| | - Alison Robertson
- School of Marine and Environmental Sciences, University of South Alabama, Mobile, Alabama 36688, United States
- Dauphin Island Sea Lab, Dauphin Island, Alabama 36528, United States
| |
Collapse
|
21
|
Estevez P, Castro D, Leão-Martins JM, Sibat M, Tudó A, Dickey R, Diogene J, Hess P, Gago-Martinez A. Toxicity Screening of a Gambierdiscus australes Strain from the Western Mediterranean Sea and Identification of a Novel Maitotoxin Analogue. Mar Drugs 2021; 19:md19080460. [PMID: 34436299 PMCID: PMC8400318 DOI: 10.3390/md19080460] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 08/12/2021] [Accepted: 08/13/2021] [Indexed: 01/15/2023] Open
Abstract
Dinoflagellate species of the genera Gambierdiscus and Fukuyoa are known to produce ciguatera poisoning-associated toxic compounds, such as ciguatoxins, or other toxins, such as maitotoxins. However, many species and strains remain poorly characterized in areas where they were recently identified, such as the western Mediterranean Sea. In previous studies carried out by our research group, a G. australes strain from the Balearic Islands (Mediterranean Sea) presenting MTX-like activity was characterized by LC-MS/MS and LC-HRMS detecting 44-methyl gambierone and gambieric acids C and D. However, MTX1, which is typically found in some G. australes strains from the Pacific Ocean, was not detected. Therefore, this study focuses on the identification of the compound responsible for the MTX-like toxicity in this strain. The G. australes strain was characterized not only using LC-MS instruments but also N2a-guided HPLC fractionation. Following this approach, several toxic compounds were identified in three fractions by LC-MS/MS and HRMS. A novel MTX analogue, named MTX5, was identified in the most toxic fraction, and 44-methyl gambierone and gambieric acids C and D contributed to the toxicity observed in other fractions of this strain. Thus, G. australes from the Mediterranean Sea produces MTX5 instead of MTX1 in contrast to some strains of the same species from the Pacific Ocean. No CTX precursors were detected, reinforcing the complexity of the identification of CTXs precursors in these regions.
Collapse
Affiliation(s)
- Pablo Estevez
- Biomedical Research Centre (CINBIO), Department of Analytical and Food Chemistry, University of Vigo, Campus Universitario de Vigo, 36310 Vigo, Spain; (P.E.); (D.C.); (J.M.L.-M.)
| | - David Castro
- Biomedical Research Centre (CINBIO), Department of Analytical and Food Chemistry, University of Vigo, Campus Universitario de Vigo, 36310 Vigo, Spain; (P.E.); (D.C.); (J.M.L.-M.)
| | - José Manuel Leão-Martins
- Biomedical Research Centre (CINBIO), Department of Analytical and Food Chemistry, University of Vigo, Campus Universitario de Vigo, 36310 Vigo, Spain; (P.E.); (D.C.); (J.M.L.-M.)
| | - Manoëlla Sibat
- Laboratoire Phycotoxines, Ifremer, Rue de l’Île d’Yeu, 44311 Nantes, France; (M.S.); (P.H.)
| | - Angels Tudó
- Marine and Continental Waters Programme, Institut de Recerca i Tecnologies Agroalimentàries (IRTA), Ctra. Poble Nou, km. 5.5, 43540 Sant Carles de la Ràpita, Spain; (A.T.); (J.D.)
| | - Robert Dickey
- Department of Marine Science, Marine Science Institute, University of Texas at Austin, Port Aransas, TX 78373, USA;
| | - Jorge Diogene
- Marine and Continental Waters Programme, Institut de Recerca i Tecnologies Agroalimentàries (IRTA), Ctra. Poble Nou, km. 5.5, 43540 Sant Carles de la Ràpita, Spain; (A.T.); (J.D.)
| | - Philipp Hess
- Laboratoire Phycotoxines, Ifremer, Rue de l’Île d’Yeu, 44311 Nantes, France; (M.S.); (P.H.)
| | - Ana Gago-Martinez
- Biomedical Research Centre (CINBIO), Department of Analytical and Food Chemistry, University of Vigo, Campus Universitario de Vigo, 36310 Vigo, Spain; (P.E.); (D.C.); (J.M.L.-M.)
- Correspondence: ; Tel.: +34-64-734-3417
| |
Collapse
|
22
|
Bresnan E, Arévalo F, Belin C, Branco MAC, Cembella AD, Clarke D, Correa J, Davidson K, Dhanji-Rapkova M, Lozano RF, Fernández-Tejedor M, Guðfinnsson H, Carbonell DJ, Laza-Martinez A, Lemoine M, Lewis AM, Menéndez LM, Maskrey BH, McKinney A, Pazos Y, Revilla M, Siano R, Silva A, Swan S, Turner AD, Schweibold L, Provoost P, Enevoldsen H. Diversity and regional distribution of harmful algal events along the Atlantic margin of Europe. HARMFUL ALGAE 2021; 102:101976. [PMID: 33875184 DOI: 10.1016/j.hal.2021.101976] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 01/10/2021] [Accepted: 01/13/2021] [Indexed: 06/12/2023]
Abstract
The IOC-ICES-PICES Harmful Algal Event Database (HAEDAT) was used to describe the diversity and spatiotemporal distribution of harmful algal events along the Atlantic margin of Europe from 1987 - 2018. The majority of events recorded are caused by Diarrhetic Shellfish Toxins (DSTs). These events are recorded annually over a wide geographic area from southern Spain to northern Scotland and Iceland, and are responsible for annual closures of many shellfish harvesting areas. The dominant causative dinoflagellates, members of the morphospecies 'Dinophysis acuminata complex' and D. acuta, are common in the waters of the majority of countries affected. There are regional differences in the causative species associated with PST events; the coasts of Spain and Portugal with the dinoflagellates Alexandrium minutum and Gymnodinium catenatum, north west France/south west England/south Ireland with A. minutum, and Scotland/Faroe Islands/Iceland with A. catenella. This can influence the duration and spatial scale of PST events as well as the toxicity of shellfish. The diatom Pseudo-nitzschia australis is the most widespread Domoic Acid (DA) producer, with records coming from Spain, Portugal, France, Ireland and the UK. Amnesic Shellfish Toxins (ASTs) have caused prolonged closures for the scallop fishing industry due to the slow depuration rate of DA. Amendments to EU shellfish hygiene regulations introduced between 2002 and 2005 facilitated end-product testing and sale of adductor muscle. This reduced the impact of ASTs on the scallop fishing industry and thus the number of recorded HAEDAT events. Azaspiracids (AZAs) are the most recent toxin group responsible for events to be characterised in the ICES area. Events associated with AZAs have a discrete distribution with the majority recorded along the west coast of Ireland. Ciguatera Poisoning (CP) has been an emerging issue in the Canary Islands and Madeira since 2004. The majority of aquaculture and wild fish mortality events are associated with blooms of the dinoflagellate Karenia mikimotoi and raphidophyte Heterosigma akashiwo. Such fish killing events occur infrequently yet can cause significant mortalities. Interannual variability was observed in the annual number of HAEDAT areas with events associated with individual shellfish toxin groups. HABs represent a continued risk for the aquaculture industry along the Atlantic margin of Europe and should be accounted for when considering expansion of the industry or operational shifts to offshore areas.
Collapse
Affiliation(s)
- Eileen Bresnan
- Marine Scotland Marine Laboratory, Aberdeen, AB11 9DB, U.K..
| | - Fabiola Arévalo
- Intecmar, Peirao de Vilaxoán, s/n, 36611 Vilagarcía de Arousa, Spain
| | - Catherine Belin
- Institut français de recherche pour l'exploitation de la mer (IFREMER) VIGIES F-44311, Nantes, France
| | - Maria A C Branco
- Instituto Português do Mar e da Atmosfera (IPMA), 1749-077 Lisboa, Portugal
| | | | - Dave Clarke
- Marine Institute, Rinville, Oranmore, Galway, H91 R673, Ireland
| | - Jorge Correa
- Intecmar, Peirao de Vilaxoán, s/n, 36611 Vilagarcía de Arousa, Spain
| | - Keith Davidson
- Scottish Association for Marine Science (SAMS), Scottish Marine Institute, Oban, PA37 1QA, U.K
| | | | | | | | | | | | - Aitor Laza-Martinez
- Department of Plant Biology and Ecology, Faculty of Science and Technology, University of the Basque Country, Leioa 48940, Spain
| | - Maud Lemoine
- Institut français de recherche pour l'exploitation de la mer (IFREMER) VIGIES F-44311, Nantes, France
| | - Adam M Lewis
- Centre for Environment, Fisheries and Aquaculture Science, Weymouth, DT4 8UB, U.K
| | - Luz Mamán Menéndez
- Laboratorio de Control de Calidad de los Recursos Pesqueros, Huelva, Spain
| | - Benjamin H Maskrey
- Centre for Environment, Fisheries and Aquaculture Science, Weymouth, DT4 8UB, U.K
| | - April McKinney
- Agri-Food and Biosciences Institute, Belfast, BT9 5PX, U.K
| | - Yolanda Pazos
- Intecmar, Peirao de Vilaxoán, s/n, 36611 Vilagarcía de Arousa, Spain
| | - Marta Revilla
- AZTI, Marine Research Division, Basque Research and Technology Alliance (BRTA), E-20110 Pasaia, Spain
| | - Raffaele Siano
- Institut français de recherche pour l'exploitation de la mer (IFREMER), DYNECO F-29280 Plouzané, France
| | - Alexandra Silva
- Instituto Português do Mar e da Atmosfera (IPMA), 1749-077 Lisboa, Portugal
| | - Sarah Swan
- Scottish Association for Marine Science (SAMS), Scottish Marine Institute, Oban, PA37 1QA, U.K
| | - Andrew D Turner
- Centre for Environment, Fisheries and Aquaculture Science, Weymouth, DT4 8UB, U.K
| | | | | | - Henrik Enevoldsen
- IOC Science and Communication Centre on Harmful Algae, 2100 Copenhagen Ø, Denmark
| |
Collapse
|
23
|
Chinain M, Gatti CMI, Darius HT, Quod JP, Tester PA. Ciguatera poisonings: A global review of occurrences and trends. HARMFUL ALGAE 2021; 102:101873. [PMID: 33875186 DOI: 10.1016/j.hal.2020.101873] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 07/17/2020] [Accepted: 07/22/2020] [Indexed: 06/12/2023]
Abstract
Ciguatera Poisoning (CP) is the most prevalent, phycotoxin related seafood poisoning across the globe, affecting between 10,000 and 50,000 people annually. This illness results from the consumption of seafood contaminated with lipid soluble toxins known as ciguatoxins (CTXs) that are produced by benthic dinoflagellates in the genera Gambierdiscus and Fukuyoa. The present work reviews the global occurrence of CP events and outbreaks, based on both scientific and gray literature. Ciguatera prevalence is significantly underestimated due to a lack of recognition of ciguatera symptoms, limited collection of epidemiological data on a global level, and reticence to report ciguatera in CP-endemic regions. Analysis of the time-series data available for a limited number of countries indicates the highest incidence rates are consistently reported from two historical CP-endemic areas i.e., the Pacific and Caribbean regions, a situation due in part to the strong reliance of local communities on marine resources. Ciguatera-related fatalities are rare (<0.1% of reported cases). The vast majority of outbreaks involve carnivorous fish including snappers, groupers, wrasses, and barracudas. Since 2000, an expansion of the geographical range of CP has been observed in several areas like Macaronesia and east and southeast Asia. In some of these locales, random surveys confirmed the presence of CTXs in locally sourced fish, consistent with the concurrent report of novel CP incidents (e.g., Canary Islands, Madeira, Selvagens Islands, New South Wales). One characteristic of outbreaks occurring in Asia is that they often present as large disease clusters due to group consumption of a single contaminated fish. Similar observations are reported from the Indian Ocean in the form of shark poisoning outbreaks which often lead to singular types of CP characterized by a high fatality rate. Other atypical forms of CP linked to the consumption of marine invertebrates also have been documented recently. Owing to the significant health, socioeconomic and socio-cultural impacts of ciguatera, there is an urgent need for increased, standardized, coordinated efforts in ciguatera education, monitoring and research programs. Several regional and international initiatives have emerged recently, that may help improve patients' care, data collection at a global scale, and risk monitoring and management capabilities in countries most vulnerable to CP's toxic threat.
Collapse
Affiliation(s)
- M Chinain
- Laboratory of Marine Biotoxins, Institut Louis Malardé - UMR 241 EIO, BP 30, 98713 Papeete, Tahiti, French Polynesia.
| | - C M I Gatti
- Laboratory of Marine Biotoxins, Institut Louis Malardé - UMR 241 EIO, BP 30, 98713 Papeete, Tahiti, French Polynesia
| | - H T Darius
- Laboratory of Marine Biotoxins, Institut Louis Malardé - UMR 241 EIO, BP 30, 98713 Papeete, Tahiti, French Polynesia
| | - J-P Quod
- ARVAM-Pareto, Technopole de la Réunion, 14 rue Henri Cornu, 97490 Sainte-Clotilde, La Réunion, France
| | - P A Tester
- Ocean Tester, LLC, 295 Dills Point Road, Beaufort, NC 28516, USA
| |
Collapse
|
24
|
Advances in Detecting Ciguatoxins in Fish. Toxins (Basel) 2020; 12:toxins12080494. [PMID: 32752046 PMCID: PMC7472146 DOI: 10.3390/toxins12080494] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Revised: 07/26/2020] [Accepted: 07/26/2020] [Indexed: 01/28/2023] Open
Abstract
Ciguatera fish poisoning (CFP) is currently the most common marine biotoxin food poisoning worldwide, associated with human consumption of circumtropical fish and marine invertebrates that are contaminated with ciguatoxins. Ciguatoxins are very potent sodium-channel activator neurotoxins, that pose risks to human health at very low concentrations (>0.01 ng per g of fish flesh in the case of the most potent Pacific ciguatoxin). Symptoms of CFP are nonspecific and intoxication in humans is often misdiagnosed. Presently, there is no medically approved treatment of ciguatera. Therefore, to mitigate the risks of CFP, reliable detection of ciguatoxins prior to consumption of fish tissue is acutely needed, which requires application of highly sensitive and quantitative analytical tests. During the last century a number of methods have been developed to identify and quantify the concentration of ciguatoxins, including in vivo animal assays, cell-based assays, receptor binding assays, antibody-based immunoassays, electrochemical methods, and analytical techniques based on coupling of liquid chromatography with mass spectrometry. Development of these methods, their various advantages and limitations, as well as future challenges are discussed in this review.
Collapse
|
25
|
Viallon J, Chinain M, Darius HT. Revisiting the Neuroblastoma Cell-Based Assay (CBA-N2a) for the Improved Detection of Marine Toxins Active on Voltage Gated Sodium Channels (VGSCs). Toxins (Basel) 2020; 12:E281. [PMID: 32349302 PMCID: PMC7290318 DOI: 10.3390/toxins12050281] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 04/23/2020] [Accepted: 04/24/2020] [Indexed: 02/06/2023] Open
Abstract
The neuroblastoma cell-based assay (CBA-N2a) is widely used for the detection of marine biotoxins in seafood products, yet a consensus protocol is still lacking. In this study, six key parameters of CBA-N2a were revisited: cell seeding densities, cell layer viability after 26 h growth, MTT incubation time, Ouabain and Veratridine treatment and solvent and matrix effects. A step-by-step protocol was defined identifying five viability controls for the validation of CBA-N2a results. Specific detection of two voltage gated sodium channel activators, pacific ciguatoxin (P-CTX3C) and brevetoxin (PbTx3) and two inhibitors, saxitoxin (STX) and decarbamoylsaxitoxin (dc-STX) was achieved, with EC50 values of 1.7 ± 0.35 pg/mL, 5.8 ± 0.9 ng/mL, 3 ± 0.5 ng/mL and 15.8 ± 3 ng/mL, respectively. When applied to the detection of ciguatoxin (CTX)-like toxicity in fish samples, limit of detection (LOD) and limit of quantification (LOQ) values were 0.031 ± 0.008 and 0.064 ± 0.016 ng P-CTX3C eq/g of flesh, respectively. Intra and inter-assays comparisons of viability controls, LOD, LOQ and toxicity in fish samples gave coefficients of variation (CVs) ranging from 3% to 29%. This improved test adaptable to either high throughput screening or composite toxicity estimation is a useful starting point for a standardization of the CBA-N2a in the field of marine toxin detection.
Collapse
Affiliation(s)
| | | | - Hélène Taiana Darius
- Institut Louis Malardé (ILM), Laboratory of Marine Biotoxins-UMR 241-EIO, 98713 Papeete-Tahiti, French Polynesia; (J.V.); (M.C.)
| |
Collapse
|
26
|
Estevez P, Sibat M, Leão-Martins JM, Reis Costa P, Gago-Martínez A, Hess P. Liquid Chromatography Coupled to High-Resolution Mass Spectrometry for the Confirmation of Caribbean Ciguatoxin-1 as the Main Toxin Responsible for Ciguatera Poisoning Caused by Fish from European Atlantic Coasts. Toxins (Basel) 2020; 12:toxins12040267. [PMID: 32326183 PMCID: PMC7232264 DOI: 10.3390/toxins12040267] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 04/16/2020] [Accepted: 04/18/2020] [Indexed: 01/15/2023] Open
Abstract
Ciguatera poisoning (CP) is a common seafood intoxication mainly caused by the consumption of fish contaminated by ciguatoxins. Recent studies showed that Caribbean ciguatoxin-1 (C-CTX1) is the main toxin causing CP through fish caught in the Northeast Atlantic, e.g., Canary Islands (Spain) and Madeira (Portugal). The use of liquid chromatography coupled to tandem mass spectrometry (LC-MS/MS) combined with neuroblastoma cell assay (N2a) allowed the initial confirmation of the presence of C-CTX1 in contaminated fish samples from the abovementioned areas, nevertheless the lack of commercially available reference materials for these particular ciguatoxin (CTX) analogues has been a major limitation to progress research. The EuroCigua project allowed the preparation of C-CTX1 laboratory reference material (LRM) from fish species (Seriola fasciata) from the Madeira archipelago (Portugal). This reference material was used to implement a liquid chromatography coupled to high-resolution mass spectrometry (LC-HRMS) for the detection of C-CTX1, acquisition of full-scan as well as collision-induced mass spectra of this particular analogue. Fragmentation pathways were proposed based on fragments obtained. The optimized LC-HRMS method was then applied to confirm C-CTX1 in fish (Bodianus scrofa) caught in the Selvagens Islands (Portugal).
Collapse
Affiliation(s)
- Pablo Estevez
- Biomedical Research Center (CINBIO), Department of Analytical and Food Chemistry, University of Vigo, Campus Universitario de Vigo, 36310 Vigo, Spain; (P.E.); (J.M.L.-M.)
| | - Manoella Sibat
- Ifremer, DYNECO, Laboratoire Phycotoxines, Rue de l’Île d’Yeu, 44311 Nantes, France;
| | - José Manuel Leão-Martins
- Biomedical Research Center (CINBIO), Department of Analytical and Food Chemistry, University of Vigo, Campus Universitario de Vigo, 36310 Vigo, Spain; (P.E.); (J.M.L.-M.)
| | - Pedro Reis Costa
- IPMA—Portuguese Institute of the Sea and Atmosphere, Av. Brasília, 1449-006 Lisbon, Portugal;
| | - Ana Gago-Martínez
- Biomedical Research Center (CINBIO), Department of Analytical and Food Chemistry, University of Vigo, Campus Universitario de Vigo, 36310 Vigo, Spain; (P.E.); (J.M.L.-M.)
- Correspondence: (A.G.-M.); (P.H.); Tel.: +34-647-343417 (A.G.-M.); +33-2-4037-4257 (P.H.)
| | - Philipp Hess
- Ifremer, DYNECO, Laboratoire Phycotoxines, Rue de l’Île d’Yeu, 44311 Nantes, France;
- Correspondence: (A.G.-M.); (P.H.); Tel.: +34-647-343417 (A.G.-M.); +33-2-4037-4257 (P.H.)
| |
Collapse
|
27
|
Leonardo S, Gaiani G, Tsumuraya T, Hirama M, Turquet J, Sagristà N, Rambla-Alegre M, Flores C, Caixach J, Diogène J, O'Sullivan CK, Alcaraz C, Campàs M. Addressing the Analytical Challenges for the Detection of Ciguatoxins Using an Electrochemical Biosensor. Anal Chem 2020; 92:4858-4865. [PMID: 32133843 DOI: 10.1021/acs.analchem.9b04499] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The importance of ciguatoxins (CTXs) in seafood safety and their emerging occurrence in locations far away from tropical areas highlight the need for simple and low-cost methods for the sensitive and rapid detection of these potent marine toxins to protect seafood consumers. Herein, an electrochemical immunosensor for the detection of CTXs is presented. A sandwich configuration is proposed, using magnetic beads (MBs) as immobilization supports for two capture antibodies, with their combination facilitating the detection of CTX1B, CTX3C, 54-deoxyCTX1B, and 51-hydroxyCTX3C. PolyHRP-streptavidin is used for the detection of the biotinylated detector antibody. Experimental conditions are first optimized using colorimetry, and these conditions are subsequently used for electrochemical detection on electrode arrays. Limits of detection at the pg/mL level are achieved for CTX1B and 51-hydroxyCTX3C. The applicability of the immunosensor to the analysis of fish samples is demonstrated, attaining detection of CTX1B at contents as low as 0.01 μg/kg and providing results in correlation with those obtained using mouse bioassay (MBA) and cell-based assay (CBA), and confirmed by liquid chromatography coupled to high-resolution mass spectrometry (LC-ESI-HRMS). This user-friendly bioanalytical tool for the rapid detection of CTXs can be used to mitigate ciguatera risk and contribute to the protection of consumer health.
Collapse
Affiliation(s)
- Sandra Leonardo
- IRTA, Ctra. Poble Nou km 5.5, 43540 Sant Carles de la Ràpita, Spain
| | - Greta Gaiani
- IRTA, Ctra. Poble Nou km 5.5, 43540 Sant Carles de la Ràpita, Spain
| | - Takeshi Tsumuraya
- Department of Biological Sciences, Graduate School of Science, Osaka Prefecture University, Osaka 599-8570, Japan
| | - Masahiro Hirama
- Department of Biological Sciences, Graduate School of Science, Osaka Prefecture University, Osaka 599-8570, Japan
| | - Jean Turquet
- Citeb, C/o CYROI, 2 Rue Maxime Rivière, 97490 Sainte Clotilde, La Réunion, France
| | - Núria Sagristà
- IRTA, Ctra. Poble Nou km 5.5, 43540 Sant Carles de la Ràpita, Spain
| | | | - Cintia Flores
- Mass Spectrometry Laboratory/Organic Pollutants, IDAEA-CSIC, C. Jordi Girona 18, 08034 Barcelona, Spain
| | - Josep Caixach
- Mass Spectrometry Laboratory/Organic Pollutants, IDAEA-CSIC, C. Jordi Girona 18, 08034 Barcelona, Spain
| | - Jorge Diogène
- IRTA, Ctra. Poble Nou km 5.5, 43540 Sant Carles de la Ràpita, Spain
| | - Ciara K O'Sullivan
- Departament d'Enginyeria Química, URV, Av. Països Catalans 26, 43007 Tarragona, Spain.,ICREA, Pg. Lluís Companys 23, 08010 Barcelona, Spain
| | - Carles Alcaraz
- IRTA, Ctra. Poble Nou km 5.5, 43540 Sant Carles de la Ràpita, Spain
| | - Mònica Campàs
- IRTA, Ctra. Poble Nou km 5.5, 43540 Sant Carles de la Ràpita, Spain
| |
Collapse
|
28
|
Soliño L, Costa PR. Global impact of ciguatoxins and ciguatera fish poisoning on fish, fisheries and consumers. ENVIRONMENTAL RESEARCH 2020; 182:109111. [PMID: 31927300 DOI: 10.1016/j.envres.2020.109111] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 12/31/2019] [Accepted: 01/01/2020] [Indexed: 06/10/2023]
Abstract
Ciguatera fish poisoning (CFP) is one of the most devastating food-borne illnesses caused by fish consumption. Ciguatoxins (CTXs) are potent neurotoxins synthesized by the benthic microalgae Gambierdiscus spp. and Fukuyoa spp. that are transmitted to fish by grazing and predation. Despite the high incidence of CFP, affecting an estimated number of 50,000 persons per year in tropical and subtropical latitudes, the factors underlying CTXs occurrence are still not well understood. Toxin transfer and dynamics in fish and food-webs are complex. Feeding habits and metabolic pathways determine the toxin profile and toxicity of fish, and migratory species may transport and spread the hazard. Furthermore, CTX effect on fish may be a limiting factor for fish recruitment and toxin prevalence. Recently, new occurrences of Gambierdiscus spp. in temperate areas have been concomitant with the detection of toxic fish and CFP incidents in non-endemic areas. CFP cases in Europe have led to implementation of monitoring programs and fisheries restrictions with considerable impact on local economies. More than 400 species of fish can be vectors of CTXs, and most of them are high-valued commercial species. Thus, the risk uncertainty and the spread of Gambierdiscus have serious consequences for fisheries and food safety. Here, we present a critical review of CTXs impacts on fish, fisheries, and humans, based on the current knowledge on CFP incidence and CTXs prevalence in microalgae and fish.
Collapse
Affiliation(s)
- Lucía Soliño
- IPMA - Instituto Português do Mar da Atmosfera, Rua Alfredo Magalhães Ramalho, 6, 1495-006, Lisbon, Portugal; CCMAR - Centre of Marine Sciences, University of Algarve, Campus of Gambelas, 8005-139, Faro, Portugal.
| | - Pedro Reis Costa
- IPMA - Instituto Português do Mar da Atmosfera, Rua Alfredo Magalhães Ramalho, 6, 1495-006, Lisbon, Portugal; CCMAR - Centre of Marine Sciences, University of Algarve, Campus of Gambelas, 8005-139, Faro, Portugal
| |
Collapse
|
29
|
de Haro L, Schmitt C, Glaizal M, Domangé B, Torrents R, Simon N. La ciguatéra : 25 ans d’expérience du Centre Antipoison de Marseille. TOXICOLOGIE ANALYTIQUE ET CLINIQUE 2020. [DOI: 10.1016/j.toxac.2019.09.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
30
|
Rossignoli AE, Tudó A, Bravo I, Díaz PA, Diogène J, Riobó P. Toxicity Characterisation of Gambierdiscus Species from the Canary Islands. Toxins (Basel) 2020; 12:toxins12020134. [PMID: 32098095 PMCID: PMC7076799 DOI: 10.3390/toxins12020134] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 02/14/2020] [Accepted: 02/17/2020] [Indexed: 01/16/2023] Open
Abstract
In the last decade, several outbreaks of ciguatera fish poisoning (CFP) have been reported in the Canary Islands (central northeast Atlantic Ocean), confirming ciguatera as an emerging alimentary risk in this region. Five Gambierdiscus species, G. australes, G. excentricus, G. silvae, G. carolinianus and G. caribaeus, have been detected in macrophytes from this area and are known to produce the ciguatoxins (CTXs) that cause CFP. A characterization of the toxicity of these species is the first step in identifying locations in the Canary Islands at risk of CFP. Therefore, in this study the toxicity of 63 strains of these five Gambierdiscus species were analysed using the erythrocyte lysis assay to evaluate their maitotoxin (MTX) content. In addition, 20 of the strains were also analysed in a neuroblastoma Neuro-2a (N2a) cytotoxicity assay to determine their CTX-like toxicity. The results allowed the different species to be grouped according to their ratios of CTX-like and MTX-like toxicity. MTX-like toxicity was especially high in G. excentricus and G. australes but much lower in the other species and lowest in G. silvae. CTX-like toxicity was highest in G. excentricus, which produced the toxin in amounts ranging between 128.2 ± 25.68 and 510.6 ± 134.2 fg CTX1B equivalents (eq) cell−1 (mean ± SD). In the other species, CTX concentrations were as follows: G. carolinianus (100.84 ± 18.05 fg CTX1B eq cell−1), G. australes (31.1 ± 0.56 to 107.16 ± 21.88 fg CTX1B eq cell−1), G. silvae (12.19 ± 0.62 to 76.79 ± 4.97 fg CTX1B eq cell−1) and G. caribaeus (<LOD to 90.37 ± 15.89 fg CTX1B eq cell−1). Unlike the similar CTX-like toxicity of G. australes and G. silvae strains from different locations, G. excentricus and G. caribaeus differed considerably according to the origin of the strain. These differences emphasise the importance of species identification to assess the regional risk of CFP.
Collapse
Affiliation(s)
- Araceli E. Rossignoli
- Instituto Español de Oceanografía, Centro Ocenográfico de Vigo, Subida a Radiofaro 50, 36390 Vigo, Spain;
- Correspondence: ; Tel.: +34-986492111; Fax: +34-986498626
| | - Angels Tudó
- IRTA, Ctra. Poble Nou, km. 5.5, 43540 Sant Carles de la Ràpita, Spain; (A.T.); (J.D.)
| | - Isabel Bravo
- Instituto Español de Oceanografía, Centro Ocenográfico de Vigo, Subida a Radiofaro 50, 36390 Vigo, Spain;
| | - Patricio A. Díaz
- Centro i~mar & CeBiB, Universidad de Los Lagos, Casilla 557, Puerto Montt, Chile;
| | - Jorge Diogène
- IRTA, Ctra. Poble Nou, km. 5.5, 43540 Sant Carles de la Ràpita, Spain; (A.T.); (J.D.)
| | - Pilar Riobó
- Department of Photobiology and Toxinology of Phytoplankton, Instituto de Investigaciones Marinas, CSIC, Eduardo Cabello 6, 36208 Vigo, Spain;
| |
Collapse
|
31
|
Estevez P, Leao JM, Yasumoto T, Dickey RW, Gago-Martinez A. Caribbean Ciguatoxin-1 stability under strongly acidic conditions: Characterisation of a new C-CTX1 methoxy congener. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 2019; 37:519-529. [PMID: 31881166 DOI: 10.1080/19440049.2019.1705400] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The recent emergence of ciguatera in the eastern Atlantic, particularly in the Canary Islands (Spain) and Madeira (Portugal) prompted the development and implementation of liquid chromatography tandem-mass spectrometry (LC/MS-MS) methods for the detection of ciguatoxins in fish. The complexity of fish tissue matrices, low concentrations of ciguatoxins in hazardous fish, and the scarcity of ciguatoxin standards present challenging issues for successful implementation of routine ciguatoxin analysis. A laboratory reference material of Caribbean Ciguatoxin-1 (C-CTX1), which was previously confirmed in fish responsible for ciguatera outbreaks in the Canary Islands, was used to assess the toxin's stability under strongly acidic conditions and solvent systems commonly used in LC-MS/MS. It was observed that strongly acidic conditions caused the transformation of C-CTX1 to a C56 methoxy congener, C-CTX1-Me. C-CTX1 was structurally characterised by LC-MS/MS and fragmentation pathways are presented showing the same fragmentation pattern as C-CTX1-Me. These results suggest that the use of strongly acidic conditions during sample pretreatment for C-CTX analysis, might produce significant artefacts, and risks failing to detect the presence of C-CTX1.
Collapse
Affiliation(s)
- Pablo Estevez
- Department of Analytical and Food Chemistry, University of Vigo, Vigo, Spain
| | - Jose Manuel Leao
- Department of Analytical and Food Chemistry, University of Vigo, Vigo, Spain
| | - Takeshi Yasumoto
- Tama Laboratory, Japan Food Research Laboratories, Tama, Tokyo, Japan
| | - Robert W Dickey
- Department of Marine Science, University of Texas at Austin Marine Science Institute, Port Aransas, TX, USA
| | - Ana Gago-Martinez
- Department of Analytical and Food Chemistry, University of Vigo, Vigo, Spain
| |
Collapse
|
32
|
Bravo I, Rodriguez F, Ramilo I, Rial P, Fraga S. Ciguatera-Causing Dinoflagellate Gambierdiscus spp. (Dinophyceae) in a Subtropical Region of North Atlantic Ocean (Canary Islands): Morphological Characterization and Biogeography. Toxins (Basel) 2019; 11:toxins11070423. [PMID: 31331083 PMCID: PMC6669716 DOI: 10.3390/toxins11070423] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Revised: 07/16/2019] [Accepted: 07/17/2019] [Indexed: 12/04/2022] Open
Abstract
Dinoflagellates belonging to the genus Gambierdiscus produce ciguatoxins (CTXs), which are metabolized in fish to more toxic forms and subsequently cause ciguatera fish poisoning (CFP) in humans. Five species of Gambierdiscus have been described from the Canary Islands, where CTXs in fish have been reported since 2004. Here we present new data on the distribution of Gambierdiscus species in the Canary archipelago and specifically from two islands, La Palma and La Gomera, where the genus had not been previously reported. Gambierdiscus spp. concentrations were low, with maxima of 88 and 29 cells·g−1 wet weight in samples from La Gomera and La Palma, respectively. Molecular analysis (LSUrRNA gene sequences) revealed differences in the species distribution between the two islands: only G. excentricus was detected at La Palma whereas four species, G. australes, G. caribaeus, G. carolinianus, and G. excentricus, were identified from La Gomera. Morphometric analyses of cultured cells of the five Canary Islands species and of field specimens from La Gomera included cell size and a characterization of three thecal arrangement traits: (1) the shape of the 2′ plate, (2) the position of Po in the anterior suture of the 2′ plate, and (3) the length–width relationship of the 2″″ plate. Despite the wide morphological variability within the culture and field samples, the use of two or more variables allowed the discrimination of two species in the La Gomera samples: G. cf. excentricus and G. cf. silvae. A comparison of the molecular data with the morphologically based classification demonstrated important coincidences, such as the dominance of G. excentricus, but also differences in the species composition of Gambierdiscus, as G. caribaeus was detected in the study area only by using molecular methods.
Collapse
Affiliation(s)
- Isabel Bravo
- Centro Oceanográfico de Vigo, Instituto Español de Oceanografía (IEO), Subida a Radio Faro 50, 36390 Vigo, Spain.
| | - Francisco Rodriguez
- Centro Oceanográfico de Vigo, Instituto Español de Oceanografía (IEO), Subida a Radio Faro 50, 36390 Vigo, Spain
| | - Isabel Ramilo
- Centro Oceanográfico de Vigo, Instituto Español de Oceanografía (IEO), Subida a Radio Faro 50, 36390 Vigo, Spain
| | - Pilar Rial
- Centro Oceanográfico de Vigo, Instituto Español de Oceanografía (IEO), Subida a Radio Faro 50, 36390 Vigo, Spain
| | - Santiago Fraga
- Centro Oceanográfico de Vigo, Instituto Español de Oceanografía (IEO), Subida a Radio Faro 50, 36390 Vigo, Spain
| |
Collapse
|
33
|
Gerssen A, Gago-Martínez A. Emerging Marine Biotoxins. Toxins (Basel) 2019; 11:E314. [PMID: 31163582 PMCID: PMC6628386 DOI: 10.3390/toxins11060314] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Accepted: 05/30/2019] [Indexed: 01/01/2023] Open
Abstract
The emergence of marine biotoxins in geographical areas where they have never been reported before is a concern of considerable impact on seafood contamination, and consequently, on public health [...].
Collapse
Affiliation(s)
- Arjen Gerssen
- Wageningen Food Safety Research (WFSR), Wageningen University & Research, Akkermaalsbos 2, 6708WB Wageningen, The Netherlands.
| | - Ana Gago-Martínez
- Department of Analytical and Food Chemistry, University of Vigo, Campus Universitario de Vigo, 36310 Vigo, Spain.
- European Union Reference Laboratory for Marine Biotoxins, CITEXVI, Campus Universitario de Vigo, 36310 Vigo, Spain.
| |
Collapse
|
34
|
Estevez P, Castro D, Pequeño-Valtierra A, Giraldez J, Gago-Martinez A. Emerging Marine Biotoxins in Seafood from European Coasts: Incidence and Analytical Challenges. Foods 2019; 8:E149. [PMID: 31052406 PMCID: PMC6560407 DOI: 10.3390/foods8050149] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 04/16/2019] [Accepted: 04/25/2019] [Indexed: 11/30/2022] Open
Abstract
The presence of emerging contaminants in food and the sources of the contamination are relevant issues in food safety. The impact of climate change on these contaminations is a topic widely debated; however, the consequences of climate change for the food system is not as deeply studied as other human and animal health and welfare issues. Projections of climate change in Europe have been evaluated through the EU Commission, and the impact on the marine environment is considered a priority issue. Marine biotoxins are produced by toxic microalgae and are natural contaminants of the marine environment. They are considered to be an important contaminant that needs to be evaluated. Their source is affected by oceanographic and environmental conditions; water temperature, sunlight, salinity, competing microorganisms, nutrients, and wind and current directions affect the growth and proliferation of microalgae. Although climate change should not be the only reason for this increase and other factors such as eutrophication, tourism, fishery activities, etc. could be considered, the influence of climate change has been observed through increased growth of dinoflagellates in areas where they have not been previously detected. An example of this is the recent emergence of ciguatera fish poisoning toxins, typically found in tropical or subtropical areas from the Pacific and Caribbean and in certain areas of the Atlantic Sea such as the Canary Islands (Spain) and Madeira (Portugal). In addition, the recent findings of the presence of tetrodotoxins, typically found in certain areas of the Pacific, are emerging in the EU and contaminating not only the fish species where these toxins had been found before but also bivalve mollusks. The emergence of these marine biotoxins in the EU is a reason for concern in the EU, and for this reason, the risk evaluation and characterization of these toxins are considered a priority for the European Food Safety Authorities (EFSA), which also emphasize the search for occurrence data using reliable and efficient analytical methods.
Collapse
Affiliation(s)
- Pablo Estevez
- Department of Analytical and Food Chemistry, University of Vigo, Campus Universitario de Vigo, 36310 Vigo, Spain.
| | - David Castro
- Department of Analytical and Food Chemistry, University of Vigo, Campus Universitario de Vigo, 36310 Vigo, Spain.
| | - Ana Pequeño-Valtierra
- Department of Analytical and Food Chemistry, University of Vigo, Campus Universitario de Vigo, 36310 Vigo, Spain.
| | - Jorge Giraldez
- Department of Analytical and Food Chemistry, University of Vigo, Campus Universitario de Vigo, 36310 Vigo, Spain.
| | - Ana Gago-Martinez
- Department of Analytical and Food Chemistry, University of Vigo, Campus Universitario de Vigo, 36310 Vigo, Spain.
- EU Reference Laboratory for marine biotoxins, Campus Universitario de Vigo, 36310 Vigo, Spain.
| |
Collapse
|
35
|
Estevez P, Castro D, Pequeño-Valtierra A, Leao JM, Vilariño O, Diogène J, Gago-Martínez A. An Attempt to Characterize the Ciguatoxin Profile in Seriola fasciata Causing Ciguatera Fish Poisoning in Macaronesia. Toxins (Basel) 2019; 11:toxins11040221. [PMID: 31013948 PMCID: PMC6521267 DOI: 10.3390/toxins11040221] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Revised: 04/09/2019] [Accepted: 04/10/2019] [Indexed: 01/05/2023] Open
Abstract
Ciguatera Fish Poisoning is a worldwide concern caused by the consumption of fish contaminated with ciguatoxins not only in endemic regions in the Pacific Ocean or the Caribbean Sea but also in emerging areas of Macaronesia on the eastern Atlantic. The recent emergence of these toxins in other coastal areas worldwide, prompted the need for the characterization of the risk in these areas. This Ciguatera Fish Poisoning risk has been recently identified as a potential threat in subtropical areas of the Atlantic coast and scientific efforts are being focused in the identification and confirmation of the toxins involved in this potential risk. Neuroblastoma cell assay has been widely used for the evaluation of the toxicity in several marine biotoxin groups, and found to be a very useful tool for toxicity screening. LC-MS/MS has been also used for confirmatory purposes although the main limitation of the advances on LC-MS/MS development is due to commercial unavailability of reference materials and hampers method implementation and validation or even confirmation of the ciguatoxins (CTXs) responsible for the toxic profiles. While neuroblastoma cell assay (N2a) is typically used for toxicity screening as mentioned above, being necessary to confirm this N2a toxicity by LC-MS/MS, this study is designed using N2a as a tool to confirm the toxicity of the fractions obtained corresponding to potential CTXs analogues according to the analysis by LC-MS/MS. With this aim, an amberjack sample (Seriola fasciata) from Selvagen Islads (Portugal) and implicated in Ciguatera Fish Poisoning was analyzed by LC-MS/MS and Caribbean Ciguatoxins were found to be mainly responsible for the toxicity. N2a was used in this work as a tool to help in the confirmation of the toxicity of fractions obtained by HPLC. Caribbean Ciguatoxin-1 was found as the main analogue responsible for the N2a toxicity while three Caribbean Ciguatoxin-1 (C-CTX1) metabolites which contribute to the total toxicity were also identified.
Collapse
Affiliation(s)
- Pablo Estevez
- University of Vigo, Department of Analytical and Food Chemistry, Campus Universitario de Vigo, 36310 Vigo, Spain.
| | - David Castro
- University of Vigo, Department of Analytical and Food Chemistry, Campus Universitario de Vigo, 36310 Vigo, Spain.
| | - Ana Pequeño-Valtierra
- University of Vigo, Department of Analytical and Food Chemistry, Campus Universitario de Vigo, 36310 Vigo, Spain.
| | - José M Leao
- University of Vigo, Department of Analytical and Food Chemistry, Campus Universitario de Vigo, 36310 Vigo, Spain.
- European Union Reference Laboratory for Marine Biotoxins, CITEXVI, Campus Universitario de Vigo, 36310 Vigo, Spain.
| | - Oscar Vilariño
- University of Vigo, Department of Analytical and Food Chemistry, Campus Universitario de Vigo, 36310 Vigo, Spain.
- European Union Reference Laboratory for Marine Biotoxins, CITEXVI, Campus Universitario de Vigo, 36310 Vigo, Spain.
| | - Jorge Diogène
- IRTA, Marine and Continental Waters, Ctra. Poble Nou, km. 5.5, E-43540 Sant Carles de la Ràpita, Spain.
| | - Ana Gago-Martínez
- University of Vigo, Department of Analytical and Food Chemistry, Campus Universitario de Vigo, 36310 Vigo, Spain.
- European Union Reference Laboratory for Marine Biotoxins, CITEXVI, Campus Universitario de Vigo, 36310 Vigo, Spain.
| |
Collapse
|
36
|
Structure Elucidation and Biological Evaluation of Maitotoxin-3, a Homologue of Gambierone, from Gambierdiscus belizeanus. Toxins (Basel) 2019; 11:toxins11020079. [PMID: 30717108 PMCID: PMC6409949 DOI: 10.3390/toxins11020079] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2018] [Revised: 01/23/2019] [Accepted: 01/28/2019] [Indexed: 01/15/2023] Open
Abstract
Gambierdiscus species are the producers of the marine toxins ciguatoxins and maitotoxins which cause worldwide human intoxications recognized as Ciguatera Fish Poisoning. A deep chemical investigation of a cultured strain of G. belizeanus, collected in the Caribbean Sea, led to the identification of a structural homologue of the recently described gambierone isolated from the same strain. The structure was elucidated mainly by comparison of NMR and MS data with those of gambierone and ascertained by 2D NMR data analyses. Gratifyingly, a close inspection of the MS data of the new 44-methylgambierone suggests that this toxin would actually correspond to the structure of maitotoxin-3 (MTX3, m/z 1039.4957 for the protonated adduct) detected in 1994 in a Pacific strain of Gambierdiscus and recently shown in routine monitoring programs. Therefore, this work provides for the first time the chemical identification of the MTX3 molecule by NMR. Furthermore, biological data confirmed the similar activities of both gambierone and 44-methylgambierone. Both gambierone and MTX3 induced a small increase in the cytosolic calcium concentration but only MTX3 caused cell cytotoxicity at micromolar concentrations. Moreover, chronic exposure of human cortical neurons to either gambierone or MTX3 altered the expression of ionotropic glutamate receptors, an effect already described before for the synthetic ciguatoxin CTX3C. However, even when gambierone and MTX3 affected glutamate receptor expression in a similar manner their effect on receptor expression differed from that of CTX3C, since both toxins decreased AMPA receptor levels while increasing N-methyl-d-aspartate (NMDA) receptor protein. Thus, further studies should be pursued to clarify the similarities and differences in the biological activity between the known ciguatoxins and the new identified molecule as well as its contribution to the neurological symptoms of ciguatera.
Collapse
|