1
|
Wiraswati HL, Ma'ruf IF, Hidayati NA, Ramadhanti J, Calina D, Sharifi-Rad J. Harnessing the anticancer potential of Piper nigrum: a synergistic approach to chemotherapy enhancement and reduced side effects. Discov Oncol 2025; 16:10. [PMID: 39760812 PMCID: PMC11704108 DOI: 10.1007/s12672-024-01716-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Accepted: 12/17/2024] [Indexed: 01/07/2025] Open
Abstract
Cancer therapy continues to face critical challenges, including drug resistance, recurrence, and severe side effects, which often compromise patient outcomes and quality of life. Exploring novel, cost-effective approaches, this review highlights the potential of Piper nigrum (black pepper) extract (PNE) as a complementary anticancer agent. Piper nigrum, a widely available spice with a rich history in traditional medicine, contains bioactive compounds such as piperine, which have demonstrated significant anticancer activities including cell cycle arrest, apoptosis induction, and inhibition of tumor growth and metastasis. The review evaluates the recent findings from in vitro, in vivo, and clinical studies, emphasizing PNE's capacity to enhance the efficacy of conventional chemotherapeutic agents while mitigating their side effects. Key mechanisms underlying these effects include oxidative stress modulation, suppression of pro-metastatic factors, and synergistic interactions with established drugs like doxorubicin and paclitaxel. These interactions suggest that PNE could play a pivotal role in overcoming chemoresistance and improving therapeutic outcomes. Furthermore, this review highlights the potential benefits of PNE in resource-limited settings, where the cost of cancer treatments often restricts access. However, challenges such as compositional variability, limited bioavailability, and the need for standardization and clinical validation need to be addressed to advance the integration of PNE into basic oncology. By providing a comprehensive analysis of the anticancer mechanisms of PNE and its potential as a cost-effective adjuvant therapy, this review provides new insight into the exploitation of Piper nigrum to improve cancer treatment efficacy while reducing side effects. Future research directions are discussed to address current limitations and facilitate clinical translation.
Collapse
Affiliation(s)
- Hesti Lina Wiraswati
- Department of Biomedical Sciences, Faculty of Medicine, Universitas Padjadjaran, Sumedang, West Java, Indonesia.
- Oncology and Stem Cell Working Group, Faculty of Medicine, Universitas Padjadjaran, Bandung, West Java, Indonesia.
| | - Ilma Fauziah Ma'ruf
- Research Center for Pharmaceutical Ingredients and Traditional Medicine, National Research and Innovation Agency, Bogor, West Java, Indonesia
| | | | - Julia Ramadhanti
- Department of Biomedical Sciences, Faculty of Medicine, Universitas Padjadjaran, Sumedang, West Java, Indonesia
| | - Daniela Calina
- Department of Clinical Pharmacy, University of Medicine and Pharmacy of Craiova, 200349, Craiova, Romania.
| | - Javad Sharifi-Rad
- Universidad Espíritu Santo, Samborondón, 092301, Ecuador.
- Department of Medicine, College of Medicine, Korea University, Seoul, 02841, Republic of Korea.
| |
Collapse
|
2
|
Gou G, Bao W, Li J. Structural diversity, biological activities and biosynthetic pathways of [2 + 2] and [4 + 2] amide alkaloid dimers from Piperaceae: An updated review. Fitoterapia 2025; 180:106305. [PMID: 39577777 DOI: 10.1016/j.fitote.2024.106305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 11/06/2024] [Accepted: 11/17/2024] [Indexed: 11/24/2024]
Abstract
The Piperaceae family is distributed widely in tropical and subtropical areas. It encompasses around 5 genera and over 3000 species. They are distinguished by the substantial chemical diversity and potential medicinal applications. Amide alkaloids, as the main secondary metabolites in the Piperaceae family, exhibit various biological activities, and the discovery of [2 + 2] and [4 + 2] amide alkaloid dimers has led to a surge in phytochemical research on Piperaceae plants. Although the identification of these dimers has been gradually increasing in recent years, there remains a lack of comprehensive and systematic evaluations of these compounds. This review aims to summarize the latest advancements in the research on natural amide alkaloid dimers, focusing on their structural diversity, biological activities and biosynthetic pathways, and the enzymatic advances of [2 + 2] and [4 + 2] cyclase enzymes. Until October 2024, research has documented 99 amide alkaloid dimers, including 37 dimers possessing [2 + 2] cyclobutanes skeletons and 62 [4 + 2] cyclohexene skeletons derived from the Piperaceae family. These compounds demonstrate a range of in vitro biological activities including anti-inflammatory, anticancer, acetylcholinesterase inhibitory, anti-platelet aggregation, hepatoprotective, antimalarial, antitubercular, anti-diabetic and notable interactions with CYP3A4 and CYP2D6 enzymes. A systematic review of these [2 + 2] and [4 + 2] amide alkaloid dimers in Piperaceae family can provide a critical scientific foundation and theoretical support for the discovery and development of novel pharmaceutical agents.
Collapse
Affiliation(s)
- Guanghui Gou
- State Key Laboratory Basis of Xinjiang Indigenous Medicinal Plants Resource Utilization, and Key Laboratory of Plants Resources and Chemistry of Arid Zone, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing South Road 40-1, Urumqi 830011, Xinjiang, China; University of Chinese Academy of Sciences, Beijing 100039, China
| | - Wenli Bao
- State Key Laboratory Basis of Xinjiang Indigenous Medicinal Plants Resource Utilization, and Key Laboratory of Plants Resources and Chemistry of Arid Zone, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing South Road 40-1, Urumqi 830011, Xinjiang, China; University of Chinese Academy of Sciences, Beijing 100039, China
| | - Jun Li
- State Key Laboratory Basis of Xinjiang Indigenous Medicinal Plants Resource Utilization, and Key Laboratory of Plants Resources and Chemistry of Arid Zone, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing South Road 40-1, Urumqi 830011, Xinjiang, China; University of Chinese Academy of Sciences, Beijing 100039, China.
| |
Collapse
|
3
|
Gholijani N, Azarpira N, Abolmaali SS, Tanideh N, Ravanrooy MH, Taki F, Daryabor G. Piperine and piperine-loaded albumin nanoparticles ameliorate adjuvant-induced arthritis and reduce IL-17 in rats. Exp Mol Pathol 2024; 140:104937. [PMID: 39353355 DOI: 10.1016/j.yexmp.2024.104937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 09/03/2024] [Accepted: 09/27/2024] [Indexed: 10/04/2024]
Abstract
AIM Rheumatoid arthritis (RA) is one of the most common chronic, inflammatory, autoimmune diseases affecting mainly the joints. Piperine (PIP), an alkaloid found in black pepper, has anti-inflammatory properties and its use in drug delivery systems such as nanoparticles might be a treatment for RA. This study aims to evaluate the possible anti-inflammatory and anti-arthritic effects of PIP and its use in albumin nanoparticles as a possible approach for the treatment of Adjuvant-induced arthritis (AIA) rats. METHODS PIP-loaded Bovine Serum Albumin nanoparticles (PIP-BSA NPs) were prepared using a desolvation method. AIA rats were given intraperitoneal injections of either 40 mg PIP or 131 mg PIP-BSA NPs every two days until day 28 when animals were sacrificed. Clinical score, histopathology, X-ray radiography, and serum levels of pro-inflammatory cytokines such as IL-1β, IL-17, and TNF-α were evaluated. RESULTS PIP and PIP-BSA NPs significantly reduced clinical scores, and alleviated inflammation within the joints. PIP was superior to PIP-BSA NPs for the alleviation of fibrin deposition and periosteal reactions while bone inflammation and erosion were less severe in the case of PIP-BSA NPs. Besides, both of the treatments suppressed serum levels of IL-17 in AIA rats (p = 0.003 and p = 0.02; respectively). CONCLUSIONS PIP and PIP-BSA NPs effectively alleviate the severity of AIA and suppress inflammation. Due to the superiority of PIP in improving fibrin deposition and periosteal reactions and the efficacy of PIP-BSA NPs in suppressing bone inflammation and erosion, their simultaneous use might be investigated.
Collapse
Affiliation(s)
- Nasser Gholijani
- Autoimmune Diseases Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Negar Azarpira
- Transplant Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Samira-Sadat Abolmaali
- Department of Pharmaceutical Nanotechnology and Nanotechnology in Drug Delivery Research Center, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Nader Tanideh
- Stem Cells Technology Research Center, Department of Pharmacology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | | | - Farzane Taki
- Autoimmune Diseases Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Gholamreza Daryabor
- Autoimmune Diseases Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
4
|
Tripathi D, Gupta T, Pandey P. Exploring Piperine: Unleashing the multifaceted potential of a phytochemical in cancer therapy. Mol Biol Rep 2024; 51:1050. [PMID: 39395120 DOI: 10.1007/s11033-024-09978-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Accepted: 09/30/2024] [Indexed: 10/14/2024]
Abstract
Radiotherapy is a cornerstone in the treatment of solid tumors, with extensive Phase III trials confirming its effectiveness. As advancements in treatment technologies and our understanding of tumor resistance mechanisms continue, the role of radiation oncology is set to become even more pivotal. Addressing the global challenge of lethal cancers demands innovative strategies, particularly in minimizing the side effects associated with traditional chemotherapy and ionizing radiation (IR). Recently, there has been growing interest in natural compounds for radioprotection, aiming to prevent tumor development and metastasis. Piperine, a compound found in black and long pepper, has emerged as a promising chemopreventive agent that works effectively without harming normal cells. Mechanistically, piperine modulates key signaling pathways, inhibits cancer cell migration and invasion, and enhances sensitivity to IR. Combining piperine with radiotherapy offers a compelling approach, boosting treatment efficacy while protecting healthy tissues from radiation damage. Piperine's versatile role goes beyond radiosensitization to include radioprotection by inhibiting NF-κB activation, reducing autophagy, and promoting apoptosis in cancer cells. This dual action makes it a promising candidate for personalized cancer care. As research advances, the therapeutic potential of piperine may drive new frontiers in cancer treatment strategies.
Collapse
Affiliation(s)
- Devika Tripathi
- PSIT-Pranveer Singh Institute of Technology (Pharmacy), Kanpur, Uttar Pradesh, 209305, India.
| | - Tanya Gupta
- PSIT-Pranveer Singh Institute of Technology (Pharmacy), Kanpur, Uttar Pradesh, 209305, India
| | - Prashant Pandey
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University, Lucknow, Uttar Pradesh, 226025, India
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, AB, T6G 2E1, Canada
| |
Collapse
|
5
|
Talib WH, Baban MM, Bulbul MF, Al-Zaidaneen E, Allan A, Al-Rousan EW, Ahmad RHY, Alshaeri HK, Alasmari MM, Law D. Natural Products and Altered Metabolism in Cancer: Therapeutic Targets and Mechanisms of Action. Int J Mol Sci 2024; 25:9593. [PMID: 39273552 PMCID: PMC11394730 DOI: 10.3390/ijms25179593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 08/27/2024] [Accepted: 08/30/2024] [Indexed: 09/15/2024] Open
Abstract
Cancer is characterized by uncontrolled cell proliferation and the dysregulation of numerous biological functions, including metabolism. Because of the potential implications of targeted therapies, the metabolic alterations seen in cancer cells, such as the Warburg effect and disruptions in lipid and amino acid metabolism, have gained attention in cancer research. In this review, we delve into recent research examining the influence of natural products on altered cancer metabolism. Natural products were selected based on their ability to target cancer's altered metabolism. We identified the targets and explored the mechanisms of action of these natural products in influencing cellular energetics. Studies discussed in this review provide a solid ground for researchers to consider natural products in cancer treatment alone and in combination with conventional anticancer therapies.
Collapse
Affiliation(s)
- Wamidh H Talib
- Faculty of Allied Medical Sciences, Applied Science Private University, Amman 11931, Jordan
- Faculty of Health and Life Sciences, Inti International University, Nilai 71800, Negeri Sembilan, Malaysia
| | - Media Mohammad Baban
- Department of Clinical Pharmacy and Therapeutics, Applied Science Private University, Amman 11931, Jordan
| | - Mais Fuad Bulbul
- Department of Clinical Pharmacy and Therapeutics, Applied Science Private University, Amman 11931, Jordan
| | - Esraa Al-Zaidaneen
- Department of Clinical Pharmacy and Therapeutics, Applied Science Private University, Amman 11931, Jordan
| | - Aya Allan
- Department of Clinical Pharmacy and Therapeutics, Applied Science Private University, Amman 11931, Jordan
| | - Eiman Wasef Al-Rousan
- Department of Clinical Pharmacy and Therapeutics, Applied Science Private University, Amman 11931, Jordan
| | - Rahaf Hamed Yousef Ahmad
- Department of Clinical Pharmacy and Therapeutics, Applied Science Private University, Amman 11931, Jordan
| | - Heba K Alshaeri
- Department of Pharmacology, Faculty of Medicine, King Abdul-Aziz University, Rabigh 25724, Saudi Arabia
| | - Moudi M Alasmari
- College of Medicine, King Saud bin Abdulaziz University for Health Sciences (KSAU-HS), Jeddah 21423, Saudi Arabia
- King Abdullah International Medical Research Centre (KAIMRC), Jeddah 22233, Saudi Arabia
| | - Douglas Law
- Faculty of Health and Life Sciences, Inti International University, Nilai 71800, Negeri Sembilan, Malaysia
| |
Collapse
|
6
|
Zhang JF, Hong LH, Fan SY, Zhu L, Yu ZP, Chen C, Kong LY, Luo JG. Discovery of piperine derivatives as inhibitors of human dihydroorotate dehydrogenase to induce ferroptosis in cancer cells. Bioorg Chem 2024; 150:107594. [PMID: 38941701 DOI: 10.1016/j.bioorg.2024.107594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Revised: 06/17/2024] [Accepted: 06/24/2024] [Indexed: 06/30/2024]
Abstract
Inhibition of human dihydroorotate dehydrogenase (hDHODH) represents a promising strategy for suppressing the proliferation of cancer cells. To identify novel and potent hDHODH inhibitors, a total of 28 piperine derivatives were designed and synthesized. Their cytotoxicities against three human cancer cell lines (NCI-H226, HCT-116, and MDA-MB-231) and hDHODH inhibitory activities were also evaluated. Among them, compound H19, exhibited the strongest inhibitory activities (NCI-H226 IC50 = 0.95 µM, hDHODH IC50 = 0.21 µM). Further pharmacological investigations revealed that H19 exerted anticancer effects by inducing ferroptosis in NCI-H226 cells, with its cytotoxicity being reversed by ferroptosis inhibitors. This was supported by the intracellular growth or decline of ferroptosis markers, including lipid peroxidation, Fe2+, GSH, and 4-HNE. Overall, H19 emerges as a promising hDHODH inhibitor with potential anticancer properties warranting development.
Collapse
Affiliation(s)
- Jian-Fei Zhang
- Jiangsu Key Laboratory of Bioactive Natural Product Research, State Key Laboratory of Natural Medicines, Department of Natural Medicinal Chemistry, China Pharmaceutical University, Nanjing 210009, People's Republic of China
| | - Li-Hong Hong
- Jiangsu Key Laboratory of Bioactive Natural Product Research, State Key Laboratory of Natural Medicines, Department of Natural Medicinal Chemistry, China Pharmaceutical University, Nanjing 210009, People's Republic of China
| | - Shi-Ying Fan
- Jiangsu Key Laboratory of Bioactive Natural Product Research, State Key Laboratory of Natural Medicines, Department of Natural Medicinal Chemistry, China Pharmaceutical University, Nanjing 210009, People's Republic of China
| | - Ling Zhu
- Jiangsu Key Laboratory of Bioactive Natural Product Research, State Key Laboratory of Natural Medicines, Department of Natural Medicinal Chemistry, China Pharmaceutical University, Nanjing 210009, People's Republic of China
| | - Zhan-Peng Yu
- Jiangsu Key Laboratory of Bioactive Natural Product Research, State Key Laboratory of Natural Medicines, Department of Natural Medicinal Chemistry, China Pharmaceutical University, Nanjing 210009, People's Republic of China
| | - Chen Chen
- Jiangsu Key Laboratory of Bioactive Natural Product Research, State Key Laboratory of Natural Medicines, Department of Natural Medicinal Chemistry, China Pharmaceutical University, Nanjing 210009, People's Republic of China.
| | - Ling-Yi Kong
- Jiangsu Key Laboratory of Bioactive Natural Product Research, State Key Laboratory of Natural Medicines, Department of Natural Medicinal Chemistry, China Pharmaceutical University, Nanjing 210009, People's Republic of China.
| | - Jian-Guang Luo
- Jiangsu Key Laboratory of Bioactive Natural Product Research, State Key Laboratory of Natural Medicines, Department of Natural Medicinal Chemistry, China Pharmaceutical University, Nanjing 210009, People's Republic of China.
| |
Collapse
|
7
|
Gusson-Zanetoni JP, Cardoso LP, de Sousa SO, de Melo Moreira Silva LL, de Oliveira Martinho J, Henrique T, Tajara EH, Oliani SM, Rodrigues-Lisoni FC. Molecular Aspects of Piperine in Signaling Pathways Associated with Inflammation in Head and Neck Cancer. Int J Mol Sci 2024; 25:5762. [PMID: 38891950 PMCID: PMC11172343 DOI: 10.3390/ijms25115762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 05/02/2024] [Accepted: 05/04/2024] [Indexed: 06/21/2024] Open
Abstract
Piperine, an active plant alkaloid from black pepper (Piper nigrum), has several pharmacological effects, namely antioxidant, anti-inflammatory and immunomodulatory effects, which involve inhibiting molecular events associated with various stages of cancer development. The aim of this study was to investigate the molecular mechanisms of action of piperine in relation to its potential anticancer effect on head and neck cancer cells. Parameters related to neoplastic potential and cytokine, protein and gene expression were investigated in head and neck cancer cell lines (HEp-2 and SCC-25) treated with piperine. The results of the tests indicated that piperine modified morphology and inhibited viability and the formation of cell colonies. Piperine promoted genotoxicity by triggering apoptosis and cell cycle arrest in the G2/M and S phases. A decrease in cell migration was also observed, and there was decreased expression of MMP2/9 genes. Piperine also reduced the expression of inflammatory molecules (PTGS2 and PTGER4), regulated the secretion of cytokines (IFN-γ and IL-8) and modulated the expression of ERK and p38. These results suggest that piperine exerts anticancer effects on tumor cells by regulating signaling pathways associated with head and neck cancer.
Collapse
Affiliation(s)
- Juliana Prado Gusson-Zanetoni
- Department of Biology, Institute of Biosciences, Humanities and Exact Science (IBILCE), São Paulo State University (UNESP), São José do Rio Preto 15054-000, Brazil; (J.P.G.-Z.); (L.P.C.); (S.O.d.S.); (L.L.d.M.M.S.); (J.d.O.M.); (S.M.O.)
| | - Luana Pereira Cardoso
- Department of Biology, Institute of Biosciences, Humanities and Exact Science (IBILCE), São Paulo State University (UNESP), São José do Rio Preto 15054-000, Brazil; (J.P.G.-Z.); (L.P.C.); (S.O.d.S.); (L.L.d.M.M.S.); (J.d.O.M.); (S.M.O.)
| | - Stefanie Oliveira de Sousa
- Department of Biology, Institute of Biosciences, Humanities and Exact Science (IBILCE), São Paulo State University (UNESP), São José do Rio Preto 15054-000, Brazil; (J.P.G.-Z.); (L.P.C.); (S.O.d.S.); (L.L.d.M.M.S.); (J.d.O.M.); (S.M.O.)
| | - Laura Luciana de Melo Moreira Silva
- Department of Biology, Institute of Biosciences, Humanities and Exact Science (IBILCE), São Paulo State University (UNESP), São José do Rio Preto 15054-000, Brazil; (J.P.G.-Z.); (L.P.C.); (S.O.d.S.); (L.L.d.M.M.S.); (J.d.O.M.); (S.M.O.)
| | - Júlia de Oliveira Martinho
- Department of Biology, Institute of Biosciences, Humanities and Exact Science (IBILCE), São Paulo State University (UNESP), São José do Rio Preto 15054-000, Brazil; (J.P.G.-Z.); (L.P.C.); (S.O.d.S.); (L.L.d.M.M.S.); (J.d.O.M.); (S.M.O.)
| | - Tiago Henrique
- Department of Molecular Biology, School of Medicine of São José do Rio Preto (FAMERP), São José do Rio Preto 15090-000, Brazil; (T.H.); (E.H.T.)
| | - Eloiza Helena Tajara
- Department of Molecular Biology, School of Medicine of São José do Rio Preto (FAMERP), São José do Rio Preto 15090-000, Brazil; (T.H.); (E.H.T.)
| | - Sonia Maria Oliani
- Department of Biology, Institute of Biosciences, Humanities and Exact Science (IBILCE), São Paulo State University (UNESP), São José do Rio Preto 15054-000, Brazil; (J.P.G.-Z.); (L.P.C.); (S.O.d.S.); (L.L.d.M.M.S.); (J.d.O.M.); (S.M.O.)
| | - Flávia Cristina Rodrigues-Lisoni
- Department of Biology, Institute of Biosciences, Humanities and Exact Science (IBILCE), São Paulo State University (UNESP), São José do Rio Preto 15054-000, Brazil; (J.P.G.-Z.); (L.P.C.); (S.O.d.S.); (L.L.d.M.M.S.); (J.d.O.M.); (S.M.O.)
| |
Collapse
|
8
|
Hawash M, Jaradat N, Salhi NA, Shatreet B, Asbah AA, Hawash YH. Assessing the therapeutic potential and safety of traditional anti-obesity herbal blends in Palestine. Sci Rep 2024; 14:1919. [PMID: 38253703 PMCID: PMC10803755 DOI: 10.1038/s41598-024-52172-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Accepted: 01/15/2024] [Indexed: 01/24/2024] Open
Abstract
The use of traditional herbal remedies has been a common practice for centuries across different cultures to treat various ailments. In Palestine, traditional herbal medicines are widely used, but their efficacy and safety have not been thoroughly investigated. Therefore, the purpose of this study was to assess the biological activity and toxicity of two traditional herbal blends often used to treat obesity in the West Bank region of Palestine. Two herbal blends with a total of eight plants were chosen based on their historic use and availability. The plant aqueous extracts were evaluated for their antioxidant, anti-fibrotic, anti-obesity, anti-diabetic, and cytotoxic activities. The results showed that these blends have potent antifibrotic, antioxidant, and anticancer activities. While their activities on α-amylase and lipase enzymes (main targets) showed moderate activities. Therefore, our results showed that Herbal Blend 2 was more potent than Herbal Blend 1 on all investigated targets. Herbal Blend 2 showed significant activities as an antioxidant, antifibrotic, and anticancer activities with IC50 values of 68.16 ± 2.45, 33.97 ± 1.14, and 52.53 ± 0.78 µg/mL against DPPH, LX-2, and MCF-7 cell lines, respectively. While it is IC50 values on α-amylase and lipase enzymes were 243.73 ± 1.57 and 1358.39 ± 2.04 µg/mL, respectively. However, the use of anti-cancer plants can be challenging due to their cytotoxic effects on the body. We urge individuals to exercise caution when using natural remedies and to seek medical advice before incorporating them into their health regimens. This study provides valuable insight into the potential health benefits of traditional herbal remedies and emphasizes the importance of responsible usage.
Collapse
Affiliation(s)
- Mohammed Hawash
- Department of Pharmacy, Faculty of Medicine and Health Sciences, An-Najah National University, Nablus, Palestine.
| | - Nidal Jaradat
- Department of Pharmacy, Faculty of Medicine and Health Sciences, An-Najah National University, Nablus, Palestine
| | - Nihal Ayman Salhi
- Department of Pharmacy, Faculty of Medicine and Health Sciences, An-Najah National University, Nablus, Palestine
| | - Beesan Shatreet
- Department of Pharmacy, Faculty of Medicine and Health Sciences, An-Najah National University, Nablus, Palestine
| | - Areej Abu Asbah
- Department of Pharmacy, Faculty of Medicine and Health Sciences, An-Najah National University, Nablus, Palestine
| | | |
Collapse
|
9
|
Burcher JT, DeLiberto LK, Allen AM, Kilpatrick KL, Bishayee A. Bioactive phytocompounds for oral cancer prevention and treatment: A comprehensive and critical evaluation. Med Res Rev 2023; 43:2025-2085. [PMID: 37143373 DOI: 10.1002/med.21969] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Revised: 04/05/2023] [Accepted: 04/12/2023] [Indexed: 05/06/2023]
Abstract
The high incidence of oral cancer combined with excessive treatment cost underscores the need for novel oral cancer preventive and therapeutic options. The value of natural agents, including plant secondary metabolites (phytochemicals), in preventing carcinogenesis and representing expansive source of anticancer drugs have been established. While fragmentary research data are available on antioral cancer effects of phytochemicals, a comprehensive and critical evaluation of the potential of these agents for the prevention and intervention of human oral malignancies has not been conducted according to our knowledge. This study presents a complete and critical analysis of current preclinical and clinical results on the prevention and treatment of oral cancer using phytochemicals. Our in-depth analysis highlights anticancer effects of various phytochemicals, such as phenolics, terpenoids, alkaloids, and sulfur-containing compounds, against numerous oral cancer cells and/or in vivo oral cancer models by antiproliferative, proapoptotic, cell cycle-regulatory, antiinvasive, antiangiogenic, and antimetastatic effects. Bioactive phytochemicals exert their antineoplastic effects by modulating various signaling pathways, specifically involving the epidermal growth factor receptor, cytokine receptors, toll-like receptors, and tumor necrosis factor receptor and consequently alter the expression of downstream genes and proteins. Interestingly, phytochemicals demonstrate encouraging effects in clinical trials, such as reduction of oral lesion size, cell growth, pain score, and development of new lesions. While most phytochemicals displayed minimal toxicity, concerns with bioavailability may limit their clinical application. Future directions for research include more in-depth mechanistic in vivo studies, administration of phytochemicals using novel formulations, investigation of phytocompounds as adjuvants to conventional treatment, and randomized clinical trials.
Collapse
Affiliation(s)
- Jack T Burcher
- College of Osteopathic Medicine, Lake Erie College of Osteopathic Medicine, Bradenton, Florida, USA
| | - Lindsay K DeLiberto
- College of Osteopathic Medicine, Lake Erie College of Osteopathic Medicine, Bradenton, Florida, USA
| | - Andrea M Allen
- School of Dental Medicine, Lake Erie College of Osteopathic Medicine, Bradenton, Florida, USA
| | - Kaitlyn L Kilpatrick
- College of Osteopathic Medicine, Lake Erie College of Osteopathic Medicine, Bradenton, Florida, USA
| | - Anupam Bishayee
- College of Osteopathic Medicine, Lake Erie College of Osteopathic Medicine, Bradenton, Florida, USA
| |
Collapse
|
10
|
Lasso P, Rojas L, Arévalo C, Urueña C, Murillo N, Nossa P, Sandoval T, Chitiva LC, Barreto A, Costa GM, Fiorentino S. Piper nigrum extract suppresses tumor growth and enhances the antitumor immune response in murine models of breast cancer and melanoma. Cancer Immunol Immunother 2023; 72:3279-3292. [PMID: 37464192 PMCID: PMC10491708 DOI: 10.1007/s00262-023-03487-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 06/26/2023] [Indexed: 07/20/2023]
Abstract
Although the antitumor effect of P. nigrum has been widely studied, research related to its possible immunomodulatory effects is relatively scarce. Here, the antitumor and immunomodulatory activity of an ethanolic extract of P. nigrum were evaluated in the murine models of 4T1 breast cancer and B16-F10 melanoma. In vitro evaluations showed that the P. nigrum extract has cytotoxic activity, induces apoptotic cell death, and has a pro-oxidant effect in both cell lines, but it regulates glucose uptake differently in both lines, decreasing it in 4T1 but not in B16-F10. P. nigrum extract significantly reduced tumor size in both models and decreased the occurrence of macrometastases in 4T1 model. Evaluation of immune subpopulations by flow cytometry revealed that the P. nigrum extract significantly increases the frequency of dendritic cells and activated CD8+ T cells and decreases the frequency of myeloid-derived suppressor like cells and Tregs in the tumor microenvironment of both models but with different dynamics. Our findings strongly suggest that the P. nigrum extract exerts immunomodulatory functions, slightly related to the modulation of cellular energy metabolism, which could ultimately contribute to the promising antitumor effect of P. nigrum.
Collapse
Affiliation(s)
- Paola Lasso
- Grupo de Inmunobiología y Biología Celular, Pontificia Universidad Javeriana, Carrera 7a. No. 43-82, Ed. 50, Lab. 101, Bogotá, C.P. 110211, Colombia
| | - Laura Rojas
- Grupo de Inmunobiología y Biología Celular, Pontificia Universidad Javeriana, Carrera 7a. No. 43-82, Ed. 50, Lab. 101, Bogotá, C.P. 110211, Colombia
| | - Cindy Arévalo
- Grupo de Inmunobiología y Biología Celular, Pontificia Universidad Javeriana, Carrera 7a. No. 43-82, Ed. 50, Lab. 101, Bogotá, C.P. 110211, Colombia
| | - Claudia Urueña
- Grupo de Inmunobiología y Biología Celular, Pontificia Universidad Javeriana, Carrera 7a. No. 43-82, Ed. 50, Lab. 101, Bogotá, C.P. 110211, Colombia
| | - Natalia Murillo
- Grupo de Inmunobiología y Biología Celular, Pontificia Universidad Javeriana, Carrera 7a. No. 43-82, Ed. 50, Lab. 101, Bogotá, C.P. 110211, Colombia
| | - Paula Nossa
- Grupo de Inmunobiología y Biología Celular, Pontificia Universidad Javeriana, Carrera 7a. No. 43-82, Ed. 50, Lab. 101, Bogotá, C.P. 110211, Colombia
| | - Tito Sandoval
- Grupo de Inmunobiología y Biología Celular, Pontificia Universidad Javeriana, Carrera 7a. No. 43-82, Ed. 50, Lab. 101, Bogotá, C.P. 110211, Colombia
| | - Luis Carlos Chitiva
- Grupo de Investigación en Fitoquímica, Pontificia Universidad Javeriana, Bogotá, Colombia
| | - Alfonso Barreto
- Grupo de Inmunobiología y Biología Celular, Pontificia Universidad Javeriana, Carrera 7a. No. 43-82, Ed. 50, Lab. 101, Bogotá, C.P. 110211, Colombia
| | - Geison M Costa
- Grupo de Investigación en Fitoquímica, Pontificia Universidad Javeriana, Bogotá, Colombia
| | - Susana Fiorentino
- Grupo de Inmunobiología y Biología Celular, Pontificia Universidad Javeriana, Carrera 7a. No. 43-82, Ed. 50, Lab. 101, Bogotá, C.P. 110211, Colombia.
| |
Collapse
|
11
|
Wu R, Zhao J, Wei P, Tang M, Ma Z, Zhao Y, Du L, Wan L. Piper nigrum Extract Inhibits the Growth of Human Colorectal Cancer HT-29 Cells by Inducing p53-Mediated Apoptosis. Pharmaceuticals (Basel) 2023; 16:1325. [PMID: 37765133 PMCID: PMC10537627 DOI: 10.3390/ph16091325] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 09/14/2023] [Accepted: 09/18/2023] [Indexed: 09/29/2023] Open
Abstract
Colorectal cancer (CRC) is a prevalent malignancy of the digestive tract with the second highest mortality rate globally. Piper nigrum is a widely used traditional medicinal plant, exhibiting antitumor activity against various tumor cells. At present, research on the effect of Piper nigrum on CRC is limited to in vitro cytotoxicity, lacking comprehensive mechanism investigations. This study aimed to explore the inhibitory effect and mechanism of Piper nigrum extract (PNE) on HT-29 cells. Firstly, we identified the chemical components of PNE. Then, MTT assay, colony formation assay, JC-1 staining, and flow cytometry were used to analyze the effect of PNE on HT-29 cells in vitro. A xenograft model, histopathological examination, immunohistochemistry, and western blot were used to evaluate the tumor growth inhibitory activity and mechanism of PNE in vivo. The results indicated that PNE could inhibit cell proliferation and colony formation, reduce mitochondrial membrane potential, induce cell apoptosis in vitro, and inhibit tumor growth in vivo. Furthermore, PNE could regulate p53 and its downstream proteins, and subsequently activate the caspase-3 pathway. In summary, PNE probably induced apoptosis of HT-29 cells through the mitochondrial pathway mediated by p53. All these results suggested that PNE might be a potential natural-origin anti-CRC drug candidate.
Collapse
Affiliation(s)
- Rui Wu
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; (R.W.); (J.Z.); (P.W.); (Y.Z.); (L.D.)
| | - Jiajia Zhao
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; (R.W.); (J.Z.); (P.W.); (Y.Z.); (L.D.)
| | - Panhong Wei
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; (R.W.); (J.Z.); (P.W.); (Y.Z.); (L.D.)
| | - Minghai Tang
- State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital of Sichuan University, Chengdu 610041, China; (M.T.); (Z.M.)
| | - Ziyan Ma
- State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital of Sichuan University, Chengdu 610041, China; (M.T.); (Z.M.)
| | - Yunyan Zhao
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; (R.W.); (J.Z.); (P.W.); (Y.Z.); (L.D.)
| | - Leilei Du
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; (R.W.); (J.Z.); (P.W.); (Y.Z.); (L.D.)
| | - Li Wan
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; (R.W.); (J.Z.); (P.W.); (Y.Z.); (L.D.)
| |
Collapse
|
12
|
Parveen S, Kumar S, Pal S, Yadav NP, Rajawat J, Banerjee M. Enhanced therapeutic efficacy of Piperlongumine for cancer treatment using nano-liposomes mediated delivery. Int J Pharm 2023; 643:123212. [PMID: 37429561 DOI: 10.1016/j.ijpharm.2023.123212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 07/04/2023] [Accepted: 07/06/2023] [Indexed: 07/12/2023]
Abstract
Piperlongumine (PL) is a well-known bioactive alkaloid that has been reported as a potent anticancer molecule but has failed to provide potential activity in translational and clinical applications due to some drawbacks like low bioavailability, hydrophobicity, and rapid degradation. However, nano-formulation is a good choice to increase the bioavailability and enhance cellular uptake of PL. In this study, PL loaded nano-liposomes (NPL) were formulated using the thin-film hydration method and analyzed by Response Surface Methodology (RSM) in order to treat cervical cancer. The NPL were thoroughly characterized using particle size, PDI, zeta potential, drug loading capacity, encapsulation efficiency, SEM, AFM and FTIR. Different assays viz. MTT, AO/PI, DAPI, MMP, cell migration, DCFDA and apoptotic assay using Annexin V-FITC/PI were performed for anticancer potential of NPL in human cervical carcinoma cells (SiHa and HeLa). NPL showed enhanced cytotoxicity, diminished cell proliferation, reduced cell viability, enhanced nuclear condensation, reduction in mitochondrial membrane potential, inhibited cell migration, increased ROS level and promoted more apoptosis in both human cervical cancer cell lines. These findings demonstrated that NPL may be a potential therapeutic option for cervical cancer.
Collapse
Affiliation(s)
- Shama Parveen
- Molecular and Human Genetics Laboratory, Department of Zoology, University of Lucknow, Lucknow, Uttar Pradesh 226007, India
| | - Saurabh Kumar
- Molecular and Human Genetics Laboratory, Department of Zoology, University of Lucknow, Lucknow, Uttar Pradesh 226007, India; Institute of Advanced Molecular Genetics and Infectious Diseases (IAMGID), University of Lucknow, 226007, India
| | - Sarita Pal
- Bioprospection and Product Department Division, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow, UP 226015, India
| | - Narayan Prasad Yadav
- Bioprospection and Product Department Division, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow, UP 226015, India.
| | - Jyotika Rajawat
- Institute of Advanced Molecular Genetics and Infectious Diseases (IAMGID), University of Lucknow, 226007, India
| | - Monisha Banerjee
- Molecular and Human Genetics Laboratory, Department of Zoology, University of Lucknow, Lucknow, Uttar Pradesh 226007, India; Institute of Advanced Molecular Genetics and Infectious Diseases (IAMGID), University of Lucknow, 226007, India.
| |
Collapse
|
13
|
Pressete CG, Viegas FPD, Campos TG, Caixeta ES, Hanemann JAC, Ferreira-Silva GÁ, Zavan B, Aissa AF, Miyazawa M, Viegas-Jr C, Ionta M. Piperine-Chlorogenic Acid Hybrid Inhibits the Proliferation of the SK-MEL-147 Melanoma Cells by Modulating Mitotic Kinases. Pharmaceuticals (Basel) 2023; 16:145. [PMID: 37259298 PMCID: PMC9965075 DOI: 10.3390/ph16020145] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 12/31/2022] [Accepted: 01/15/2023] [Indexed: 07/30/2023] Open
Abstract
Melanoma is considered the most aggressive form of skin cancer, showing high metastatic potential and persistent high mortality rates despite the introduction of immunotherapy and targeted therapies. Thus, it is important to identify new drug candidates for melanoma. The design of hybrid molecules, with different pharmacophore fragments combined in the same scaffold, is an interesting strategy for obtaining new multi-target and more effective anticancer drugs. We designed nine hybrid compounds bearing piperine and chlorogenic acid pharmacophoric groups and evaluated their antitumoral potential on melanoma cells with distinct mutational profiles SK-MEL-147, CHL-1 and WM1366. We identified the compound named PQM-277 (3a) to be the most cytotoxic one, inhibiting mitosis progression and promoting an accumulation of cells in pro-metaphase and metaphase by altering the expression of genes that govern G2/M transition and mitosis onset. Compound 3a downregulated FOXM1, CCNB1, CDK1, AURKA, AURKB, and PLK1, and upregulated CDKN1A. Molecular docking showed that 3a could interact with the CUL1-RBX1 complex, which activity is necessary to trigger molecular events essential for FOXM1 transactivation and, in turn, G2/M gene expression. In addition, compound 3a effectively induced apoptosis by increasing BAX/BCL2 ratio. Our findings demonstrate that 3a is an important antitumor candidate prototype and support further investigations to evaluate its potential for melanoma treatment, especially for refractory cases to BRAF/MEK inhibitors.
Collapse
Affiliation(s)
| | - Flávia Pereira Dias Viegas
- Institute of Chemistry, Laboratory of Research in Medicinal Chemistry, Federal University of Alfenas, Alfenas 37133-840, MG, Brazil
| | - Thâmara Gaspar Campos
- Institute of Chemistry, Laboratory of Research in Medicinal Chemistry, Federal University of Alfenas, Alfenas 37133-840, MG, Brazil
| | - Ester Siqueira Caixeta
- Institute of Biomedical Sciences, Federal University of Alfenas, Alfenas 37130-001, MG, Brazil
| | - João Adolfo Costa Hanemann
- Department of Clinic and Surgery, School of Dentistry, Federal University of Alfenas, Alfenas 37130-001, MG, Brazil
| | | | - Bruno Zavan
- Institute of Biomedical Sciences, Federal University of Alfenas, Alfenas 37130-001, MG, Brazil
| | - Alexandre Ferro Aissa
- Institute of Biomedical Sciences, Federal University of Alfenas, Alfenas 37130-001, MG, Brazil
| | - Marta Miyazawa
- Department of Clinic and Surgery, School of Dentistry, Federal University of Alfenas, Alfenas 37130-001, MG, Brazil
| | - Claudio Viegas-Jr
- Institute of Chemistry, Laboratory of Research in Medicinal Chemistry, Federal University of Alfenas, Alfenas 37133-840, MG, Brazil
| | - Marisa Ionta
- Institute of Biomedical Sciences, Federal University of Alfenas, Alfenas 37130-001, MG, Brazil
| |
Collapse
|
14
|
Singh N, Yadav SS. Ethnomedicinal uses of Indian spices used for cancer treatment: A treatise on structure-activity relationship and signaling pathways. Curr Res Food Sci 2022; 5:1845-1872. [PMID: 36276240 PMCID: PMC9579211 DOI: 10.1016/j.crfs.2022.10.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 09/19/2022] [Accepted: 10/06/2022] [Indexed: 11/21/2022] Open
Abstract
Cancer is among the major cause of demise worldwide. Though the array of anticancer chemical medications is available but unfortunately, they are also associated with negative health effects. The invaluable therapeutic potential of spices makes them an integral part of our daily diet. Therefore, the present work focuses on the traditional uses of 46 spices and the phytochemical analysis of 31 spices. Out of them, only 29 spices are explored for their cytotoxicity against different cancer cell lines. The pre-clinical and clinical anticancer studies of spices along with their toxicity, mechanism of actions like Wnt/β-catenin, phosphatidylinositol-3-kinase (PI3K)/Akt/mammalian target of rapamycin (mTOR), JAK/STAT, mitogen-activated protein kinase (MAPK), Notch-mediated pathways and Quantitative structure-activity relationship (QSAR) studies were also focused. Curcumin was found as one of the most explored bioactive in every aspect such as in-vitro, in-vivo, clinical as well as SAR anticancer studies while some other bioactive such as 1,8-Cineole, trans-Anethole, Diosgenin, Trigonelline are either unexplored or least explored for their clinical and SAR studies. In fact, traditional medicinal uses of spices also provide solid shreds of evidence for the new leads towards the invention of novel anticancer agents. Therefore, further research can be designed for the anticancer marketed formulation from spices after having their placebo and related toxicological data.
Collapse
Affiliation(s)
- Neetu Singh
- Department of Botany, Maharshi Dayanand University, Rohtak, Haryana, 124001, India
| | - Surender Singh Yadav
- Department of Botany, Maharshi Dayanand University, Rohtak, Haryana, 124001, India
| |
Collapse
|
15
|
Banik A, Ahmed SR, Sajib EH, Deb A, Sinha S, Azim KF. Identification of potential inhibitory analogs of metastasis tumor antigens (MTAs) using bioactive compounds: revealing therapeutic option to prevent malignancy. Mol Divers 2022; 26:2473-2502. [PMID: 34743299 DOI: 10.1007/s11030-021-10345-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Accepted: 10/24/2021] [Indexed: 12/31/2022]
Abstract
The deeper understanding of metastasis phenomenon and detection of drug targets could be a potential approach to minimize cancer mortality. In this study, attempts were taken to unmask novel therapeutics to prevent metastasis and cancer progression. Initially, we explored the physiochemical, structural and functional insights of three metastasis tumor antigens (MTAs) and evaluated some plant-based bioactive compounds as potent MTA inhibitors. From 50 plant metabolites screened, isoflavone, gingerol, citronellal and asiatic acid showed maximum binding affinity with all three MTA proteins. The ADME analysis detected no undesirable toxicity that could reduce the drug likeness properties of top plant metabolites. Moreover, molecular dynamics studies revealed that the complexes were stable and showed minimum fluctuation at molecular level. We further performed ligand-based virtual screening to identify similar drug molecules using a large collection of 376,342 compounds from DrugBank. The results suggested that several structural analogs (e.g., tramadol, nabumetone, DGLA and hydrocortisone) may act as agonist to block the MTA proteins and inhibit cancer progression at early stage. The study could be useful to develop effective medications against cancer metastasis in future. Due to encouraging results, we highly recommend further in vitro and in vivo trials for the experimental validation of the findings.
Collapse
Affiliation(s)
- Anik Banik
- Faculty of Biotechnology and Genetic Engineering, Sylhet Agricultural University, Sylhet, 3100, Bangladesh
- Department of Plant and Environmental Biotechnology, Sylhet Agricultural University, Sylhet, 3100, Bangladesh
| | - Sheikh Rashel Ahmed
- Faculty of Biotechnology and Genetic Engineering, Sylhet Agricultural University, Sylhet, 3100, Bangladesh
- Department of Plant and Environmental Biotechnology, Sylhet Agricultural University, Sylhet, 3100, Bangladesh
| | - Emran Hossain Sajib
- Faculty of Biotechnology and Genetic Engineering, Sylhet Agricultural University, Sylhet, 3100, Bangladesh
| | - Anamika Deb
- Faculty of Biotechnology and Genetic Engineering, Sylhet Agricultural University, Sylhet, 3100, Bangladesh
| | - Shiuly Sinha
- Faculty of Biotechnology and Genetic Engineering, Sylhet Agricultural University, Sylhet, 3100, Bangladesh
| | - Kazi Faizul Azim
- Department of Microbial Biotechnology, Sylhet Agricultural University, Sylhet, 3100, Bangladesh.
- Faculté de Pharmacie, Université de Tours, 37200, Tours, France.
| |
Collapse
|
16
|
Zhang Y, Yang M, Yuan Q, He Q, Ping H, Yang J, Zhang Y, Fu X, Liu J. Piperine ameliorates ischemic stroke-induced brain injury in rats by regulating the PI3K/AKT/mTOR pathway. JOURNAL OF ETHNOPHARMACOLOGY 2022; 295:115309. [PMID: 35597410 DOI: 10.1016/j.jep.2022.115309] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 04/10/2022] [Accepted: 04/16/2022] [Indexed: 06/15/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Piperine (PIP), a main active component isolated from Piper nigrum L., exerts neuroprotective effects in a rat model of ischemic stroke (IS). However, studies on the effects of PIP on neuroprotection and autophagy after IS are limited. AIM OF THE STUDY This study aimed to prove the protective effects of PIP against brain IS and elucidate its underlying mechanisms. MATERIALS AND METHODS Specific pathogen-free male Sprague-Dawley rats were selected to establish a permanent middle cerebral artery occlusion model. The experiment was randomly divided into six groups: sham group, model group, PIP intervention group (10, 20, and 30 mg/kg group), and nimodipine group (Nimo group, 12 mg/kg). Neurological function score, postural reflex score, body swing score, balance beam test, and grip strength test were used to detect behavioral changes of rats. The area of cerebral infarction was detected by TTC staining, and the number and morphological changes of neurons were observed by Nissl and HE staining. In addition, the ultrastructure of hippocampal dentate gyrus neurons was observed using a transmission electron microscope. Western blot was used to detect the expression of PI3K/AKT/mTOR signaling pathway proteins and autophagy-related proteins, namely, Beclin1 and LC3, in the hippocampus and cortex. Cell experiments established an in vitro model of oxygen-glucose deprivation (OGD) with the HT22 cell line to verify the mechanism. The experiment was divided into five groups: control group, OGD group, OGD + PIP 20 μg/mL group, OGD + PIP 30 μg/mL group, and OGD + PIP 40 μg/mL group. CCK-8 was used to measure cell activity, and Western blot was used to measure the expression of PI3K/AKT/mTOR signaling pathway proteins and autophagy-related proteins (Beclin1 and LC3). RESULTS Compared with the model group, the neurological function scores, body swing scores, and postural reflex scores of rats in the 10, 20, and 30 mg/kg PIP intervention groups and Nimo groups decreased, whereas the balance beam score and grip test scores increased (all p < 0.05). After 10, 20, and 30 mg/kg PIP and Nimo intervention, the cerebral infarction area of pMCAO rats was reduced (p < 0.01), and Nissl and HE staining results showed that the number of neurons survived in the 30 mg/kg PIP and Nimo intervention groups increased. Cell morphology and structure were significantly improved (p < 0.05). Most of the hippocampal dentate gyrus neurons and their organelles gradually returned to normal in the 30 mg/kg PIP and Nimo intervention groups, with less neuronal damage. The expression levels of p-mTOR, p-AKT, and p-PI3K in the hippocampus and cortex of the 30 mg/kg PIP and Nimo intervention groups decreased, whereas the expression level of PI3K increased (all p < 0.05). In addition, the expression level of autophagy-related proteins, namely, Beclin1 and LC3-II, in the 30 mg/kg PIP and Nimo intervention groups decreased (all p < 0.05). Results of CCK-8 showed that after 1 h of OGD, the 30 and 40 μg/mL PIP intervention groups had higher cell viability than the OGD group (p < 0.01). Western blot results showed that compared with the OGD group, the expression level of p-mTOR, p-AKT, and p-PI3K in the 30 and 40 μg/mL PIP intervention groups decreased, and the expression level of PI3K increased (all p < 0.05). Moreover, the expression level of autophagy-related proteins, namely, Beclin1 and LC3-II, in the 30 and 40 μg/mL PIP intervention groups decreased (all p < 0.05). CONCLUSIONS This study shows that PIP is a potential compound with neuroprotective effects. PIP can inhibit the PI3K/AKT/mTOR pathway and autophagy. Its inhibition of autophagy is possibly related to modulating the PI3K/AKT/mTOR pathway. These findings provide new insights into the use of PIP for the treatment of IS and its underlying mechanism.
Collapse
Affiliation(s)
- Yiwei Zhang
- School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, 750004, China
| | - Miao Yang
- School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, 750004, China
| | - Qianqian Yuan
- School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, 750004, China
| | - Qianxiong He
- School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, 750004, China
| | - Honglu Ping
- School of Clinical Medicine, Ningxia Medical University, Yinchuan, 750004, China
| | - Jianrong Yang
- School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, 750004, China
| | - Yiqiang Zhang
- School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, 750004, China
| | - Xueyan Fu
- School of Pharmacy, Ningxia Medical University, Yinchuan, 750004, China.
| | - Juan Liu
- School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, 750004, China.
| |
Collapse
|
17
|
Kumbhar P, Kole K, Khadake V, Marale P, Manjappa A, Nadaf S, Jadhav R, Patil A, Singh SK, Dua K, Jha NK, Disouza J, Patravale V. Nanoparticulate drugs and vaccines: Breakthroughs and bottlenecks of repurposing in breast cancer. J Control Release 2022; 349:812-830. [PMID: 35914614 DOI: 10.1016/j.jconrel.2022.07.039] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 07/25/2022] [Accepted: 07/26/2022] [Indexed: 11/29/2022]
Abstract
Breast cancer (BC) is a highly diagnosed and topmost cause of death in females worldwide. Drug repurposing (DR) has shown great potential against BC by overcoming major shortcomings of approved anticancer therapeutics. However, poor physicochemical properties, pharmacokinetic performance, stability, non-selectivity to tumors, and side effects are severe hurdles in repurposed drug delivery against BC. The variety of nanocarriers (NCs) has shown great promise in delivering repurposed therapeutics for effective treatment of BC via improving solubility, stability, tumor selectivity and reducing toxicity. Besides, delivering repurposed cargos via theranostic NCs can be helpful in the quick diagnosis and treatment of BC. Localized delivery of repurposed candidates through apt NCs can diminish the systemic side effects and improve anti-tumor effectiveness. However, breast tumor variability and tumor microenvironment have created several challenges to nanoparticulate delivery of repurposed cargos. This review focuses on DR as an ingenious strategy to treat BC and circumvent the drawbacks of approved anticancer therapeutics. Various nanoparticulate avenues delivering repurposed therapeutics, including non-oncology cargos and vaccines to target BC effectively, are discussed along with case studies. Moreover, clinical trial information on repurposed medications and vaccines for the treatment of BC is covered along with various obstacles in nanoparticulate drug delivery against cancer that have been so far identified. In a nutshell, DR and drug delivery of repurposed drugs via NCs appears to be a propitious approach in devastating BC.
Collapse
Affiliation(s)
- Popat Kumbhar
- Tatyasaheb Kore College of Pharmacy, Warananagar, Tal: Panhala, Kolhapur, Maharashtra 416113, India
| | - Kapil Kole
- Tatyasaheb Kore College of Pharmacy, Warananagar, Tal: Panhala, Kolhapur, Maharashtra 416113, India
| | - Varsha Khadake
- Tatyasaheb Kore College of Pharmacy, Warananagar, Tal: Panhala, Kolhapur, Maharashtra 416113, India
| | - Pradnya Marale
- Tatyasaheb Kore College of Pharmacy, Warananagar, Tal: Panhala, Kolhapur, Maharashtra 416113, India; S. D. Patil Institute of Pharmacy, Urun-Islampur, Maharashtra 416113, India
| | - Arehalli Manjappa
- Tatyasaheb Kore College of Pharmacy, Warananagar, Tal: Panhala, Kolhapur, Maharashtra 416113, India
| | - Sameer Nadaf
- Sant Gajanan Maharaj College of Pharmacy, Mahagaon, Gadhinglaj, Maharashtra, India
| | - Rajendra Jadhav
- Bharati Vidyapeeth (Deemed to be University) Pune, Institute of Management, Kolhapur, India
| | - Ajit Patil
- Tatyasaheb Kore College of Pharmacy, Warananagar, Tal: Panhala, Kolhapur, Maharashtra 416113, India
| | - Sachin Kumar Singh
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab 144411, India; Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Kamal Dua
- Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, NSW 2007, Australia; Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, NSW 2007, Australia; Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University, Dehradun 248007, India
| | - Niraj Kumar Jha
- Department of Biotechnology, School of Engineering & Technology (SET), Sharda University, Greater Noida 201310, Uttar Pradesh, India; Department of Biotechnology Engineering and Food Technology, Chandigarh University, Mohali 140413, India; Department of Biotechnology, School of Applied & Life Sciences (SALS), Uttaranchal University, Dehradun 248007, India
| | - John Disouza
- Tatyasaheb Kore College of Pharmacy, Warananagar, Tal: Panhala, Kolhapur, Maharashtra 416113, India.
| | - Vandana Patravale
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, Matunga, Mumbai, Maharashtra 400019, India.
| |
Collapse
|
18
|
Survivin Inhibition by Piperine Sensitizes Glioblastoma Cancer Stem Cells and Leads to Better Drug Response. Int J Mol Sci 2022; 23:ijms23147604. [PMID: 35886952 PMCID: PMC9323232 DOI: 10.3390/ijms23147604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Revised: 07/01/2022] [Accepted: 07/04/2022] [Indexed: 11/17/2022] Open
Abstract
Glioblastoma multiforme (GBM) cancer stem cells (GSCs) are one of the strongest contributing factors to treatment resistance in GBM. Identification of biomarkers capable of directly affecting these cells within the bulk tumor is a major challenge associated with the development of new targeting strategies. In this study, we focus on understanding the potential of the multifunctional extraordinaire survivin as a biomarker for GSCs. We analyzed the expression profiles of this gene using various publicly available datasets to understand its importance in stemness and other cancer processes. The findings from these studies were further validated using human GSCs isolated from a GBM cell line. In these GSCs, survivin was inhibited using the dietary phytochemical piperine (PIP) and the subsequent effects on stemness, cancer processes and Temozolomide were investigated. In silico analysis identified survivin to be one of the most significant differentially regulated gene in GSCs, in comparison to common stemness markers. Further validation studies on the isolated GSCs showed the importance of survivin in stemness, cancer progression and therapy resistance. Taken together, our study identifies survivin as a more consistent GSC marker and also suggests the possibility of using survivin inhibitors along with standard of care drugs for better therapeutic outcomes.
Collapse
|
19
|
Metabolomic analysis of serum alpha-tocopherol among men in the Alpha-Tocopherol, Beta-Carotene Cancer Prevention (ATBC) Study. Eur J Clin Nutr 2022; 76:1254-1265. [PMID: 35322169 PMCID: PMC9444878 DOI: 10.1038/s41430-022-01112-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 02/09/2022] [Accepted: 02/22/2022] [Indexed: 11/08/2022]
Abstract
BACKGROUND/OBJECTIVES The role of vitamin E in chronic disease risk remains incompletely understood, particularly in an un-supplemented state, and evidence is sparse regarding the biological actions and pathways involved in its influence on health outcomes. Identifying vitamin-E-associated metabolites through agnostic metabolomics analyses can contribute to elucidating the specific associations and disease etiology. This study aims to investigate the association between circulating metabolites and serum α-tocopherol concentration in an un-supplemented state. SUBJECTS/METHODS Metabolomic analysis of 4,294 male participants was conducted based on pre-supplementation fasting serum in the Alpha-Tocopherol, Beta-Carotene Cancer Prevention Study. The associations between 1,791 known metabolites measured by ultra-high-performance LC-MS/GC-MS and HPLC-determined α-tocopherol concentration were estimated using multivariable linear regression. Differences in metabolite levels per unit difference in α-tocopherol concentration were calculated as standardized β-coefficients and standard errors. RESULTS A total of 252 metabolites were associated with serum α-tocopherol at the Bonferroni-corrected p value (p < 2.79 × 10-5). Most of these metabolites were of lipid and amino acid origin, with the respective subclasses of dicarboxylic fatty acids, and valine, leucine, and isoleucine metabolism, being highly represented. Among lipids, the strongest signals were observed for linoleoyl-arachidonoyl-glycerol (18:2/20:4)[2](β = 0.149; p = 8.65 × 10-146) and sphingomyelin (D18:2/18:1) (β = 0.035; p = 1.36 × 10-30). For amino acids, the strongest signals were aminoadipic acid (β = 0.021; p = 5.01 × 10-13) and l-leucine (β = 0.007; p = 1.05 × 10-12). CONCLUSIONS The large number of metabolites, particularly lipid and amino acid compounds associated with serum α-tocopherol provide leads regarding potential mechanisms through which vitamin E influences human health, including its role in cardiovascular disease and cancer.
Collapse
|
20
|
Yadav SS, Singh MK, Hussain S, Dwivedi P, Khattri S, Singh K. Therapeutic spectrum of piperine for clinical practice: a scoping review. Crit Rev Food Sci Nutr 2022; 63:5813-5840. [PMID: 34996326 DOI: 10.1080/10408398.2021.2024792] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Translation of traditional knowledge of herbs into a viable product for clinical use is still an uphill task. Piperine, a pungent alkaloid molecule derived from Piper nigrum and Piper longum possesses diverse pharmacological effects. Traditionally, pepper is used for arthritis, bronchitis, gastritis, diarrhea, snake bite, menstrual pain, fever, and bacterial infections, etc. The anti-inflammatory, antioxidant and immunomodulatory actions of piperine are the possible mechanisms behind its therapeutic potential. Various in-silico and experimental studies have shown piperine as a possible promising molecule in coronavirus disease (COVID-19), ebola, and dengue due to its immunomodulatory and antiviral activities. The other important clinical applications of piperine are due to its bio enhancing effect on drugs, by modulating, absorption in the gastrointestinal tract, altering activities of transporters like p-glycoprotein substrates, and modulating drug metabolism by altering the expression of cytochrome P450 or UDP-glucuronosyltransferase enzymes. Piperine attracted clinicians in treating patients with arthritis, metabolic syndrome, diabetes, skin infections, gastric and liver disorders. This review focused on systematic, evidence-based insight into the use of piperine in clinical settings and mechanistic details behind its therapeutic actions. Also, highlights a number of clinical trials of piperine at various stages exploring its clinical application in cancer, neurological, respiratory, and viral disease, etc.
Collapse
|
21
|
Buranrat B, Junking M. Piperine suppresses growth and migration of human breast cancer cells through attenuation of Rac1 expression. Asian Pac J Trop Biomed 2022. [DOI: 10.4103/2221-1691.333211] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
22
|
Buranrat B, Senggunprai L, Prawan A, Kukongviriyapan V. Anticancer effects of Piper nigrum extract against cholangiocarcinoma cells. Pharmacogn Mag 2022. [DOI: 10.4103/pm.pm_521_21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
23
|
Jeong JH, Ryu JH, Lee HJ. In Vitro Inhibition of Piper nigrum and Piperine on Growth, Migration, and Invasion of PANC-1 Human Pancreatic Cancer Cells. Nat Prod Commun 2021. [DOI: 10.1177/1934578x211057694] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Several dietary and medicinal herbs have been shown to be effective in the treatment and prevention of cancer. Although Piper nigrum has been shown to have anti-cancer activities against various cancer cells, its anti-pancreatic cancer properties have not been reported. In the present study, P. nigrum extract (PNE) inhibited proliferation of PANC-1 human pancreatic cancer cells. Flow cytometry showed G0/G1 arrest caused by PNE in PANC-1 cells. In addition, Western blot analysis showed that PNE suppressed the protein levels of cell cycle regulators such as cyclin B1, cyclin D1, survivin, and Forkhead box M1 (FoxM1). These findings suggested that the inhibitory activity of PNE against the growth of PANC-1 cells was correlated with cell cycle arrest and repression of cell cycle regulators. Wound healing and trans-well assays showed that PNE suppressed migration and invasion of PANC-1 cells. Piperine, a major alkaloid of Piper nigrum, was identified as the main component of PNE by HPLC analysis. Piperine also attenuated the cell growth, migration, and invasion of PANC-1 cells, suggesting its contribution to the anti-pancreatic cancer effects of PNE. These results demonstrate that PNE and its major constituent, piperine, have anti-pancreatic cancer properties such as growth-inhibition, anti-migration, and anti-invasion of cancer cells.
Collapse
Affiliation(s)
- Ji Hye Jeong
- College of Pharmacy, Sookmyung Women's University, Yongsan-gu, Seoul, Korea
| | - Jae-Ha Ryu
- College of Pharmacy, Sookmyung Women's University, Yongsan-gu, Seoul, Korea
| | - Hwa Jin Lee
- School of Industrial Bio-Pharmaceutical Science, Semyung University, Jecheon, Korea
| |
Collapse
|
24
|
Liu SL, Yang KH, Yang CW, Lee MY, Chuang YT, Chen YN, Chang FR, Chen CY, Chang HW. Burmannic Acid Inhibits Proliferation and Induces Oxidative Stress Response of Oral Cancer Cells. Antioxidants (Basel) 2021; 10:antiox10101588. [PMID: 34679723 PMCID: PMC8533162 DOI: 10.3390/antiox10101588] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 10/05/2021] [Accepted: 10/09/2021] [Indexed: 12/13/2022] Open
Abstract
Burmannic acid (BURA) is a new apocarotenoid bioactive compound derived from Indonesian cinnamon; however, its anticancer effect has rarely been investigated in oral cancer cells. In this investigation, the consequences of the antiproliferation of oral cancer cells effected by BURA were evaluated. BURA selectively suppressed cell proliferation of oral cancer cells (Ca9-22 and CAL 27) but showed little cytotoxicity to normal oral cells (HGF-1). In terms of mechanism, BURA perturbed cell cycle distribution, upregulated mitochondrial superoxide, induced mitochondrial depolarization, triggered γH2AX and 8-hydroxy-2-deoxyguanosine DNA damage, and induced apoptosis and caspase 3/8/9 activation in oral cancer cells. Application of N-acetylcysteine confirmed oxidative stress as the critical factor in promoting antiproliferation, apoptosis, and DNA damage in oral cancer cells.
Collapse
Affiliation(s)
- Su-Ling Liu
- Experimental Forest College of Bioresources and Agriculture, National Taiwan University, Zhushan Township, Nantou County 55750, Taiwan;
| | - Kun-Han Yang
- Graduate Institute of Natural Products, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; (K.-H.Y.); (C.-W.Y.); (F.-R.C.)
| | - Che-Wei Yang
- Graduate Institute of Natural Products, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; (K.-H.Y.); (C.-W.Y.); (F.-R.C.)
| | - Min-Yu Lee
- Department of Biomedical Science and Environmental Biology, College of Life Science, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; (M.-Y.L.); (Y.-T.C.); (Y.-N.C.)
| | - Ya-Ting Chuang
- Department of Biomedical Science and Environmental Biology, College of Life Science, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; (M.-Y.L.); (Y.-T.C.); (Y.-N.C.)
| | - Yan-Ning Chen
- Department of Biomedical Science and Environmental Biology, College of Life Science, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; (M.-Y.L.); (Y.-T.C.); (Y.-N.C.)
| | - Fang-Rong Chang
- Graduate Institute of Natural Products, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; (K.-H.Y.); (C.-W.Y.); (F.-R.C.)
| | - Chung-Yi Chen
- Department of Nutrition and Health Sciences, School of Medical and Health Sciences, Fooyin University, Kaohsiung 83102, Taiwan
- Correspondence: (C.-Y.C.); (H.-W.C.); Tel.: +886-7-781-1151 (ext. 6200) (C.-Y.C.); +886-7-312-1101 (ext. 2691) (H.-W.C.)
| | - Hsueh-Wei Chang
- Department of Biomedical Science and Environmental Biology, College of Life Science, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; (M.-Y.L.); (Y.-T.C.); (Y.-N.C.)
- Center for Cancer Research, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung 80708, Taiwan
- Correspondence: (C.-Y.C.); (H.-W.C.); Tel.: +886-7-781-1151 (ext. 6200) (C.-Y.C.); +886-7-312-1101 (ext. 2691) (H.-W.C.)
| |
Collapse
|
25
|
Targeting Drug Chemo-Resistance in Cancer Using Natural Products. Biomedicines 2021; 9:biomedicines9101353. [PMID: 34680470 PMCID: PMC8533186 DOI: 10.3390/biomedicines9101353] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Revised: 09/22/2021] [Accepted: 09/23/2021] [Indexed: 02/07/2023] Open
Abstract
Cancer is one of the leading causes of death globally. The development of drug resistance is the main contributor to cancer-related mortality. Cancer cells exploit multiple mechanisms to reduce the therapeutic effects of anticancer drugs, thereby causing chemotherapy failure. Natural products are accessible, inexpensive, and less toxic sources of chemotherapeutic agents. Additionally, they have multiple mechanisms of action to inhibit various targets involved in the development of drug resistance. In this review, we have summarized the basic research and clinical applications of natural products as possible inhibitors for drug resistance in cancer. The molecular targets and the mechanisms of action of each natural product are also explained. Diverse drug resistance biomarkers were sensitive to natural products. P-glycoprotein and breast cancer resistance protein can be targeted by a large number of natural products. On the other hand, protein kinase C and topoisomerases were less sensitive to most of the studied natural products. The studies discussed in this review will provide a solid ground for scientists to explore the possible use of natural products in combination anticancer therapies to overcome drug resistance by targeting multiple drug resistance mechanisms.
Collapse
|