1
|
de Oliveira AS, Muniz Seif EJ, da Silva Junior PI. In silico prospection of receptors associated with the biological activity of U1-SCTRX-lg1a: an antimicrobial peptide isolated from the venom of Loxosceles gaucho. In Silico Pharmacol 2024; 12:15. [PMID: 38476933 PMCID: PMC10925584 DOI: 10.1007/s40203-024-00190-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 01/11/2024] [Indexed: 03/14/2024] Open
Abstract
The emergence of antibiotic-resistant pathogens generates impairment to human health. U1-SCTRX-lg1a is a peptide isolated from a phospholipase D extracted from the spider venom of Loxosceles gaucho with antimicrobial activity against Gram-negative bacteria (between 1.15 and 4.6 μM). The aim of this study was to suggest potential receptors associated with the antimicrobial activity of U1-SCTRX-lg1a using in silico bioinformatics tools. The search for potential targets of U1-SCRTX-lg1a was performed using the PharmMapper server. Molecular docking between U1-SCRTX-lg1a and the receptor was performed using PatchDock software. The prediction of ligand sites for each receptor was conducted using the PDBSum server. Chimera 1.6 software was used to perform molecular dynamics simulations only for the best dock score receptor. In addition, U1-SCRTX-lg1a and native ligand interactions were compared using AutoDock Vina software. Finally, predicted interactions were compared with the ligand site previously described in the literature. The bioprospecting of U1-SCRTX-lg1a resulted in the identification of three hundred (300) diverse targets (Table S1), forty-nine (49) of which were intracellular proteins originating from Gram-negative microorganisms (Table S2). Docking results indicate Scores (10,702 to 6066), Areas (1498.70 to 728.40) and ACEs (417.90 to - 152.8) values. Among these, NAD + NH3-dependent synthetase (PDB ID: 1wxi) showed a dock score of 9742, area of 1223.6 and ACE of 38.38 in addition to presenting a Normalized Fit score of 8812 on PharmMapper server. Analysis of the interaction of ligands and receptors suggests that the peptide derived from brown spider venom can interact with residues SER48 and THR160. Furthermore, the C terminus (- 7.0 score) has greater affinity for the receptor than the N terminus (- 7.7 score). The molecular dynamics assay shown that free energy value for the protein complex of - 214,890.21 kJ/mol, whereas with rigid docking, this value was - 29.952.8 sugerindo that after the molecular dynamics simulation, the complex exhibits a more favorable energy value compared to the previous state. The in silico bioprospecting of receptors suggests that U1-SCRTX-lg1a may interfere with NAD + production in Escherichia coli, a Gram-negative bacterium, altering the homeostasis of the microorganism and impairing growth. Supplementary Information The online version contains supplementary material available at 10.1007/s40203-024-00190-8.
Collapse
Affiliation(s)
- André Souza de Oliveira
- Applied Toxinology Laboratory, Butantan Institute, São Paulo, SP Brazil
- Post Graduate Program of Biotechnology, University of São Paulo, São Paulo, SP Brazil
| | - Elias Jorge Muniz Seif
- Applied Toxinology Laboratory, Butantan Institute, São Paulo, SP Brazil
- Post Graduate Program of Molecular Biology, Federal University of São Paulo, São Paulo, SP Brazil
| | - Pedro Ismael da Silva Junior
- Applied Toxinology Laboratory, Butantan Institute, São Paulo, SP Brazil
- Post Graduate Program of Biotechnology, University of São Paulo, São Paulo, SP Brazil
- Post Graduate Program of Molecular Biology, Federal University of São Paulo, São Paulo, SP Brazil
| |
Collapse
|
2
|
You Y, Yin W, Tembrock LR, Wu Z, Gu X, Yang Z, Zhang C, Zhao Y, Yang Z. Transcriptome sequencing of wolf spider Lycosa sp. (Araneae: Lycosidae) venom glands provides insights into the evolution and diversity of disulfide-rich toxins. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. PART D, GENOMICS & PROTEOMICS 2023; 48:101145. [PMID: 37748227 DOI: 10.1016/j.cbd.2023.101145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 09/11/2023] [Accepted: 09/16/2023] [Indexed: 09/27/2023]
Abstract
Wolf spiders in the genus Lycosa are important pest predators in agroforestry ecosystems, capable of feeding on a wide range of pests through the use of complex venom which can to quickly immobilize and kill prey. Because of these characteristics the toxins in wolf spiders venom may prove to be natural sources for novel drug development and biopesticides. To better understand the toxins in Lycosa venom we sequenced the transcriptome from venom glands from an undescribed species of Lycosa and comparatively analyzed the data using known protein motifs. A series of 19 disulfide-rich peptide (DRP) toxin sequences were identified and categorized into seven groups based on the number and arrangement of cysteine residues. Notably, we identified three peptide sequences with low identity to any known toxin, which may be toxin peptides specific to this species of Lycosa. In addition, to further understand the evolutionary relationships of disulfide-rich peptide toxins in spider venom, we constructed phylogenetic trees of DRP toxins from three spiders species and found that the Lycosa sp. DRPs are comparatively diverse with previous research results. This study reveals the toxin diversity of wolf spiders (Lycosa sp.) at the transcriptomic level and provides initial insights into the evolution of DRP toxins in spiders, enriching our knowledge of toxin diversity and providing new compounds for functional studies.
Collapse
Affiliation(s)
- Yongming You
- Yunnan Provincial Key Laboratory of Entomological Biopharmaceutical R & D, Dali University, Dali 671000, China; National-Local Joint Engineering Research Center of Entomoceutics, Dali University, Dali 671000, China; Innovative Team of Dali University for Medicinal Insects & Arachnids Resources Digital Development, Dali 671000, China.
| | - Wenhao Yin
- Yunnan Provincial Key Laboratory of Entomological Biopharmaceutical R & D, Dali University, Dali 671000, China; National-Local Joint Engineering Research Center of Entomoceutics, Dali University, Dali 671000, China; Innovative Team of Dali University for Medicinal Insects & Arachnids Resources Digital Development, Dali 671000, China
| | - Luke R Tembrock
- Department of Agricultural Biology, Colorado State University, Fort Collins, CO 80523, USA
| | - Zhiqiang Wu
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Shenzhen 518120, China
| | - Xiaoliang Gu
- Yunnan Provincial Key Laboratory of Entomological Biopharmaceutical R & D, Dali University, Dali 671000, China; National-Local Joint Engineering Research Center of Entomoceutics, Dali University, Dali 671000, China; Innovative Team of Dali University for Medicinal Insects & Arachnids Resources Digital Development, Dali 671000, China
| | - Zhibin Yang
- Yunnan Provincial Key Laboratory of Entomological Biopharmaceutical R & D, Dali University, Dali 671000, China; National-Local Joint Engineering Research Center of Entomoceutics, Dali University, Dali 671000, China; Innovative Team of Dali University for Medicinal Insects & Arachnids Resources Digital Development, Dali 671000, China
| | - Chenggui Zhang
- Yunnan Provincial Key Laboratory of Entomological Biopharmaceutical R & D, Dali University, Dali 671000, China; National-Local Joint Engineering Research Center of Entomoceutics, Dali University, Dali 671000, China; Innovative Team of Dali University for Medicinal Insects & Arachnids Resources Digital Development, Dali 671000, China
| | - Yu Zhao
- Yunnan Provincial Key Laboratory of Entomological Biopharmaceutical R & D, Dali University, Dali 671000, China; National-Local Joint Engineering Research Center of Entomoceutics, Dali University, Dali 671000, China; Innovative Team of Dali University for Medicinal Insects & Arachnids Resources Digital Development, Dali 671000, China
| | - Zizhong Yang
- Yunnan Provincial Key Laboratory of Entomological Biopharmaceutical R & D, Dali University, Dali 671000, China; National-Local Joint Engineering Research Center of Entomoceutics, Dali University, Dali 671000, China; Innovative Team of Dali University for Medicinal Insects & Arachnids Resources Digital Development, Dali 671000, China.
| |
Collapse
|
3
|
Fakhar M, Alian S, Soleymani M, Zakariaei A, Nourzad F, Zakariaei Z. Massive dermal ulcerative lesions due to brown recluse spider bite: a rare case report and review of literature. J Int Med Res 2023; 51:3000605231157284. [PMID: 37565672 PMCID: PMC10691315 DOI: 10.1177/03000605231157284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/12/2023] Open
Abstract
A brown recluse spider (BRS) bite is challenging to confirm, but may be clinically diagnosed by considering the location, the season of the year, and the clinical manifestations. Here, the case of a 26-year-old male who presented after an insect bite with a skin lesion, bruising, severe swelling, and diffuse blisters on the right lower extremity after three days, is described. Following clinical examination, patient history assessment, and consideration of other relevant factors, the patient received a differential diagnosis of necrotizing fasciitis caused by BRS bite. Although spider bite poisoning is rare, proper diagnosis and management are important because, in some cases, the outcomes may be devastating.
Collapse
Affiliation(s)
- Mahdi Fakhar
- Iranian National Registry Centre for Lophomoniasis and Toxoplasmosis, Mazandaran University of Medical Sciences, Sari, Iran
| | - Shahriar Alian
- Antimicrobial Resistance Research Centre, Department of Infectious Diseases, Mazandaran University of Medical Sciences, Sari, Iran
| | - Mostafa Soleymani
- Iranian National Registry Centre for Lophomoniasis and Toxoplasmosis, Mazandaran University of Medical Sciences, Sari, Iran
| | - Ashkan Zakariaei
- Student Research Committee, Babol Branch, Islamic Azad University, Babol, Iran
| | - Fatemeh Nourzad
- Toxicology Ward, Qaemshahr Razi Hospital, Mazandaran University of Medical Sciences, Sari, Iran
| | - Zakaria Zakariaei
- Toxicology and Forensic Medicine Division, Mazandaran Registry Centre for Opioids Poisoning, Antimicrobial Resistance Research Centre, Imam Khomeini Hospital, Mazandaran University of Medical Sciences, Sari, Iran
| |
Collapse
|
4
|
Salimo ZM, Barros AL, Adrião AAX, Rodrigues AM, Sartim MA, de Oliveira IS, Pucca MB, Baia-da-Silva DC, Monteiro WM, de Melo GC, Koolen HHF. Toxins from Animal Venoms as a Potential Source of Antimalarials: A Comprehensive Review. Toxins (Basel) 2023; 15:375. [PMID: 37368676 DOI: 10.3390/toxins15060375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 05/23/2023] [Accepted: 05/29/2023] [Indexed: 06/29/2023] Open
Abstract
Malaria is an infectious disease caused by Plasmodium spp. and it is mainly transmitted to humans by female mosquitoes of the genus Anopheles. Malaria is an important global public health problem due to its high rates of morbidity and mortality. At present, drug therapies and vector control with insecticides are respectively the most commonly used methods for the treatment and control of malaria. However, several studies have shown the resistance of Plasmodium to drugs that are recommended for the treatment of malaria. In view of this, it is necessary to carry out studies to discover new antimalarial molecules as lead compounds for the development of new medicines. In this sense, in the last few decades, animal venoms have attracted attention as a potential source for new antimalarial molecules. Therefore, the aim of this review was to summarize animal venom toxins with antimalarial activity found in the literature. From this research, 50 isolated substances, 4 venom fractions and 7 venom extracts from animals such as anurans, spiders, scorpions, snakes, and bees were identified. These toxins act as inhibitors at different key points in the biological cycle of Plasmodium and may be important in the context of the resistance of Plasmodium to currently available antimalarial drugs.
Collapse
Affiliation(s)
- Zeca M Salimo
- Programa de Pós-Graduação em Medicina Tropical, Universidade do Estado do Amazonas, Manaus 69040-000, Brazil
- Fundação de Medicina Tropical Dr. Heitor Vieira Dourado, Manaus 69040-000, Brazil
- Grupo de Pesquisa em Metabolômica e Espectrometria de Massas, Universidade do Estado do Amazonas, Manaus 69065-001, Brazil
| | - André L Barros
- Setor de Medicina Veterinária, Universidade Nilton Lins, Manaus 69058-030, Brazil
| | - Asenate A X Adrião
- Programa de Pós-Graduação em Medicina Tropical, Universidade do Estado do Amazonas, Manaus 69040-000, Brazil
- Grupo de Pesquisa em Metabolômica e Espectrometria de Massas, Universidade do Estado do Amazonas, Manaus 69065-001, Brazil
- Programa de Pós-Graduação em Biodiversidade e Biotecnologia-Rede BIONORTE, Universidade do Estado do Amazonas, Manaus 69065-001, Brazil
| | - Aline M Rodrigues
- Grupo de Pesquisa em Metabolômica e Espectrometria de Massas, Universidade do Estado do Amazonas, Manaus 69065-001, Brazil
| | - Marco A Sartim
- Programa de Pós-Graduação em Medicina Tropical, Universidade do Estado do Amazonas, Manaus 69040-000, Brazil
- Programa de Pós-Graduação em Biodiversidade e Biotecnologia-Rede BIONORTE, Universidade do Estado do Amazonas, Manaus 69065-001, Brazil
- Pro-Reitoria de Pesquisa e Pós-Graduação, Universidade Nilton Lins, Manaus 69058-030, Brazil
| | - Isadora S de Oliveira
- Departamento de Ciências BioMoleculares, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto 14040-903, Brazil
| | - Manuela B Pucca
- Programa de Pós-Graduação em Medicina Tropical, Universidade do Estado do Amazonas, Manaus 69040-000, Brazil
- Faculdade de Medicina, Universidade Federal de Roraima, Boa Vista 69317-810, Brazil
- Programa de Pós-Graduação em Ciências da Saúde, Universidade Federal de Roraima, Boa Vista 69317-810, Brazil
| | - Djane C Baia-da-Silva
- Programa de Pós-Graduação em Medicina Tropical, Universidade do Estado do Amazonas, Manaus 69040-000, Brazil
- Fundação de Medicina Tropical Dr. Heitor Vieira Dourado, Manaus 69040-000, Brazil
- Faculdade de Farmácia, Universidade Nilton Lins, Manaus 69058-030, Brazil
- Instituto Leônidas e Maria Deane, Fundação Oswaldo Cruz, Manaus 69057-070, Brazil
- Programa de Pós Graduação em Ciências Farmacêuticas, Universidade Federal do Amazonas, Manaus 69080-900, Brazil
| | - Wuelton M Monteiro
- Programa de Pós-Graduação em Medicina Tropical, Universidade do Estado do Amazonas, Manaus 69040-000, Brazil
- Fundação de Medicina Tropical Dr. Heitor Vieira Dourado, Manaus 69040-000, Brazil
| | - Gisely C de Melo
- Programa de Pós-Graduação em Medicina Tropical, Universidade do Estado do Amazonas, Manaus 69040-000, Brazil
- Fundação de Medicina Tropical Dr. Heitor Vieira Dourado, Manaus 69040-000, Brazil
| | - Hector H F Koolen
- Programa de Pós-Graduação em Medicina Tropical, Universidade do Estado do Amazonas, Manaus 69040-000, Brazil
- Grupo de Pesquisa em Metabolômica e Espectrometria de Massas, Universidade do Estado do Amazonas, Manaus 69065-001, Brazil
- Programa de Pós-Graduação em Biodiversidade e Biotecnologia-Rede BIONORTE, Universidade do Estado do Amazonas, Manaus 69065-001, Brazil
| |
Collapse
|
5
|
Fakhar M, Alian S, Zakariaei A, Nourzad F, Zakariaei Z. Massive dermal ulcerative lesions because of brown recluse spider bite: a rare case report and review of literature. J Surg Case Rep 2023; 2023:rjad357. [PMID: 37360745 PMCID: PMC10284676 DOI: 10.1093/jscr/rjad357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 05/31/2023] [Indexed: 06/28/2023] Open
Abstract
A brown recluse spider (BRS) bite is challenging to confirm, but can be clinically diagnosed by considering the location, the season of the year and the clinical manifestations. We described a 26-year-old male who presented after a BRS bite with a skin lesion, bruising, severe swelling and diffuse blisters on the right lower extremity after 3 days. This case should be considered in the differential diagnosis of necrotizing fasciitis. Although spider bite poisoning is rare, proper diagnosis and management are important because, in some cases, it can have devastating outcomes.
Collapse
Affiliation(s)
- Mahdi Fakhar
- Iranian National Registry Center for Lophomoniasis and Toxoplasmosis, Mazandaran University of Medical Sciences, Sari, Iran
| | - Shahriar Alian
- Antimicrobial Resistance Research Center, Department of Infectious Diseases, Mazandaran University of Medical Sciences, Sari, Iran
| | - Ashkan Zakariaei
- Student Research Committee, Babol Branch, Islamic Azad University, Babol, Iran
| | - Fatemeh Nourzad
- Toxicology Ward, Qaemshahr Razi Hospital, Mazandaran University of Medical Sciences, Sari, Iran
| | - Zakaria Zakariaei
- Correspondence address. Toxicology and Forensic Medicine Division, Mazandaran Registry Center for Opioids Poisoning, Antimicrobial Resistance Research Center, Imam Khomeini Hospital, Mazandaran University of Medical Sciences, PO Box 48166-33131, Sari, Iran. Tel/Fax: 981133357916; E-mail:
| |
Collapse
|
6
|
Ferreira MD, Veiga SS, Dos Santos FA. Brown spider (Loxosceles sp.) bite and COVID-19: A case report. Toxicon 2022; 212:1-7. [PMID: 35346694 PMCID: PMC8957330 DOI: 10.1016/j.toxicon.2022.03.015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Revised: 03/17/2022] [Accepted: 03/23/2022] [Indexed: 01/03/2023]
Abstract
We present the case of a 32-year-old male patient hospitalized during the COVID-19 pandemic because of a Brown spider bite on his lower lip. The Brown spider accident occurred in southern Brazil; at hospital admission, the patient presented on his lip: edema, pustules, necrotic regions, and ulcerations. The patient complained of lower back pain, fever and dyspnea. Laboratory tests showed monocytosis, leukocytosis, neutrophilia, increased D-dimer levels, C-reactive protein, glutamate-pyruvate transaminase, delta bilirubin, creatine phosphokinase, procalcitonin, and fibrinogen. The patient was hospitalized and a multi-professional team carried out the treatment. The medical team diagnosed loxoscelism with moderate changes. The dentist treated the oral cavity. The patient began to develop nausea, vomiting, and desaturation episodes during hospitalization. A computed tomography of the chest was performed, which showed signs of viral infection. The RT-PCR test for COVID-19 was positive. The systemic conditions worsened (renal dysfunction, systemic inflammatory response, pulmonary complications). This condition may have resulted from the association of the two diseases (loxoscelism and COVID-19), leading to the patient's death. This case illustrates the difficulties and risks in treating patients with venomous animal accidents during the pandemic, and the importance of a multi-professional team in treating such cases.
Collapse
Affiliation(s)
- Marceli Dias Ferreira
- Department of Dentistry, School of Dentistry, State University of Ponta Grossa, Ponta Grossa, PR, Brazil
| | | | - Fábio André Dos Santos
- Department of Dentistry, School of Dentistry, State University of Ponta Grossa, Ponta Grossa, PR, Brazil.
| |
Collapse
|
7
|
Marchi FC, Mendes-Silva E, Rodrigues-Ribeiro L, Bolais-Ramos LG, Verano-Braga T. Toxinology in the proteomics era: a review on arachnid venom proteomics. J Venom Anim Toxins Incl Trop Dis 2022; 28:20210034. [PMID: 35291269 PMCID: PMC8893269 DOI: 10.1590/1678-9199-jvatitd-2021-0034] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 06/01/2021] [Indexed: 11/22/2022] Open
Abstract
The word venomics was coined to acknowledge the studies that use omics to investigate venom proteins and peptides. Venomics has evolved considerably over the last 20 years. The first works on scorpion or spider venomics were published in the early 2000's. Such studies relied on peptide mass fingerprinting (PMF) to characterize venom complexity. After the introduction of new mass spectrometers with higher resolution, sensitivity and mass accuracy, and the next-generation nucleotide sequencing, the complexity of data reported in research on scorpion and spider venomics increased exponentially, which allowed more comprehensive studies. In the present review article, we covered key publications on scorpion venomics and spider venomics, presenting historical grounds and implemented technologies over the last years. The literature presented in this review was selected after searching the PubMed database using the terms "(scorpion venom) AND (proteome)" for scorpion venomics, and "(spider venom) AND (proteome)" for publications on spider venomics. We presented the key aspects related to proteomics in the covered papers including, but not restricted to, the employed proteomic strategy (i.e., PMF, two-dimensional gel electrophoresis, shotgun/bottom-up and/or top-down/peptidome), and the type of mass spectrometer used. Some conclusions can be drawn from the present study. For example, the scorpion genus Tityus is the most studied concerning venomics, followed by Centruroides; whereas for spiders the studied genera were found more equally distributed. Another interesting conclusion is the lack of high throughput studies on post-translational modifications (PTMs) of scorpion and spider proteins. In our opinion, PTMs should be more studied as they can modulate the activity of scorpion and spider toxins.
Collapse
Affiliation(s)
- Filipi Calbaizer Marchi
- Department of Physiology and Biophysics, Institute of Biological Sciences, Federal University of Minas Gerais (UFMG), Belo Horizonte, MG, Brazil
| | - Edneia Mendes-Silva
- Department of Physiology and Biophysics, Institute of Biological Sciences, Federal University of Minas Gerais (UFMG), Belo Horizonte, MG, Brazil
| | - Lucas Rodrigues-Ribeiro
- Department of Physiology and Biophysics, Institute of Biological Sciences, Federal University of Minas Gerais (UFMG), Belo Horizonte, MG, Brazil
| | - Lucas Gabriel Bolais-Ramos
- Department of Physiology and Biophysics, Institute of Biological Sciences, Federal University of Minas Gerais (UFMG), Belo Horizonte, MG, Brazil
| | - Thiago Verano-Braga
- Department of Physiology and Biophysics, Institute of Biological Sciences, Federal University of Minas Gerais (UFMG), Belo Horizonte, MG, Brazil
| |
Collapse
|
8
|
Fernandes FF, Moraes JR, Santos JLD, Soares TG, Gouveia VJP, Matavel ACS, Borges WDC, Cordeiro MDN, Figueiredo SG, Borges MH. Comparative venomic profiles of three spiders of the genus Phoneutria. J Venom Anim Toxins Incl Trop Dis 2022; 28:e20210042. [PMID: 35283937 PMCID: PMC8875809 DOI: 10.1590/1678-9199-jvatitd-2021-0042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Accepted: 07/20/2021] [Indexed: 11/22/2022] Open
Abstract
Background: Spider venoms induce different physio-pharmacological effects by binding
with high affinity on molecular targets, therefore being of biotechnological
interest. Some of these toxins, acting on different types of ion channels,
have been identified in the venom of spiders of the genus
Phoneutria, mainly from P.
nigriventer. In spite of the pharmaceutical potential demonstrated
by P. nigriventer toxins, there is limited information on
molecules from venoms of the same genus, as their toxins remain poorly
characterized. Understanding this diversity and clarifying the differences
in the mechanisms of action of spider toxins is of great importance for
establishing their true biotechnological potential. This prompted us to
compare three different venoms of the Phoneutria genus:
P. nigriventer (Pn-V), P. eickstedtae
(Pe-V) and P. pertyi (Pp-V). Methods: Biochemical and functional comparison of the venoms were carried out by
SDS-PAGE, HPLC, mass spectrometry, enzymatic activities and
electrophysiological assays (whole-cell patch clamp). Results: The employed approach revealed that all three venoms had an overall
similarity in their components, with only minor differences. The presence of
a high number of similar proteins was evident, particularly toxins in the
mass range of ~6.0 kDa. Hyaluronidase and proteolytic activities were
detected in all venoms, in addition to isoforms of the toxins Tx1 and Tx2-6.
All Tx1 isoforms blocked Nav1.6 ion currents, with slight differences. Conclusion: Our findings showed that Pn-V, Pe-V and Pp-V are highly similar concerning
protein composition and enzymatic activities, containing isoforms of the
same toxins sharing high sequence homology, with minor modifications.
However, these structural and functional variations are very important for
venom diversity. In addition, our findings will contribute to the
comprehension of the molecular diversity of the venoms of the other species
from Phoneutria genus, exposing their biotechnological
potential as a source for searching for new active molecules.
Collapse
|
9
|
Jenkins TP, Ahmadi S, Bittenbinder MA, Stewart TK, Akgun DE, Hale M, Nasrabadi NN, Wolff DS, Vonk FJ, Kool J, Laustsen AH. Terrestrial venomous animals, the envenomings they cause, and treatment perspectives in the Middle East and North Africa. PLoS Negl Trop Dis 2021; 15:e0009880. [PMID: 34855751 PMCID: PMC8638997 DOI: 10.1371/journal.pntd.0009880] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
The Middle East and Northern Africa, collectively known as the MENA region, are inhabited by a plethora of venomous animals that cause up to 420,000 bites and stings each year. To understand the resultant health burden and the key variables affecting it, this review describes the epidemiology of snake, scorpion, and spider envenomings primarily based on heterogenous hospital data in the MENA region and the pathologies associated with their venoms. In addition, we discuss the venom composition and the key medically relevant toxins of these venomous animals, and, finally, the antivenoms that are currently in use to counteract them. Unlike Asia and sub-Saharan Africa, scorpion stings are significantly more common (approximately 350,000 cases/year) than snakebites (approximately 70,000 cases/year) and present the most significant contributor to the overall health burden of envenomings, with spider bites being negligible. However, this review also indicates that there is a substantial lack of high-quality envenoming data available for the MENA region, rendering many of these estimates speculative. Our understanding of the venoms and the toxins they contain is also incomplete, but already presents clear trends. For instance, the majority of snake venoms contain snake venom metalloproteinases, while sodium channel-binding toxins and potassium channel-binding toxins are the scorpion toxins that cause most health-related challenges. There also currently exist a plethora of antivenoms, yet only few are clinically validated, and their high cost and limited availability present a substantial health challenge. Yet, some of the insights presented in this review might help direct future research and policy efforts toward the appropriate prioritization of efforts and aid the development of future therapeutic solutions, such as next-generation antivenoms.
Collapse
Affiliation(s)
- Timothy P. Jenkins
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Shirin Ahmadi
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Matyas A. Bittenbinder
- Naturalis Biodiversity Center, Leiden, the Netherlands
- Amsterdam Institute for Molecular and Life Sciences, Division of BioAnalytical Chemistry, Department of Chemistry and Pharmaceutical Sciences, Faculty of Sciences, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
- Centre for Analytical Sciences Amsterdam (CASA), Amsterdam, the Netherlands
| | - Trenton K. Stewart
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Dilber E. Akgun
- Department of Biomedical Engineering, Faculty of Engineering and Architecture, Eskişehir Osmangazi University, Eskişehir, Turkey
| | - Melissa Hale
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Nafiseh N. Nasrabadi
- Pharmaceutical Sciences Research Centre, Student Research Commitee, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Department of Venomous Animals and Antivenom Production, Razi Vaccine, and Serum Research Institute, Karaj, Iran
| | - Darian S. Wolff
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Freek J. Vonk
- Naturalis Biodiversity Center, Leiden, the Netherlands
- Amsterdam Institute for Molecular and Life Sciences, Division of BioAnalytical Chemistry, Department of Chemistry and Pharmaceutical Sciences, Faculty of Sciences, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| | - Jeroen Kool
- Amsterdam Institute for Molecular and Life Sciences, Division of BioAnalytical Chemistry, Department of Chemistry and Pharmaceutical Sciences, Faculty of Sciences, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
- Centre for Analytical Sciences Amsterdam (CASA), Amsterdam, the Netherlands
| | - Andreas H. Laustsen
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kongens Lyngby, Denmark
| |
Collapse
|
10
|
Xun C, Wang L, Yang H, Xiao Z, Deng M, Xu R, Zhou X, Chen P, Liu Z. Origin and Characterization of Extracellular Vesicles Present in the Spider Venom of Ornithoctonus hainana. Toxins (Basel) 2021; 13:toxins13080579. [PMID: 34437450 PMCID: PMC8402349 DOI: 10.3390/toxins13080579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 08/16/2021] [Accepted: 08/17/2021] [Indexed: 11/16/2022] Open
Abstract
Extracellular vesicles (EVs), including exosomes and microvesicles, are membranous vesicles released from nearly all cellular types. They contain various bioactive molecules, and their molecular composition varies depending on their cellular origin. As research into venomous animals has progressed, EVs have been discovered in the venom of snakes and parasitic wasps. Although vesicle secretion in spider venom glands has been observed, these secretory vesicles’ origin and biological properties are unknown. In this study, the origin of the EVs from Ornithoctonus hainana venom was observed using transmission electron microscopy (TEM). The Ornithoctonus hainana venom extracellular vesicles (HN-EVs) were isolated and purified by density gradient centrifugation. HN-EVs possess classic membranous vesicles with a size distribution ranging from 50 to 150 nm and express the arthropod EV marker Tsp29Fb. The LC-MS/MS analysis identified a total of 150 proteins, which were divided into three groups according to their potential function: conservative vesicle transport-related proteins, virulence-related proteins, and other proteins of unknown function. Functionally, HN-EVs have hyaluronidase activity and inhibit the proliferation of human umbilical vein endothelial cells (HUVECs) by affecting the cytoskeleton and cell cycle. Overall, this study investigates the biological characteristics of HN-EVs for the first time and sheds new light on the envenomation process of spider venom.
Collapse
|
11
|
Gremski LH, Matsubara FH, da Justa HC, Schemczssen-Graeff Z, Baldissera AB, Schluga PHDC, Leite IDO, Boia-Ferreira M, Wille ACM, Senff-Ribeiro A, Veiga SS. Brown spider venom toxins: what are the functions of astacins, serine proteases, hyaluronidases, allergens, TCTP, serpins and knottins? J Venom Anim Toxins Incl Trop Dis 2021; 27:e20200188. [PMID: 34377142 PMCID: PMC8314928 DOI: 10.1590/1678-9199-jvatitd-2020-0188] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Accepted: 03/09/2021] [Indexed: 12/27/2022] Open
Abstract
Accidents caused by the bites of brown spiders (Loxosceles) generate a clinical condition that often includes a threatening necrotic skin lesion near the bite site along with a remarkable inflammatory response. Systemic disorders such as hemolysis, thrombocytopenia, and acute renal failure may occur, but are much less frequent than the local damage. It is already known that phospholipases D, highly expressed toxins in Loxosceles venom, can induce most of these injuries. However, this spider venom has a great range of toxins that probably act synergistically to enhance toxicity. The other protein classes remain poorly explored due to the difficulty in obtaining sufficient amounts of them for a thorough investigation. They include astacins (metalloproteases), serine proteases, knottins, translationally controlled tumor proteins (TCTP), hyaluronidases, allergens and serpins. It has already been shown that some of them, according to their characteristics, may participate to some extent in the development of loxoscelism. In addition, all of these toxins present potential application in several areas. The present review article summarizes information regarding some functional aspects of the protein classes listed above, discusses the directions that could be taken to materialize a comprehensive investigation on each of these toxins as well as highlights the importance of exploring the full venom repertoire.
Collapse
Affiliation(s)
- Luiza Helena Gremski
- Department of Cell Biology, Federal University of Paraná (UFPR), Curitiba, PR, Brazil
| | | | - Hanna Câmara da Justa
- Department of Cell Biology, Federal University of Paraná (UFPR), Curitiba, PR, Brazil
| | | | | | | | | | | | - Ana Carolina Martins Wille
- Department of Molecular Structural Biology and Genetics, State University of Ponta Grossa (UEPG), Ponta Grossa, PR, Brazil
| | - Andrea Senff-Ribeiro
- Department of Cell Biology, Federal University of Paraná (UFPR), Curitiba, PR, Brazil
| | - Silvio Sanches Veiga
- Department of Cell Biology, Federal University of Paraná (UFPR), Curitiba, PR, Brazil
| |
Collapse
|
12
|
Trim CM, Byrne LJ, Trim SA. Utilisation of compounds from venoms in drug discovery. PROGRESS IN MEDICINAL CHEMISTRY 2021; 60:1-66. [PMID: 34147202 DOI: 10.1016/bs.pmch.2021.01.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Difficult drug targets are becoming the normal course of business in drug discovery, sometimes due to large interacting surfaces or only small differences in selectivity regions. For these, a different approach is merited: compounds lying somewhere between the small molecule and the large antibody in terms of many properties including stability, biodistribution and pharmacokinetics. Venoms have evolved over millions of years to be complex mixtures of stable molecules derived from other somatic molecules, the stability comes from the pressure to be ready for delivery at a moment's notice. Snakes, spiders, scorpions, jellyfish, wasps, fish and even mammals have evolved independent venom systems with complex mixtures in their chemical arsenal. These venom-derived molecules have been proven to be useful tools, such as for the development of antihypotensive angiotensin converting enzyme (ACE) inhibitors and have also made successful drugs such as Byetta® (Exenatide), Integrilin® (Eptifibatide) and Echistatin. Only a small percentage of the available chemical space from venoms has been investigated so far and this is growing. In a new era of biological therapeutics, venom peptides present opportunities for larger target engagement surface with greater stability than antibodies or human peptides. There are challenges for oral absorption and target engagement, but there are venom structures that overcome these and thus provide substrate for engineering novel molecules that combine all desired properties. Venom researchers are characterising new venoms, species, and functions all the time, these provide great substrate for solving the challenges presented by today's difficult targets.
Collapse
Affiliation(s)
- Carol M Trim
- Faculty of Science, Engineering and Social Sciences, Natural and Applied Sciences, School of Psychology and Life Sciences, Canterbury Christ Church University, Canterbury, Kent, United Kingdom
| | - Lee J Byrne
- Faculty of Science, Engineering and Social Sciences, Natural and Applied Sciences, School of Psychology and Life Sciences, Canterbury Christ Church University, Canterbury, Kent, United Kingdom
| | | |
Collapse
|
13
|
De-Bona E, Chaves-Moreira D, Batista TBD, Justa HCD, Rossi GR, Antunes BC, Matsubara FH, Minozzo JC, Wille ACM, Veiga SS, Senff-Ribeiro A, Gremski LH. Production of a novel recombinant brown spider hyaluronidase in baculovirus-infected insect cells. Enzyme Microb Technol 2021; 146:109759. [PMID: 33812558 DOI: 10.1016/j.enzmictec.2021.109759] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 01/26/2021] [Accepted: 01/28/2021] [Indexed: 12/21/2022]
Abstract
Hyaluronidases are low expressed toxins of brown spider venoms, but, as highly active molecules, they present an important role as spreading factors. By degrading extracellular matrix components, these enzymes favor the diffusion of toxins in the affected tissue and at systemic level. Here, a novel isoform of hyaluronidase of Loxosceles intermedia Mello-Leitão (1934) venom was cloned, expressed in a baculovirus-insect cell expression system and fully active purified. This recombinant enzyme, named LiHyal2 (Loxosceles intermedia Hyaluronidase isoform 2), shares high identity with hyaluronidases of other spiders and scorpions. The catalytic and sugar binding amino acid residues are conserved in LiHyal2, human, and honeybee venom hyaluronidases and the molecular model of LiHyal2 shares major similarities with their crystal structures, including the active site. LiHyal2 was expressed as a 45 kDa protein and degraded hyaluronic acid (HA) and chondroitin sulphate as demonstrated by HA zymography and agarose gel electrophoresis. Lectin blot analysis revealed that LiHyal2 is post-translationally modified by the addition of high mannose N-linked carbohydrates. In vivo experiments showed that LiHyal2 potentialize dermonecrosis and edema induced by a recombinant phospholipase-D (PLD) of L. intermedia venom, as well as enhance the increase in capillary permeability triggered by this PLD, indicating that these toxins act synergistically during envenomation. Altogether, these results introduce a novel approach to express spider recombinant toxins, contribute to the elucidation of brown spider venom mechanisms and add to the development of a more specific treatment of envenomation victims.
Collapse
Affiliation(s)
- Elidiana De-Bona
- Department of Cell Biology, Federal University of Paraná (UFPR), Curitiba, 81530-900, PR, Brazil
| | - Daniele Chaves-Moreira
- Department of Cell Biology, Federal University of Paraná (UFPR), Curitiba, 81530-900, PR, Brazil
| | | | - Hanna Câmara da Justa
- Department of Cell Biology, Federal University of Paraná (UFPR), Curitiba, 81530-900, PR, Brazil
| | - Gustavo Rodrigues Rossi
- Department of Cell Biology, Federal University of Paraná (UFPR), Curitiba, 81530-900, PR, Brazil
| | - Bruno Cesar Antunes
- Production and Research Center of Immunobiological Products (CPPI), State Department of Health, Piraquara, 83302-200, PR, Brazil
| | | | - João Carlos Minozzo
- Production and Research Center of Immunobiological Products (CPPI), State Department of Health, Piraquara, 83302-200, PR, Brazil
| | - Ana Carolina Martins Wille
- Department of Structural, Molecular Biology and Genetics, State University of Ponta Grossa (UEPG), Ponta Grossa, 84030-900, PR, Brazil
| | - Silvio Sanches Veiga
- Department of Cell Biology, Federal University of Paraná (UFPR), Curitiba, 81530-900, PR, Brazil
| | - Andrea Senff-Ribeiro
- Department of Cell Biology, Federal University of Paraná (UFPR), Curitiba, 81530-900, PR, Brazil
| | - Luiza Helena Gremski
- Department of Cell Biology, Federal University of Paraná (UFPR), Curitiba, 81530-900, PR, Brazil.
| |
Collapse
|
14
|
Justa HCD, Matsubara FH, de-Bona E, Schemczssen-Graeff Z, Polli NLC, de Mari TL, Boia-Ferreira M, Minozzo JC, Wille ACM, Senff-Ribeiro A, Gremski LH, Veiga SS. LALLT (Loxosceles Allergen-Like Toxin) from the venom of Loxosceles intermedia: Recombinant expression in insect cells and characterization as a molecule with allergenic properties. Int J Biol Macromol 2020; 164:3984-3999. [DOI: 10.1016/j.ijbiomac.2020.08.212] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 08/27/2020] [Accepted: 08/27/2020] [Indexed: 12/13/2022]
|
15
|
Venom gland transcriptome from Heloderma horridum horridum by high-throughput sequencing. Toxicon 2020; 180:62-78. [PMID: 32283106 DOI: 10.1016/j.toxicon.2020.04.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2019] [Revised: 03/24/2020] [Accepted: 04/03/2020] [Indexed: 02/01/2023]
|
16
|
Senetra AS, Necelis MR, Caputo GA. Investigation of the structure-activity relationship in ponericin L1 from Neoponera goeldii. Pept Sci (Hoboken) 2020; 112:e24162. [PMID: 33937618 PMCID: PMC8086892 DOI: 10.1002/pep2.24162] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Accepted: 03/16/2020] [Indexed: 12/24/2022]
Abstract
Naturally derived antimicrobial peptides have been an area of great interest because of high selectivity against bacterial targets over host cells and the limited development of bacterial resistance to these molecules throughout evolution. There are also a significant number of venom-derived peptides that exhibit antimicrobial activity in addition to activity against mammals or other organisms. Many venom peptides share the same net cationic, amphiphilic nature as host-defense peptides, making them an attractive target for development as potential antibacterial agents. The peptide ponericin L1 derived from Neoponera goeldii was used as a model to investigate the role of cationic residues and net charge on peptide activity. Using a combination of spectroscopic and microbiological approaches, the role of cationic residues and net charge on antibacterial activity, lipid bilayer interactions, and bilayer and membrane permeabilization were investigated. The L1 peptide and derivatives all showed enhanced binding to lipid vesicles containing anionic lipids, but still bound to zwitterionic vesicles. None of the derivatives were especially effective at permeabilizing lipid bilayers in model vesicles, in-tact Escherichia coli, or human red blood cells. Taken together the results indicate that the lack of facial amphiphilicity regarding charge segregation may impact the ability of the L1 peptides to effectively permeabilize bilayers despite effective binding. Additionally, increasing the net charge of the peptide by replacing the lone anionic residue with either Gln or Lys dramatically improved efficacy against several bacterial strains without increasing hemolytic activity.
Collapse
Affiliation(s)
- Alexandria S. Senetra
- Department of Chemistry and Biochemistry, Rowan University, Glassboro, NJ 08028, U.S.A
| | - Matthew R. Necelis
- Department of Chemistry and Biochemistry, Rowan University, Glassboro, NJ 08028, U.S.A
| | - Gregory A. Caputo
- Department of Chemistry and Biochemistry, Rowan University, Glassboro, NJ 08028, U.S.A
- Department of Molecular and Cellular Biosciences, Rowan University, Glassboro, NJ 08028, U.S.A
| |
Collapse
|
17
|
Lemke S, Vilcinskas A. European Medicinal Leeches-New Roles in Modern Medicine. Biomedicines 2020; 8:E99. [PMID: 32349294 PMCID: PMC7277884 DOI: 10.3390/biomedicines8050099] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 04/18/2020] [Accepted: 04/24/2020] [Indexed: 11/16/2022] Open
Abstract
Before the advent of modern medicine, natural resources were widely used by indigenous populations for the prevention and treatment of diseases. The associated knowledge, collectively described as folk medicine or traditional medicine, was largely based on trial-and-error testing of plant extracts (herbal remedies) and the use of invertebrates, particularly medicinal maggots of the blowfly Lucilia sericata and blood-sucking leeches. The widespread use of traditional medicine in the West declined as scientific advances allowed reproducible testing under controlled conditions and gave rise to the modern fields of biomedical research and pharmacology. However, many drugs are still derived from natural resources, and interest in traditional medicine has been renewed by the ability of researchers to investigate the medical potential of diverse species by high-throughput screening. Likewise, researchers are starting to look again at the benefits of maggot and leech therapy, based on the hypothesis that the use of such animals in traditional medicine is likely to reflect the presence of specific bioactive molecules that can be developed as drug leads. In this review, we consider the modern medical benefits of European medicinal leeches based on the systematic screening of their salivary proteins.
Collapse
Affiliation(s)
- Sarah Lemke
- Institute for Insect Biotechnology, Justus-Liebig-University Giessen, Heinrich-Buff-Ring 26-32, D-35392 Giessen, Germany;
| | - Andreas Vilcinskas
- Institute for Insect Biotechnology, Justus-Liebig-University Giessen, Heinrich-Buff-Ring 26-32, D-35392 Giessen, Germany;
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Department of Bioresources, Ohlebergsweg 12, D-35392 Giessen, Germany
| |
Collapse
|
18
|
Grashof D, Zdenek CN, Dobson JS, Youngman NJ, Coimbra F, Benard-Valle M, Alagon A, Fry BG. A Web of Coagulotoxicity: Failure of Antivenom to Neutralize the Destructive (Non-Clotting) Fibrinogenolytic Activity of Loxosceles and Sicarius Spider Venoms. Toxins (Basel) 2020; 12:toxins12020091. [PMID: 32019058 PMCID: PMC7076800 DOI: 10.3390/toxins12020091] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 01/14/2020] [Accepted: 01/22/2020] [Indexed: 12/14/2022] Open
Abstract
Envenomations are complex medical emergencies that can have a range of symptoms and sequelae. The only specific, scientifically-validated treatment for envenomation is antivenom administration, which is designed to alleviate venom effects. A paucity of efficacy testing exists for numerous antivenoms worldwide, and understanding venom effects and venom potency can help identify antivenom improvement options. Some spider venoms can produce debilitating injuries or even death, yet have been largely neglected in venom and antivenom studies because of the low venom yields. Coagulation disturbances have been particularly under studied due to difficulties in working with blood and the coagulation cascade. These circumstances have resulted in suboptimal spider bite treatment for medically significant spider genera such as Loxosceles and Sicarius. This study identifies and quantifies the anticoagulant effects produced by venoms of three Loxoscles species (L. reclusa, L. boneti, and L. laeta) and that of Sicarius terrosus. We showed that the venoms of all studied species are able to cleave the fibrinogen Aα-chain with varying degrees of potency, with L. reclusa and S. terrosus venom cleaving the Aα-chain most rapidly. Thromboelastography analysis revealed that only L. reclusa venom is able to reduce clot strength, thereby presumably causing anticoagulant effects in the patient. Using the same thromboelastography assays, antivenom efficacy tests revealed that the commonly used Loxoscles-specific SMase D recombinant based antivenom failed to neutralize the anticoagulant effects produced by Loxosceles venom. This study demonstrates the fibrinogenolytic activity of Loxosceles and Sicarius venom and the neutralization failure of Loxosceles antivenom, thus providing impetus for antivenom improvement.
Collapse
Affiliation(s)
- Dwin Grashof
- Venom Evolution Lab, School of Biological Sciences, The University of Queensland, St. Lucia, QLD 4072, Australia; (D.G.); (C.N.Z.); (J.S.D.); (N.J.Y.); (F.C.)
| | - Christina N. Zdenek
- Venom Evolution Lab, School of Biological Sciences, The University of Queensland, St. Lucia, QLD 4072, Australia; (D.G.); (C.N.Z.); (J.S.D.); (N.J.Y.); (F.C.)
| | - James S. Dobson
- Venom Evolution Lab, School of Biological Sciences, The University of Queensland, St. Lucia, QLD 4072, Australia; (D.G.); (C.N.Z.); (J.S.D.); (N.J.Y.); (F.C.)
| | - Nicholas J. Youngman
- Venom Evolution Lab, School of Biological Sciences, The University of Queensland, St. Lucia, QLD 4072, Australia; (D.G.); (C.N.Z.); (J.S.D.); (N.J.Y.); (F.C.)
| | - Francisco Coimbra
- Venom Evolution Lab, School of Biological Sciences, The University of Queensland, St. Lucia, QLD 4072, Australia; (D.G.); (C.N.Z.); (J.S.D.); (N.J.Y.); (F.C.)
| | - Melisa Benard-Valle
- Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Av. Universidad 2001, Cuernavaca, Morelos 62210, Mexico; (M.B.-V.); (A.A.)
| | - Alejandro Alagon
- Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Av. Universidad 2001, Cuernavaca, Morelos 62210, Mexico; (M.B.-V.); (A.A.)
| | - Bryan G. Fry
- Venom Evolution Lab, School of Biological Sciences, The University of Queensland, St. Lucia, QLD 4072, Australia; (D.G.); (C.N.Z.); (J.S.D.); (N.J.Y.); (F.C.)
- Correspondence:
| |
Collapse
|
19
|
Rádis-Baptista G, Konno K. Arthropod Venom Components and Their Potential Usage. Toxins (Basel) 2020; 12:toxins12020082. [PMID: 31991714 PMCID: PMC7076755 DOI: 10.3390/toxins12020082] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Accepted: 01/21/2020] [Indexed: 01/03/2023] Open
Abstract
Arthropods comprise a predominant and well-succeeded phylum of the animal kingdom that evolved and diversified in millions of species grouped in four subphyla, namely, Chelicerata (arachnids), Crustacea, Myriapoda (centipedes), and Hexapoda (insects) [...].
Collapse
Affiliation(s)
- Gandhi Rádis-Baptista
- Laboratory of Biochemistry and Biotechnology, Institute for Marine Sciences, Federal University of Ceara, Fortaleza CE 60165-081, Brazil
- Correspondence: (G.R.-B.); (K.K.)
| | - Katsuhiro Konno
- Institute of Natural Medicine, University of Toyama, 2630 Sugitani, Toyama, Toyama 930-0194, Japan
- Correspondence: (G.R.-B.); (K.K.)
| |
Collapse
|
20
|
Boia-Ferreira M, Moreno KG, Basílio ABC, da Silva LP, Vuitika L, Soley B, Wille ACM, Donatti L, Barbaro KC, Chaim OM, Gremski LH, Veiga SS, Senff-Ribeiro A. TCTP from Loxosceles Intermedia (Brown Spider) Venom Contributes to the Allergic and Inflammatory Response of Cutaneous Loxoscelism. Cells 2019; 8:E1489. [PMID: 31766608 PMCID: PMC6953063 DOI: 10.3390/cells8121489] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Revised: 11/07/2019] [Accepted: 11/10/2019] [Indexed: 12/24/2022] Open
Abstract
LiTCTP is a toxin from the Translationally Controlled Tumor Protein (TCTP) family identified in Loxosceles brown spider venoms. These proteins are known as histamine-releasing factors (HRF). TCTPs participate in allergic and anaphylactic reactions, which suggest their potential role as therapeutic targets. The histaminergic effect of TCTP is related to its pro-inflammatory functions. An initial characterization of LiTCTP in animal models showed that this toxin can increase the microvascular permeability of skin vessels and induce paw edema in a dose-dependent manner. We evaluated the role of LiTCTP in vitro and in vivo in the inflammatory and allergic aspects that undergo the biological responses observed in Loxoscelism, the clinical condition after an accident with Loxosceles spiders. Our results showed LiTCTP recombinant toxin (LiRecTCTP) as an essential synergistic factor for the dermonecrotic toxin actions (LiRecDT1, known as the main toxin in the pathophysiology of Loxoscelism), revealing its contribution to the exacerbated inflammatory response clinically observed in envenomated patients.
Collapse
Affiliation(s)
- Marianna Boia-Ferreira
- Department of Cell Biology, Federal University of Paraná, Curitiba 81531-980, PR, Brazil; (M.B.-F.); (K.G.M.); (A.B.C.B.); (L.P.d.S.); (L.V.); (L.D.); or (L.H.G.); (S.S.V.)
| | - Kamila G. Moreno
- Department of Cell Biology, Federal University of Paraná, Curitiba 81531-980, PR, Brazil; (M.B.-F.); (K.G.M.); (A.B.C.B.); (L.P.d.S.); (L.V.); (L.D.); or (L.H.G.); (S.S.V.)
| | - Alana B. C. Basílio
- Department of Cell Biology, Federal University of Paraná, Curitiba 81531-980, PR, Brazil; (M.B.-F.); (K.G.M.); (A.B.C.B.); (L.P.d.S.); (L.V.); (L.D.); or (L.H.G.); (S.S.V.)
| | - Lucas P. da Silva
- Department of Cell Biology, Federal University of Paraná, Curitiba 81531-980, PR, Brazil; (M.B.-F.); (K.G.M.); (A.B.C.B.); (L.P.d.S.); (L.V.); (L.D.); or (L.H.G.); (S.S.V.)
| | - Larissa Vuitika
- Department of Cell Biology, Federal University of Paraná, Curitiba 81531-980, PR, Brazil; (M.B.-F.); (K.G.M.); (A.B.C.B.); (L.P.d.S.); (L.V.); (L.D.); or (L.H.G.); (S.S.V.)
| | - Bruna Soley
- Department of Pharmacology, Federal University of Paraná, Curitiba 81531-980, PR, Brazil;
| | - Ana Carolina M. Wille
- Department of Structural and Molecular Biology, State University of Ponta Grossa, Ponta Grossa 84030-900, PR, Brazil;
| | - Lucélia Donatti
- Department of Cell Biology, Federal University of Paraná, Curitiba 81531-980, PR, Brazil; (M.B.-F.); (K.G.M.); (A.B.C.B.); (L.P.d.S.); (L.V.); (L.D.); or (L.H.G.); (S.S.V.)
| | - Katia C. Barbaro
- Laboratory of Immunopathology, Butantan Institute, São Paulo 05503-900, SP, Brazil;
| | - Olga M. Chaim
- Department of Cell Biology, Federal University of Paraná, Curitiba 81531-980, PR, Brazil; (M.B.-F.); (K.G.M.); (A.B.C.B.); (L.P.d.S.); (L.V.); (L.D.); or (L.H.G.); (S.S.V.)
- Department of Pharmacology, School of Medicine, University of California San Diego, La Jolla, CA 92093, USA
| | - Luiza Helena Gremski
- Department of Cell Biology, Federal University of Paraná, Curitiba 81531-980, PR, Brazil; (M.B.-F.); (K.G.M.); (A.B.C.B.); (L.P.d.S.); (L.V.); (L.D.); or (L.H.G.); (S.S.V.)
| | - Silvio S. Veiga
- Department of Cell Biology, Federal University of Paraná, Curitiba 81531-980, PR, Brazil; (M.B.-F.); (K.G.M.); (A.B.C.B.); (L.P.d.S.); (L.V.); (L.D.); or (L.H.G.); (S.S.V.)
| | - Andrea Senff-Ribeiro
- Department of Cell Biology, Federal University of Paraná, Curitiba 81531-980, PR, Brazil; (M.B.-F.); (K.G.M.); (A.B.C.B.); (L.P.d.S.); (L.V.); (L.D.); or (L.H.G.); (S.S.V.)
| |
Collapse
|