1
|
Premathilaka SH, Westrick JA, Isailovic D. Identification of Serine-Containing Microcystins by UHPLC-MS/MS Using Thiol and Sulfoxide Derivatizations and Detection of Novel Neutral Losses. Anal Chem 2024; 96:775-786. [PMID: 38170221 DOI: 10.1021/acs.analchem.3c04047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
Microcystins (MCs) are hepatotoxic cyclic heptapeptides produced by cyanobacteria, and their structural diversity has led to the discovery of more than 300 congeners to date. However, with known amino acid combinations, many more MC congeners are theoretically possible, suggesting many remain unidentified. Herein, two novel serine (Ser)-containing MCs were putatively identified in a Lake Erie cyanobacterial harmful algal bloom (cyanoHAB), using high-resolution UHPLC-MS as well as thiol and sulfoxide derivatization procedures. These MCs contain an α,β-unsaturated carbonyl on methyl dehydroalanine (Mdha) residue that undergoes Michael addition to produce a thiol-derivatized MC. Derivatization reactions using various thiolation reagents were followed by MS/MS, and two Python codes were used for data analysis and structural elucidation of MCs. Two novel MCs containing Ser at position 1 (i.e., next to Mdha) were putatively identified as [Ser1]MC-RR and [Ser1]MC-YR. Using thiol- and sulfoxide-modified [Ser1]MCs, identifications were confirmed by the observation of specific neutral losses of the oxidized thiols or sulfoxides in CID-MS/MS spectra in both positive and negative electrospray ionization (ESI) modes. These novel neutral losses are unique for MCs with Mdha and an adjacent Ser residue. Data suggest that a gas-phase reaction occurs between oxygen from adjacent Ser residue and sulfur of the Mdha-bonded thiol or sulfoxide, which leads to the formation and detection of stable cyclic MC ions in MS/MS spectra at m/z values corresponding to the loss of oxidized thiols or oxidized sulfoxides from Ser1-containing MCs.
Collapse
Affiliation(s)
- Sanduni H Premathilaka
- Department of Chemistry and Biochemistry, University of Toledo, Toledo, Ohio 43606, United States
| | - Judy A Westrick
- Department of Chemistry, Wayne State University, Detroit, Michigan 48202, United States
| | - Dragan Isailovic
- Department of Chemistry and Biochemistry, University of Toledo, Toledo, Ohio 43606, United States
| |
Collapse
|
2
|
Wang Z, Hao Y, Shen J, Li B, Chuan H, Xie P, Liu Y. Visualization of microcystin-LR and sulfides in plateau lakes. JOURNAL OF HAZARDOUS MATERIALS 2024; 462:132771. [PMID: 37839378 DOI: 10.1016/j.jhazmat.2023.132771] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Revised: 10/10/2023] [Accepted: 10/10/2023] [Indexed: 10/17/2023]
Abstract
In eutrophic water bodies, sulfides are closely related to the growth of cyanobacteria and the production of microcystin-LR (MC-LR). To date, the underlying interaction mechanism between a sulfides and MC-LR remains controversial. Thus, visually presenting the distribution characteristics of sulfides and MC-LR in contaminated water is crucial. Here, we propose a novel and expeditious practical approach, utilizing fluorescence probe technology, to assess the distribution characteristics of MC-LR and sulfur in natural lakes. We have developed novel probes, pib2, to detect HSO3- and HS-, and pib18, to simultaneously identify MC-LR and sulfides. Through correlation analysis of fluorescence data and physicochemical indicators at sampling points, it is found that fluorescence data has good correlation with sulfides and MC-LR, and speculated that pib2 and pib18 may be able to detect sulfides and MC-LR in lakes. Using this method, we rapidly obtained the distribution of MC-LR and sulfur in Qilu and Erhai Lakes. Notably, for the first time, we rapidly displayed the distributions of sulfides and MC-LR across lakes by the fluorescent probe technology.
Collapse
Affiliation(s)
- Zhaomin Wang
- Institute for Ecological Research and Pollution Control of Plateau Lakes, School of Ecology and Environmental Sciences, Yunnan University, Kunming 650500, PR China; Institute of International Rivers and Eco-Security, Yunnan University, Kunming 650500, PR China
| | - Yu Hao
- Institute for Ecological Research and Pollution Control of Plateau Lakes, School of Ecology and Environmental Sciences, Yunnan University, Kunming 650500, PR China; Institute of International Rivers and Eco-Security, Yunnan University, Kunming 650500, PR China
| | - Jianping Shen
- Institute for Ecological Research and Pollution Control of Plateau Lakes, School of Ecology and Environmental Sciences, Yunnan University, Kunming 650500, PR China
| | - Bingyan Li
- Institute for Ecological Research and Pollution Control of Plateau Lakes, School of Ecology and Environmental Sciences, Yunnan University, Kunming 650500, PR China
| | - Huiyan Chuan
- Institute for Ecological Research and Pollution Control of Plateau Lakes, School of Ecology and Environmental Sciences, Yunnan University, Kunming 650500, PR China
| | - Ping Xie
- Institute for Ecological Research and Pollution Control of Plateau Lakes, School of Ecology and Environmental Sciences, Yunnan University, Kunming 650500, PR China; Donghu Experimental Station of Lake Ecosystems, State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, PR China.
| | - Yong Liu
- Institute for Ecological Research and Pollution Control of Plateau Lakes, School of Ecology and Environmental Sciences, Yunnan University, Kunming 650500, PR China.
| |
Collapse
|
3
|
Hao Y, Shen J, Zhang Y, Xie P, Liu Y. Assessing the pollution level of a subtropical lake by using a novel hydrogen sulfide fluorescence technology. ENVIRONMENTAL RESEARCH 2023; 229:115916. [PMID: 37062483 DOI: 10.1016/j.envres.2023.115916] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 03/22/2023] [Accepted: 04/13/2023] [Indexed: 05/21/2023]
Abstract
Hydrogen sulfide (H2S) is an important environmental toxin with bi-directional biological effects on organisms. In natural waters, H2S complexes with heavy metal ions in an anaerobic environment influence heavy metals' bioavailability and induce phosphorus release and eutrophication in water columns. Traditional detection techniques, such as colorimetric, electrochemical, and chromatographic, cannot simultaneously detect H2S and pollution assessment of subtropical lakes. To address these technical defects, we developed small-molecule fluorescent probes to evaluate the pollution level in natural water bodies. This method relies on the combination of the probes' response signals to raw water and the water quality index, thereby enhancing the accuracy and reliability of water quality assessments. Furthermore, this novel material has a large Stokes shift. It can detect complex levels of H2S concentrations in natural water bodies by correlating the degree of contamination and fluorescence signals. The development of this visual research tool for detecting environmental H2S levels in natural water bodies is expected to have meaningful, practical applications.
Collapse
Affiliation(s)
- Yu Hao
- Institute for Ecological Research and Pollution Control of Plateau Lakes; School of Ecology and Environmental Sciences, Yunnan University, Kunming, 650500, PR China
| | - Jianping Shen
- Institute for Ecological Research and Pollution Control of Plateau Lakes; School of Ecology and Environmental Sciences, Yunnan University, Kunming, 650500, PR China
| | - Yue Zhang
- Institute for Ecological Research and Pollution Control of Plateau Lakes; School of Ecology and Environmental Sciences, Yunnan University, Kunming, 650500, PR China; Yunnan International Joint R&D Center of Smart Agriculture and Water Security, Kunming, 650201, PR China
| | - Ping Xie
- Institute for Ecological Research and Pollution Control of Plateau Lakes; School of Ecology and Environmental Sciences, Yunnan University, Kunming, 650500, PR China; Donghu Experimental Station of Lake Ecosystems, State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, PR China.
| | - Yong Liu
- Institute for Ecological Research and Pollution Control of Plateau Lakes; School of Ecology and Environmental Sciences, Yunnan University, Kunming, 650500, PR China.
| |
Collapse
|
4
|
Hayat U, Liu C, Raza A, Hou J, Jia C, Wang JY. In vitro/ in vivoidentification of zein degraded peptides using HPLC-MS/MS and their safety evaluation. Biomed Mater 2023; 18. [PMID: 36649654 DOI: 10.1088/1748-605x/acb411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Accepted: 01/17/2023] [Indexed: 01/18/2023]
Abstract
The identification of degraded products of implanted scaffolds is desirable to avoid regulatory concerns.In vivoidentification of products produced by the degradation of natural protein-based scaffolds is complex and demands the establishment of a routine analytical method. In this study, we developed a method for the identification of peptides produced by the degradation of zein bothin vitroandin vivousing high performance liquid chromatography with tandem mass spectrometry (HPLC-MS/MS). Forin vitroexperiments, zein was degraded enzymatically and analyzed produced peptides.In vitrostudy showed cytocompatibility of peptides present in the hydrolysate of zein with no induction of apoptosis and cell senescence. Forin vivoexperiment, zein gels were prepared and subcutaneously implanted in rats. Peptides produced by the degradation of zein were identified and few were selected as targeted (unique peptides) and two peptides were synthesized as the reference sequence of these peptides. Further, peptide analysis using HPLC-MS/MS of different organs was performed after 2 and 8 weeks of implantation of zein gel in rats. It was found that zein-originated peptides were accumulated in different organs. QQHIIGGALF or peptides with same fractions were identified as unique peptides. These peptides were also found in control rats with regular rat feed, which means the degradation of implanted zein biomaterial produced food related peptides of non-toxic nature. Furthermore, hemotoxylin and eosin (H&E) staining exhibited normal features. Overall, zein degraded products showed cytocompatibility and did not induce organ toxicity, and QQHIIGGALF can act as a standard peptide for tracing and determining zein degradation. The study also provides the feasibility of complex analysis on identification and quantification of degradation products of protein-based scaffolds.
Collapse
Affiliation(s)
- Uzma Hayat
- School of Biomedical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, People's Republic of China.,Jiaxing Yaojiao Medical Device Co. Ltd, 321 Jiachuang Road, Jiaxing 314032, People's Republic of China
| | - Chang Liu
- School of Biomedical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, People's Republic of China
| | - Ali Raza
- School of Biomedical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, People's Republic of China
| | - Jingli Hou
- Instrumental Analysis Center, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, People's Republic of China
| | - Caiwei Jia
- School of Biomedical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, People's Republic of China
| | - Jin-Ye Wang
- School of Biomedical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, People's Republic of China.,Jiaxing Yaojiao Medical Device Co. Ltd, 321 Jiachuang Road, Jiaxing 314032, People's Republic of China
| |
Collapse
|
5
|
Cunningham BR, Wharton RE, Lee C, Mojica MA, Krajewski LC, Gordon SC, Schaefer AM, Johnson RC, Hamelin EI. Measurement of Microcystin Activity in Human Plasma Using Immunocapture and Protein Phosphatase Inhibition Assay. Toxins (Basel) 2022; 14:toxins14110813. [PMID: 36422987 PMCID: PMC9697287 DOI: 10.3390/toxins14110813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 11/10/2022] [Accepted: 11/18/2022] [Indexed: 11/23/2022] Open
Abstract
Microcystins are toxic chemicals generated by certain freshwater cyanobacteria. These chemicals can accumulate to dangerous levels during harmful algal blooms. When exposed to microcystins, humans are at risk of hepatic injury, including liver failure. Here, we describe a method to detect microcystins in human plasma by using immunocapture followed by a protein phosphatase inhibition assay. At least 279 microcystins have been identified, and most of these compounds share a common amino acid, the Adda side chain. We targeted this Adda side chain using a commercial antibody and extracted microcystins from human samples for screening and analysis. To quantitate the extracted microcystins, we fortified plasma with microcystin-LR, one of the most well-studied, commonly detected, and toxic microcystin congeners. The quantitation range for the detection of microcystin in human plasma using this method is 0.030-0.50 ng/mL microcystin-LR equivalents. This method detects unconjugated and conjugated forms (cysteine and glutathione) of microcystins. Quality control sample accuracies varied between 98.9% and 114%, with a precision of 7.18-15.8%. Finally, we evaluated plasma samples from a community health surveillance project of Florida residents living or working near harmful algae blooms.
Collapse
Affiliation(s)
- Brady R. Cunningham
- Division of Laboratory Sciences, National Center for Environmental Health, Centers for Disease Control and Prevention, Atlanta, GA 30341, USA
| | - Rebekah E. Wharton
- Division of Laboratory Sciences, National Center for Environmental Health, Centers for Disease Control and Prevention, Atlanta, GA 30341, USA
| | - Christine Lee
- Division of Foodborne, Waterborne, and Environmental Diseases, National Center Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, GA 30333, USA
| | - Mike A. Mojica
- Division of Laboratory Sciences, National Center for Environmental Health, Centers for Disease Control and Prevention, Atlanta, GA 30341, USA
| | - Logan C. Krajewski
- Division of Laboratory Sciences, National Center for Environmental Health, Centers for Disease Control and Prevention, Atlanta, GA 30341, USA
| | - Shirley C. Gordon
- Christine E. Lynn College of Nursing, Florida Atlantic University, Boca Raton, FL 33431, USA
| | | | - Rudolph C. Johnson
- Division of Laboratory Sciences, National Center for Environmental Health, Centers for Disease Control and Prevention, Atlanta, GA 30341, USA
| | - Elizabeth I. Hamelin
- Division of Laboratory Sciences, National Center for Environmental Health, Centers for Disease Control and Prevention, Atlanta, GA 30341, USA
- Correspondence:
| |
Collapse
|
6
|
Lad A, Hunyadi J, Connolly J, Breidenbach JD, Khalaf FK, Dube P, Zhang S, Kleinhenz AL, Baliu-Rodriguez D, Isailovic D, Hinds TD, Gatto-Weis C, Stanoszek LM, Blomquist TM, Malhotra D, Haller ST, Kennedy DJ. Antioxidant Therapy Significantly Attenuates Hepatotoxicity following Low Dose Exposure to Microcystin-LR in a Murine Model of Diet-Induced Non-Alcoholic Fatty Liver Disease. Antioxidants (Basel) 2022; 11:1625. [PMID: 36009344 PMCID: PMC9404967 DOI: 10.3390/antiox11081625] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 08/13/2022] [Accepted: 08/17/2022] [Indexed: 12/15/2022] Open
Abstract
We have previously shown in a murine model of Non-alcoholic Fatty Liver Disease (NAFLD) that chronic, low-dose exposure to the Harmful Algal Bloom cyanotoxin microcystin-LR (MC-LR), resulted in significant hepatotoxicity including micro-vesicular lipid accumulation, impaired toxin metabolism as well as dysregulation of the key signaling pathways involved in inflammation, immune response and oxidative stress. On this background we hypothesized that augmentation of hepatic drug metabolism pathways with targeted antioxidant therapies would improve MC-LR metabolism and reduce hepatic injury in NAFLD mice exposed to MC-LR. We chose N-acetylcysteine (NAC, 40 mM), a known antioxidant that augments the glutathione detoxification pathway and a novel peptide (pNaKtide, 25 mg/kg) which is targeted to interrupting a specific Src-kinase mediated pro-oxidant amplification mechanism. Histological analysis showed significant increase in hepatic inflammation in NAFLD mice exposed to MC-LR which was attenuated on treatment with both NAC and pNaKtide (both p ≤ 0.05). Oxidative stress, as measured by 8-OHDG levels in urine and protein carbonylation in liver sections, was also significantly downregulated upon treatment with both antioxidants after MC-LR exposure. Genetic analysis of key drug transporters including Abcb1a, Phase I enzyme-Cyp3a11 and Phase II metabolic enzymes-Pkm (Pyruvate kinase, muscle), Pklr (Pyruvate kinase, liver, and red blood cell) and Gad1 (Glutamic acid decarboxylase) was significantly altered by MC-LR exposure as compared to the non-exposed control group (all p ≤ 0.05). These changes were significantly attenuated with both pNaKtide and NAC treatment. These results suggest that MC-LR metabolism and detoxification is significantly impaired in the setting of NAFLD, and that these pathways can potentially be reversed with targeted antioxidant treatment.
Collapse
Affiliation(s)
- Apurva Lad
- College of Medicine and Life Sciences, University of Toledo, Toledo, OH 43614, USA
| | - Jonathan Hunyadi
- College of Medicine and Life Sciences, University of Toledo, Toledo, OH 43614, USA
| | - Jacob Connolly
- College of Medicine and Life Sciences, University of Toledo, Toledo, OH 43614, USA
| | | | - Fatimah K. Khalaf
- College of Medicine and Life Sciences, University of Toledo, Toledo, OH 43614, USA
- Department of Clinical Pharmacy, University of Alkafeel, Najaf 54001, Iraq
| | - Prabhatchandra Dube
- College of Medicine and Life Sciences, University of Toledo, Toledo, OH 43614, USA
| | - Shungang Zhang
- College of Medicine and Life Sciences, University of Toledo, Toledo, OH 43614, USA
| | - Andrew L. Kleinhenz
- College of Medicine and Life Sciences, University of Toledo, Toledo, OH 43614, USA
| | - David Baliu-Rodriguez
- Department of Chemistry and Biochemistry, University of Toledo, Toledo, OH 43606, USA
| | - Dragan Isailovic
- Department of Chemistry and Biochemistry, University of Toledo, Toledo, OH 43606, USA
| | - Terry D. Hinds
- Department of Pharmacology and Nutritional Sciences, University of Kentucky College of Medicine, Lexington, KY 40506, USA
| | - Cara Gatto-Weis
- College of Medicine and Life Sciences, University of Toledo, Toledo, OH 43614, USA
| | - Lauren M. Stanoszek
- College of Medicine and Life Sciences, University of Toledo, Toledo, OH 43614, USA
| | - Thomas M. Blomquist
- College of Medicine and Life Sciences, University of Toledo, Toledo, OH 43614, USA
| | - Deepak Malhotra
- College of Medicine and Life Sciences, University of Toledo, Toledo, OH 43614, USA
| | - Steven T. Haller
- College of Medicine and Life Sciences, University of Toledo, Toledo, OH 43614, USA
| | - David J. Kennedy
- College of Medicine and Life Sciences, University of Toledo, Toledo, OH 43614, USA
| |
Collapse
|
7
|
Li B, Liu Y, Liu Y, Xie P. Excluding interference and detecting Microcystin-LR in the natural lakes and cells based a unique fluorescence method. WATER RESEARCH 2022; 221:118811. [PMID: 35810636 DOI: 10.1016/j.watres.2022.118811] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 06/27/2022] [Accepted: 07/01/2022] [Indexed: 06/15/2023]
Abstract
Cyanobacteria blooms that cause the death of aquatic and terrestrial organisms have attracted considerable attention since the 19th century. The most typical toxin in cyanobacteria blooms is cyanobacteria toxin, particularly microcystin-LR (MC-LR). Therefore, a simple and highly efficient method for detecting MC-LR plays a role in studying the ecological toxicology of MC-LR. However, as MC-LR itself is located in a complex environment, traditional techniques present complex and false-positive defects. To address the above issues, novel technologies should be explored and discovered. Herein, we describe the development of MC-BDKZ as the first paradigm of probes that can concurrently report MC-LR in natural lakes and cells. This novel material shows large Stokes Shift and possesses good photostability and high sensitivity. Considering the properties mentioned above, MC-BDKZ not only achieves the detection of MC-LR in the lake water samples, but also completes the imaging of exogenous MC-LR in cells. Moreover, the interference of many factors in the lake and cells is excluded completely in the process of MC-LR detection. We comprehensively analyzed the response principle and potential application of MC-BDKZ in the process of MC-LR detection. Compared with the conventional MC-LR detection technologies, fluorescence probe technology shows better convenience and greatly reduces distance from the practical application in vitro and in vivo. We envisioned that the development of this visual research tool could provide crucial clues for exploring the pathogenesis of MC-LR in body.
Collapse
Affiliation(s)
- Bingyan Li
- Institute for Ecological Research and Pollution Control of Plateau Lakes, School of Ecology and Environmental Sciences, Yunnan University, Kunming 650500, PR China
| | - Yipeng Liu
- Institute for Ecological Research and Pollution Control of Plateau Lakes, School of Ecology and Environmental Sciences, Yunnan University, Kunming 650500, PR China
| | - Yong Liu
- Institute for Ecological Research and Pollution Control of Plateau Lakes, School of Ecology and Environmental Sciences, Yunnan University, Kunming 650500, PR China.
| | - Ping Xie
- Institute for Ecological Research and Pollution Control of Plateau Lakes, School of Ecology and Environmental Sciences, Yunnan University, Kunming 650500, PR China; Donghu Experimental Station of Lake Ecosystems, State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, PR China.
| |
Collapse
|
8
|
Lad A, Breidenbach JD, Su RC, Murray J, Kuang R, Mascarenhas A, Najjar J, Patel S, Hegde P, Youssef M, Breuler J, Kleinhenz AL, Ault AP, Westrick JA, Modyanov NN, Kennedy DJ, Haller ST. As We Drink and Breathe: Adverse Health Effects of Microcystins and Other Harmful Algal Bloom Toxins in the Liver, Gut, Lungs and Beyond. Life (Basel) 2022; 12:life12030418. [PMID: 35330169 PMCID: PMC8950847 DOI: 10.3390/life12030418] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 03/03/2022] [Accepted: 03/08/2022] [Indexed: 12/19/2022] Open
Abstract
Freshwater harmful algal blooms (HABs) are increasing in number and severity worldwide. These HABs are chiefly composed of one or more species of cyanobacteria, also known as blue-green algae, such as Microcystis and Anabaena. Numerous HAB cyanobacterial species produce toxins (e.g., microcystin and anatoxin—collectively referred to as HAB toxins) that disrupt ecosystems, impact water and air quality, and deter recreation because they are harmful to both human and animal health. Exposure to these toxins can occur through ingestion, inhalation, or skin contact. Acute health effects of HAB toxins have been well documented and include symptoms such as nausea, vomiting, abdominal pain and diarrhea, headache, fever, and skin rashes. While these adverse effects typically increase with amount, duration, and frequency of exposure, susceptibility to HAB toxins may also be increased by the presence of comorbidities. The emerging science on potential long-term or chronic effects of HAB toxins with a particular emphasis on microcystins, especially in vulnerable populations such as those with pre-existing liver or gastrointestinal disease, is summarized herein. This review suggests additional research is needed to define at-risk populations who may be helped by preventative measures. Furthermore, studies are required to develop a mechanistic understanding of chronic, low-dose exposure to HAB toxins so that appropriate preventative, diagnostic, and therapeutic strategies can be created in a targeted fashion.
Collapse
Affiliation(s)
- Apurva Lad
- College of Medicine and Life Science, University of Toledo, Toledo, OH 43614, USA; (A.L.); (J.D.B.); (R.C.S.); (J.M.); (R.K.); (A.M.); (J.N.); (S.P.); (P.H.); (M.Y.); (J.B.); (A.L.K.); (N.N.M.)
| | - Joshua D. Breidenbach
- College of Medicine and Life Science, University of Toledo, Toledo, OH 43614, USA; (A.L.); (J.D.B.); (R.C.S.); (J.M.); (R.K.); (A.M.); (J.N.); (S.P.); (P.H.); (M.Y.); (J.B.); (A.L.K.); (N.N.M.)
| | - Robin C. Su
- College of Medicine and Life Science, University of Toledo, Toledo, OH 43614, USA; (A.L.); (J.D.B.); (R.C.S.); (J.M.); (R.K.); (A.M.); (J.N.); (S.P.); (P.H.); (M.Y.); (J.B.); (A.L.K.); (N.N.M.)
| | - Jordan Murray
- College of Medicine and Life Science, University of Toledo, Toledo, OH 43614, USA; (A.L.); (J.D.B.); (R.C.S.); (J.M.); (R.K.); (A.M.); (J.N.); (S.P.); (P.H.); (M.Y.); (J.B.); (A.L.K.); (N.N.M.)
| | - Rebecca Kuang
- College of Medicine and Life Science, University of Toledo, Toledo, OH 43614, USA; (A.L.); (J.D.B.); (R.C.S.); (J.M.); (R.K.); (A.M.); (J.N.); (S.P.); (P.H.); (M.Y.); (J.B.); (A.L.K.); (N.N.M.)
| | - Alison Mascarenhas
- College of Medicine and Life Science, University of Toledo, Toledo, OH 43614, USA; (A.L.); (J.D.B.); (R.C.S.); (J.M.); (R.K.); (A.M.); (J.N.); (S.P.); (P.H.); (M.Y.); (J.B.); (A.L.K.); (N.N.M.)
| | - John Najjar
- College of Medicine and Life Science, University of Toledo, Toledo, OH 43614, USA; (A.L.); (J.D.B.); (R.C.S.); (J.M.); (R.K.); (A.M.); (J.N.); (S.P.); (P.H.); (M.Y.); (J.B.); (A.L.K.); (N.N.M.)
| | - Shivani Patel
- College of Medicine and Life Science, University of Toledo, Toledo, OH 43614, USA; (A.L.); (J.D.B.); (R.C.S.); (J.M.); (R.K.); (A.M.); (J.N.); (S.P.); (P.H.); (M.Y.); (J.B.); (A.L.K.); (N.N.M.)
| | - Prajwal Hegde
- College of Medicine and Life Science, University of Toledo, Toledo, OH 43614, USA; (A.L.); (J.D.B.); (R.C.S.); (J.M.); (R.K.); (A.M.); (J.N.); (S.P.); (P.H.); (M.Y.); (J.B.); (A.L.K.); (N.N.M.)
| | - Mirella Youssef
- College of Medicine and Life Science, University of Toledo, Toledo, OH 43614, USA; (A.L.); (J.D.B.); (R.C.S.); (J.M.); (R.K.); (A.M.); (J.N.); (S.P.); (P.H.); (M.Y.); (J.B.); (A.L.K.); (N.N.M.)
| | - Jason Breuler
- College of Medicine and Life Science, University of Toledo, Toledo, OH 43614, USA; (A.L.); (J.D.B.); (R.C.S.); (J.M.); (R.K.); (A.M.); (J.N.); (S.P.); (P.H.); (M.Y.); (J.B.); (A.L.K.); (N.N.M.)
| | - Andrew L. Kleinhenz
- College of Medicine and Life Science, University of Toledo, Toledo, OH 43614, USA; (A.L.); (J.D.B.); (R.C.S.); (J.M.); (R.K.); (A.M.); (J.N.); (S.P.); (P.H.); (M.Y.); (J.B.); (A.L.K.); (N.N.M.)
| | - Andrew P. Ault
- Department of Chemistry, University of Michigan, Ann Arbor, MI 48109, USA;
| | - Judy A. Westrick
- Lumigen Instrumentation Center, Department of Chemistry, Wayne State University, Detroit, MI 48202, USA;
| | - Nikolai N. Modyanov
- College of Medicine and Life Science, University of Toledo, Toledo, OH 43614, USA; (A.L.); (J.D.B.); (R.C.S.); (J.M.); (R.K.); (A.M.); (J.N.); (S.P.); (P.H.); (M.Y.); (J.B.); (A.L.K.); (N.N.M.)
| | - David J. Kennedy
- College of Medicine and Life Science, University of Toledo, Toledo, OH 43614, USA; (A.L.); (J.D.B.); (R.C.S.); (J.M.); (R.K.); (A.M.); (J.N.); (S.P.); (P.H.); (M.Y.); (J.B.); (A.L.K.); (N.N.M.)
- Correspondence: (D.J.K.); (S.T.H.); Tel.: +1-419-383-6822 (D.J.K.); +1-419-383-6859 (S.T.H.)
| | - Steven T. Haller
- College of Medicine and Life Science, University of Toledo, Toledo, OH 43614, USA; (A.L.); (J.D.B.); (R.C.S.); (J.M.); (R.K.); (A.M.); (J.N.); (S.P.); (P.H.); (M.Y.); (J.B.); (A.L.K.); (N.N.M.)
- Correspondence: (D.J.K.); (S.T.H.); Tel.: +1-419-383-6822 (D.J.K.); +1-419-383-6859 (S.T.H.)
| |
Collapse
|
9
|
Baliu-Rodriguez D, Peraino NJ, Premathilaka SH, Birbeck JA, Baliu-Rodriguez T, Westrick JA, Isailovic D. Identification of Novel Microcystins Using High-Resolution MS and MS n with Python Code. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:1652-1663. [PMID: 35018784 DOI: 10.1021/acs.est.1c04296] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Cyanotoxins called microcystins (MCs) are highly toxic and can be present in drinking water sources. Determining the structure of MCs is paramount because of its effect on toxicity. Though over 300 MC congeners have been discovered, many remain unidentified. Herein, a method is described for the putative identification of MCs using liquid chromatography (LC) coupled with high-resolution (HR) Orbitrap mass spectrometry (MS) and a new bottom-up sequencing strategy. Maumee River water samples were collected during a harmful algal bloom and analyzed by LC-MS with simultaneous HRMS and MS/MS. Unidentified ions with characteristic MC fragments (135 and 213 m/z) were recognized as possible novel MC congeners. An innovative workflow was developed for the putative identification of these ions. Python code was written to generate the potential structures of unidentified MCs and to assign ions after the fragmentation for structural confirmation. The workflow enabled the putative identification of eight previously reported MCs for which standards are not available and two newly discovered congeners, MC-HarR and MC-E(OMe)R.
Collapse
Affiliation(s)
- David Baliu-Rodriguez
- Department of Chemistry and Biochemistry, University of Toledo, Toledo, Ohio 43606, United States
| | - Nicholas J Peraino
- Department of Chemistry, Wayne State University, Detroit, Michigan 48202, United States
| | - Sanduni H Premathilaka
- Department of Chemistry and Biochemistry, University of Toledo, Toledo, Ohio 43606, United States
| | - Johnna A Birbeck
- Department of Chemistry, Wayne State University, Detroit, Michigan 48202, United States
| | | | - Judy A Westrick
- Department of Chemistry, Wayne State University, Detroit, Michigan 48202, United States
| | - Dragan Isailovic
- Department of Chemistry and Biochemistry, University of Toledo, Toledo, Ohio 43606, United States
| |
Collapse
|
10
|
Kucheriavaia D, Veličković D, Peraino N, Lad A, Kennedy DJ, Haller ST, Westrick JA, Isailovic D. Toward Revealing Microcystin Distribution in Mouse Liver Tissue Using MALDI-MS Imaging. Toxins (Basel) 2021; 13:709. [PMID: 34679004 PMCID: PMC8538440 DOI: 10.3390/toxins13100709] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 09/28/2021] [Accepted: 09/28/2021] [Indexed: 01/31/2023] Open
Abstract
Cyanotoxins can be found in water and air during cyanobacterial harmful algal blooms (cHABs) in lakes and rivers. Therefore, it is very important to monitor their potential uptake by animals and humans as well as their health effects and distribution in affected organs. Herein, the distribution of hepatotoxic peptide microcystin-LR (MC-LR) is investigated in liver tissues of mice gavaged with this most common MC congener. Preliminary matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS) imaging experiments performed using a non-automated MALDI matrix deposition device and a MALDI-time-of-flight (TOF) mass spectrometer yielded ambiguous results in terms of MC-LR distribution in liver samples obtained from MC-LR-gavaged mice. The tissue preparation for MALDI-MS imaging was improved by using an automated sprayer for matrix deposition, and liver sections were imaged using an Nd:YAG MALDI laser coupled to a 15 Tesla Fourier-transform ion cyclotron resonance (FT-ICR)-mass spectrometer. MALDI-FT-ICR-MS imaging provided unambiguous detection of protonated MC-LR (calculated m/z 995.5560, z = +1) and the sodium adduct of MC-LR (m/z 1017.5380, z = +1) in liver sections from gavaged mice with great mass accuracy and ultra-high mass resolution. Since both covalently bound and free MC-LR can be found in liver of mice exposed to this toxin, the present results indicate that the distribution of free microcystins in tissue sections from affected organs, such as liver, can be monitored with high-resolution MALDI-MS imaging.
Collapse
Affiliation(s)
- Daria Kucheriavaia
- Department of Chemistry and Biochemistry, University of Toledo, Toledo, OH 43606, USA;
| | | | - Nicholas Peraino
- Department of Chemistry, Wayne State University, Detroit, MI 48202, USA; (N.P.); (J.A.W.)
| | - Apurva Lad
- Department of Medicine, University of Toledo Medical Campus, Toledo, OH 43614, USA; (A.L.); (D.J.K.); (S.T.H.)
| | - David J. Kennedy
- Department of Medicine, University of Toledo Medical Campus, Toledo, OH 43614, USA; (A.L.); (D.J.K.); (S.T.H.)
| | - Steven T. Haller
- Department of Medicine, University of Toledo Medical Campus, Toledo, OH 43614, USA; (A.L.); (D.J.K.); (S.T.H.)
| | - Judy A. Westrick
- Department of Chemistry, Wayne State University, Detroit, MI 48202, USA; (N.P.); (J.A.W.)
| | - Dragan Isailovic
- Department of Chemistry and Biochemistry, University of Toledo, Toledo, OH 43606, USA;
| |
Collapse
|
11
|
Su RC, Meyers CM, Warner EA, Garcia JA, Refsnider JM, Lad A, Breidenbach JD, Modyanov N, Malhotra D, Haller ST, Kennedy DJ. Harmful Algal Bloom Toxicity in Lithobates catesbeiana Tadpoles. Toxins (Basel) 2020; 12:toxins12060378. [PMID: 32521650 PMCID: PMC7354472 DOI: 10.3390/toxins12060378] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 05/23/2020] [Accepted: 06/03/2020] [Indexed: 11/16/2022] Open
Abstract
Harmful algal blooms (HAB) have become a major health concern worldwide, not just to humans that consume and recreate on contaminated waters, but also to the fauna that inhabit the environments surrounding affected areas. HABs contain heterotrophic bacteria, cyanobacterial lipopolysaccharide, and cyanobacterial toxins such as microcystins, that can cause severe toxicity in many aquatic species as well as bioaccumulation within various organs. Thus, the possibility of trophic transference of this toxin through the food chain has potentially important health implications for other organisms in the related food web. While some species have developed adaptions to attenuate the toxic effects of HAB toxins, there are still numerous species that remain vulnerable, including Lithobates catesbeiana (American bullfrog) tadpoles. In the current study we demonstrate that acute, short-term exposure of tadpoles to HAB toxins containing 1 µg/L (1 nmol/L) of total microcystins for only 7 days results in significant liver and intestinal toxicity within tadpoles. Exposed tadpoles had increased intestinal diameter, decreased intestinal fold heights, and a constant number of intestinal folds, indicating pathological intestinal distension, similar to what is seen in various disease processes, such as toxic megacolon. HAB-toxin-exposed tadpoles also demonstrated hepatocyte hypertrophy with increased hepatocyte binucleation consistent with carcinogenic and oxidative processes within the liver. Both livers and intestines of HAB-toxin-exposed tadpoles demonstrated significant increases in protein carbonylation consistent with oxidative stress and damage. These findings demonstrate that short-term exposure to HAB toxins, including microcystins, can have significant adverse effects in amphibian populations. This acute, short-term toxicity highlights the need to evaluate the influence HAB toxins may have on other vulnerable species within the food web and how those may ultimately also impact human health.
Collapse
Affiliation(s)
- Robin C. Su
- Department of Medicine, The University of Toledo College of Medicine and Life Sciences, 3000 Arlington Avenue, Toledo, OH 43614, USA; (R.C.S.); (E.A.W.); (A.L.); (J.D.B.); (D.M.)
| | - Casey M. Meyers
- Department of Biology, Wittenberg University, Springfield, OH 45504, USA;
| | - Emily A. Warner
- Department of Medicine, The University of Toledo College of Medicine and Life Sciences, 3000 Arlington Avenue, Toledo, OH 43614, USA; (R.C.S.); (E.A.W.); (A.L.); (J.D.B.); (D.M.)
| | - Jessica A. Garcia
- Department of Environmental Sciences, The University of Toledo, Toledo, OH 43606, USA; (J.A.G.); (J.M.R.)
| | - Jeanine M. Refsnider
- Department of Environmental Sciences, The University of Toledo, Toledo, OH 43606, USA; (J.A.G.); (J.M.R.)
| | - Apurva Lad
- Department of Medicine, The University of Toledo College of Medicine and Life Sciences, 3000 Arlington Avenue, Toledo, OH 43614, USA; (R.C.S.); (E.A.W.); (A.L.); (J.D.B.); (D.M.)
| | - Joshua D. Breidenbach
- Department of Medicine, The University of Toledo College of Medicine and Life Sciences, 3000 Arlington Avenue, Toledo, OH 43614, USA; (R.C.S.); (E.A.W.); (A.L.); (J.D.B.); (D.M.)
| | - Nikolai Modyanov
- Department of Physiology and Pharmacology, The University of Toledo College of Medicine and Life Sciences, Toledo, OH 43614, USA;
| | - Deepak Malhotra
- Department of Medicine, The University of Toledo College of Medicine and Life Sciences, 3000 Arlington Avenue, Toledo, OH 43614, USA; (R.C.S.); (E.A.W.); (A.L.); (J.D.B.); (D.M.)
| | - Steven T. Haller
- Department of Medicine, The University of Toledo College of Medicine and Life Sciences, 3000 Arlington Avenue, Toledo, OH 43614, USA; (R.C.S.); (E.A.W.); (A.L.); (J.D.B.); (D.M.)
- Department of Medical Microbiology and Immunology, The University of Toledo College of Medicine and Life Sciences, Toledo, OH 43614, USA
- Correspondence: (S.T.H.); (D.J.K.); Tel.: +1-419-383-6822 (D.J.K. & S.T.H.)
| | - David J. Kennedy
- Department of Medicine, The University of Toledo College of Medicine and Life Sciences, 3000 Arlington Avenue, Toledo, OH 43614, USA; (R.C.S.); (E.A.W.); (A.L.); (J.D.B.); (D.M.)
- Department of Medical Microbiology and Immunology, The University of Toledo College of Medicine and Life Sciences, Toledo, OH 43614, USA
- Correspondence: (S.T.H.); (D.J.K.); Tel.: +1-419-383-6822 (D.J.K. & S.T.H.)
| |
Collapse
|