1
|
Ghanati K, Basaran B, Abedini A, Akbari-adergani B, Akbari N, Sadighara P. Zearalenone, an estrogenic component, in bovine milk, amount and detection method; A systematic review and meta-analysis. Toxicol Rep 2024; 13:101688. [PMID: 39070158 PMCID: PMC11277727 DOI: 10.1016/j.toxrep.2024.101688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 06/11/2024] [Accepted: 07/03/2024] [Indexed: 07/30/2024] Open
Abstract
Zearalenone (ZEN) and its metabolites are a potent component with estrogenic potential that can enter milk. ZEN and its metabolites have the ability to disturb the function of endocrine glands. The aim of this systematic review was to estimate the level of ZEN and its metabolites in milk. This study was performed with these keywords; zearalenone, ZEN, bovine milk, ruminant milk, milk, dairy products, and milk product in various databases. 946 manuscripts were collected from databases and at the end, 17 manuscripts were reviewed according to the inclusion criteria. ZEN was identified in 59 % of studies. The most common methods of analysis were UHPLC, HPLC and ELISA. Meta-analysis was performed with CMA (Comprehensive Meta-Analysis) software. No publication bias was observed in meta- analysis. But, heterogeneity was recorded between studies. The measurement method was identified as one of the sources of heterogeneity through meta-regression tests and subgroup analysis. Furthermore, in meta- analysis test, the total estimate of milk contamination with this mycotoxin was 0.036±0.017 µg/L. So far, the permissible limit for this compound in milk has not been announced, but these compounds have the ability to disturb the endocrine glands in low amounts. Therefore, it is necessary to regularly measure and control this mycotoxin and its metabolite in milk with valid methods.
Collapse
Affiliation(s)
- Kiandokht Ghanati
- Department of food science and Technology, National Nutrition and Food Technology Research Institute (NNFTRI) and Food safety research center, Shahid Beheshti University of medical sciences, Tehran, Iran
| | - Burhan Basaran
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Recep Tayyip Erdogan University, Rize 53100, Turkiye
| | - Amirhossein Abedini
- Student Research Committee, Department of Food Science and Technology, Faculty of Nutrition Science and Food Technology, National Nutrition and Food Technology Research Institute, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Behrouz Akbari-adergani
- Water Safety Research Center, Food and Drug Administration, Ministry of Health and Medical Education, Tehran, Iran
| | - Nader Akbari
- Department of Environmental Health, Food Safety Division, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Parisa Sadighara
- Department of Environmental Health, Food Safety Division, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
2
|
Liu M, Zhang X, Luan H, Zhang Y, Xu W, Feng W, Song P. Bioenzymatic detoxification of mycotoxins. Front Microbiol 2024; 15:1434987. [PMID: 39091297 PMCID: PMC11291262 DOI: 10.3389/fmicb.2024.1434987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Accepted: 07/08/2024] [Indexed: 08/04/2024] Open
Abstract
Mycotoxins are secondary metabolites produced during the growth, storage, and transportation of crops contaminated by fungi and are physiologically toxic to humans and animals. Aflatoxin, zearalenone, deoxynivalenol, ochratoxin, patulin, and fumonisin are the most common mycotoxins and can cause liver and nervous system damage, immune system suppression, and produce carcinogenic effects in humans and animals that have consumed contaminated food. Physical, chemical, and biological methods are generally used to detoxify mycotoxins. Although physical methods, such as heat treatment, irradiation, and adsorption, are fast and simple, they have associated problems including incomplete detoxification, limited applicability, and cause changes in food characteristics (e.g., nutritive value, organoleptic properties, and palatability). Chemical detoxification methods, such as ammonification, ozonation, and peroxidation, pollute the environment and produce food safety risks. In contrast, bioenzymatic methods are advantageous as they achieve selective detoxification and are environmentally friendly and reusable; thus, these methods are the most promising options for the detoxification of mycotoxins. This paper reviews recent research progress on common mycotoxins and the enzymatic principles and mechanisms for their detoxification, analyzes the toxicity of the degradation products and describes the challenges faced by researchers in carrying out enzymatic detoxification. In addition, the application of enzymatic detoxification in food and feed is discussed and future directions for the development of enzymatic detoxification methods are proposed for future in-depth study of enzymatic detoxification methods.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Peng Song
- College of Life Sciences, Liaocheng University, Liaocheng, China
| |
Collapse
|
3
|
André A, Hecht K, Mischler S, Stäheli L, Kerhanaj F, Buller R, Kinner M, Freimüller Leischtfeld S, Chetschik I, Miescher Schwenninger S, Müller N. A new physical and biological strategy to reduce the content of zearalenone in infected wheat kernels: the effect of cold needle perforation, microorganisms, and purified enzyme. Food Res Int 2024; 186:114364. [PMID: 38729726 DOI: 10.1016/j.foodres.2024.114364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 04/05/2024] [Accepted: 04/17/2024] [Indexed: 05/12/2024]
Abstract
With the aim of reintroducing wheat grains naturally contaminated with mycotoxins into the food value chain, a decontamination strategy was developed in this study. For this purpose, in a first step, the whole wheat kernels were pre-treated using cold needle perforation. The pore size was evaluated by scanning electron microscopy and the accessibility of enzymes and microorganisms determined using fluorescent markers in the size range of enzymes (5 nm) and microorganisms (10 μm), and fluorescent microscopy. The perforated wheat grains, as well as non-perforated grains as controls, were then incubated with selected microorganisms (Bacillus megaterium Myk145 and B. licheniformis MA572) or with the enzyme ZHD518. The two bacilli strains were not able to significantly reduce the amount of zearalenone (ZEA), neither in the perforated nor in the non-perforated wheat kernels in comparison with the controls. In contrast, the enzyme ZHD518 significantly reduced the initial concentration of ZEA in the perforated and non-perforated wheat kernels in comparison with controls. Moreover, in vitro incubation of ZHD518 with ZEA showed the presence of two non-estrogenic degradation products of ZEA: hydrolysed zearalenone (HZEA) and decarboxylated hydrolysed ZEA (DHZEA). In addition, the physical pre-treatment led to a reduction in detectable mycotoxin contents in a subset of samples. Overall, this study emphasizes the promising potential of combining physical pre-treatment approaches with biological decontamination solutions in order to address the associated problem of mycotoxin contamination and food waste reduction.
Collapse
Affiliation(s)
- Amandine André
- ZHAW Zurich University of Applied Sciences, Department for Life Sciences und Facility Management, Institute of Food and Beverage Innovation, Einsiedlerstrasse 35, 8820 Wädenswil, Switzerland.
| | - Katrin Hecht
- ZHAW Zurich University of Applied Sciences, Department for Life Sciences und Facility Management, Institute of Chemistry and Biotechnology, Einsiedlerstrasse 31, 8820 Wädenswil, Switzerland
| | - Sandra Mischler
- ZHAW Zurich University of Applied Sciences, Department for Life Sciences und Facility Management, Institute of Food and Beverage Innovation, Einsiedlerstrasse 35, 8820 Wädenswil, Switzerland
| | - Luca Stäheli
- ZHAW Zurich University of Applied Sciences, Department for Life Sciences und Facility Management, Institute of Food and Beverage Innovation, Einsiedlerstrasse 35, 8820 Wädenswil, Switzerland
| | - Fllanza Kerhanaj
- ZHAW Zurich University of Applied Sciences, Department for Life Sciences und Facility Management, Institute of Chemistry and Biotechnology, Einsiedlerstrasse 31, 8820 Wädenswil, Switzerland
| | - Rebecca Buller
- ZHAW Zurich University of Applied Sciences, Department for Life Sciences und Facility Management, Institute of Chemistry and Biotechnology, Einsiedlerstrasse 31, 8820 Wädenswil, Switzerland
| | - Mathias Kinner
- ZHAW Zurich University of Applied Sciences, Department for Life Sciences und Facility Management, Institute of Food and Beverage Innovation, Einsiedlerstrasse 35, 8820 Wädenswil, Switzerland
| | - Susette Freimüller Leischtfeld
- ZHAW Zurich University of Applied Sciences, Department for Life Sciences und Facility Management, Institute of Food and Beverage Innovation, Einsiedlerstrasse 35, 8820 Wädenswil, Switzerland
| | - Irene Chetschik
- ZHAW Zurich University of Applied Sciences, Department for Life Sciences und Facility Management, Institute of Food and Beverage Innovation, Einsiedlerstrasse 35, 8820 Wädenswil, Switzerland
| | - Susanne Miescher Schwenninger
- ZHAW Zurich University of Applied Sciences, Department for Life Sciences und Facility Management, Institute of Food and Beverage Innovation, Einsiedlerstrasse 35, 8820 Wädenswil, Switzerland
| | - Nadina Müller
- ZHAW Zurich University of Applied Sciences, Department for Life Sciences und Facility Management, Institute of Food and Beverage Innovation, Einsiedlerstrasse 35, 8820 Wädenswil, Switzerland
| |
Collapse
|
4
|
Sun Z, Fang Y, Zhu Y, Tian W, Yu J, Tang J. Biotransformation of zearalenone to non-estrogenic compounds with two novel recombinant lactonases from Gliocladium. BMC Microbiol 2024; 24:75. [PMID: 38454365 PMCID: PMC10921726 DOI: 10.1186/s12866-024-03226-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Accepted: 02/15/2024] [Indexed: 03/09/2024] Open
Abstract
BACKGROUND The mycotoxin zearalenone (ZEA) produced by toxigenic fungi is widely present in cereals and its downstream products. The danger of ZEA linked to various human health issues has attracted increasing attention. Thus, powerful ZEA-degrading or detoxifying strategies are urgently needed. Biology-based detoxification methods are specific, efficient, and environmentally friendly and do not lead to negative effects during cereal decontamination. Among these, ZEA detoxification using degrading enzymes was documented to be a promising strategy in broad research. Here, two efficient ZEA-degrading lactonases from the genus Gliocladium, ZHDR52 and ZHDP83, were identified for the first time. This work studied the degradation capacity and properties of ZEA using purified recombinant ZHDR52 and ZHDP83. RESULTS According to the ZEA degradation study, transformed Escherichia coli BL21(DE3) PLySs cells harboring the zhdr52 or zhdp83 gene could transform 20 µg/mL ZEA within 2 h and degrade > 90% of ZEA toxic derivatives, α/β-zearalanol and α/β-zearalenol, within 6 h. Biochemical analysis demonstrated that the optimal pH was 9.0 for ZHDR52 and ZHDP83, and the optimum temperature was 45 °C. The purified recombinant ZHDR52 and ZHDP83 retained > 90% activity over a wide range of pH values and temperatures (pH 7.0-10.0 and 35-50 °C). In addition, the specific activities of purified ZHDR52 and ZHDP83 against ZEA were 196.11 and 229.64 U/mg, respectively. The results of these two novel lactonases suggested that, compared with ZHD101, these two novel lactonases transformed ZEA into different products. The slight position variations in E126 and H242 in ZDHR52/ZEA and ZHDP83/ZEA obtained via structural modelling may explain the difference in degradation products. Moreover, the MCF-7 cell proliferation assay indicated that the products of ZEA degradation using ZHDR52 and ZHDP83 did not exhibit estrogenic activity. CONCLUSIONS ZHDR52 and ZHDP83 are alkali ZEA-degrading enzymes that can efficiently and irreversibly degrade ZEA into non-estrogenic products, indicating that they are potential candidates for commercial application. This study identified two excellent lactonases for industrial ZEA detoxification.
Collapse
Affiliation(s)
- Zongping Sun
- Anhui Province Key Laboratory of Environmental Hormone and Reproduction, Anhui Province Key Laboratory of Embryo Development and Reproductive Regulation, Fuyang Normal University, Anhui, Fuyang, 236037, China
- The Anhui Agricultural University's Comprehensive Experimental Station in the Northwest of Anhui Province, Linquan Modern Agricultural Technology Cooperation and Extension Service Center, Anhui, Linquan, 236400, China
| | - Yuting Fang
- Anhui Province Key Laboratory of Environmental Hormone and Reproduction, Anhui Province Key Laboratory of Embryo Development and Reproductive Regulation, Fuyang Normal University, Anhui, Fuyang, 236037, China
| | - Yaohuan Zhu
- Anhui Province Key Laboratory of Environmental Hormone and Reproduction, Anhui Province Key Laboratory of Embryo Development and Reproductive Regulation, Fuyang Normal University, Anhui, Fuyang, 236037, China
| | - Wen Tian
- Anhui Province Key Laboratory of Environmental Hormone and Reproduction, Anhui Province Key Laboratory of Embryo Development and Reproductive Regulation, Fuyang Normal University, Anhui, Fuyang, 236037, China
| | - Junjie Yu
- Anhui Province Key Laboratory of Environmental Hormone and Reproduction, Anhui Province Key Laboratory of Embryo Development and Reproductive Regulation, Fuyang Normal University, Anhui, Fuyang, 236037, China
| | - Jun Tang
- Anhui Province Key Laboratory of Environmental Hormone and Reproduction, Anhui Province Key Laboratory of Embryo Development and Reproductive Regulation, Fuyang Normal University, Anhui, Fuyang, 236037, China.
| |
Collapse
|
5
|
Pierron A, Kleber A, Mayer E, Gerner W. Effect of DON and ZEN and their metabolites DOM-1 and HZEN on B cell proliferation and antibody production. Front Immunol 2024; 15:1338937. [PMID: 38449861 PMCID: PMC10915041 DOI: 10.3389/fimmu.2024.1338937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 01/24/2024] [Indexed: 03/08/2024] Open
Abstract
Introduction The mycotoxins deoxynivalenol (DON) and zearalenone (ZEN), produced by Fusarium fungi, are frequently found in the cereal-rich diet of pigs and can modulate the immune system. Some enzymes or bacteria present in the digestive tract can de-epoxydize DON to deepoxy-deoxynivalenol (DOM-1) and biotransform ZEN into hydrolyzed ZEN (HZEN). The effects of these metabolites on immune cells, particularly with respect to the vaccine responses, are poorly documented. The aim of this study was to address the impact of DON and ZEN and their respective derivatives, on proliferation, and antibody production of porcine B cells in vitro. Methods Peripheral blood mononuclear cells (PBMCs), isolated from healthy pigs, were stimulated with the Toll-like receptor (TLR) 7/8-agonist Resiquimod (R848) or the TLR/1/2-agonist Pam3Cys-SKKKK in combination with DON [0.1-1.6 µM] or DOM-1 [1.6 µM and 16 µM] and ZEN [2.5-40 µM] or HZEN [40 µM]. Results A strong decrease in B-cell proliferation was observed at DON concentrations equal to or exceeding 0.8 µM and at ZEN concentrations equal to or exceeding 20 µM. Treatment with 1.6 µM DON or 40 µM ZEN led to almost a complete loss of live CD79α+ B cells. Moreover, CD21 expression of proliferating IgG+ and IgM+ B-cell subsets was decreased at DON concentrations equal to and exceeding 0.4 µM and at ZEN concentrations equal to or exceeding 10 µM. ELISpot assays revealed a decrease of IgG-secreting B cells at concentrations of and exceeding 0.4 µM and at ZEN concentrations equal to and exceeding 10 µM. ELISA assays showed a decrease of IgM, IgG, and IgA secretion at concentrations equal to or exceeding 0.4 µM DON. ZEN reduced IgM secretion at 20-40 µM (both R848 and Pam3Cys-SKKKK), IgG secretion at 40 µM (both R848 and Pam3Cys-SKKKK) and IgA secretion at 20-40 µM. Discussion Our in vitro experiments show that while DON and ZEN impair immunoglobulin production and B-cell proliferation, this effect is abrogated by HZEN and DOM-1.
Collapse
Affiliation(s)
- Alix Pierron
- Department of Pathobiology, Institute of Immunology, University of Veterinary Medicine, Vienna, Austria
| | - Alexandra Kleber
- dsm-firmenich, Animal Nutrition and Health R&D Center, Tulln, Austria
| | - Elisabeth Mayer
- dsm-firmenich, Animal Nutrition and Health R&D Center, Tulln, Austria
| | - Wilhelm Gerner
- Department of Pathobiology, Institute of Immunology, University of Veterinary Medicine, Vienna, Austria
| |
Collapse
|
6
|
Sun H, He Z, Xiong D, Long M. Mechanisms by which microbial enzymes degrade four mycotoxins and application in animal production: A review. ANIMAL NUTRITION (ZHONGGUO XU MU SHOU YI XUE HUI) 2023; 15:256-274. [PMID: 38033608 PMCID: PMC10685049 DOI: 10.1016/j.aninu.2023.09.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 09/10/2023] [Accepted: 09/14/2023] [Indexed: 12/02/2023]
Abstract
Mycotoxins are toxic compounds that pose a serious threat to animal health and food safety. Therefore, there is an urgent need for safe and efficient methods of detoxifying mycotoxins. As biotechnology has continued to develop, methods involving biological enzymes have shown great promise. Biological enzymatic methods, which can fundamentally destroy the structures of mycotoxins and produce degradation products whose toxicity is greatly reduced, are generally more specific, efficient, and environmentally friendly. Mycotoxin-degrading enzymes can thus facilitate the safe and effective detoxification of mycotoxins which gives them a huge advantage over other methods. This article summarizes the newly discovered degrading enzymes that can degrade four common mycotoxins (aflatoxins, zearalenone, deoxynivalenol, and ochratoxin A) in the past five years, and reveals the degradation mechanism of degrading enzymes on four mycotoxins, as well as their positive effects on animal production. This review will provide a theoretical basis for the safe treatment of mycotoxins by using biological enzyme technology.
Collapse
Affiliation(s)
- Huiying Sun
- Key Laboratory of Livestock Infectious Diseases, Ministry of Education, Key Laboratory of Ruminant Infectious Disease Prevention and Control (East), Ministry of Agriculture and Rural Affairs, China
- College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, 110866, China
| | - Ziqi He
- Key Laboratory of Livestock Infectious Diseases, Ministry of Education, Key Laboratory of Ruminant Infectious Disease Prevention and Control (East), Ministry of Agriculture and Rural Affairs, China
- College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, 110866, China
| | - Dongwei Xiong
- Key Laboratory of Livestock Infectious Diseases, Ministry of Education, Key Laboratory of Ruminant Infectious Disease Prevention and Control (East), Ministry of Agriculture and Rural Affairs, China
- College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, 110866, China
| | - Miao Long
- Key Laboratory of Livestock Infectious Diseases, Ministry of Education, Key Laboratory of Ruminant Infectious Disease Prevention and Control (East), Ministry of Agriculture and Rural Affairs, China
- College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, 110866, China
| |
Collapse
|
7
|
Wang Z, Luo F, Jiang S, Selvaraj JN, Zhou Y, Zhang G. Biochemical characterization and molecular modification of a zearalenone hydrolyzing enzyme Zhd11D from Phialophora attinorum. Enzyme Microb Technol 2023; 170:110286. [PMID: 37499311 DOI: 10.1016/j.enzmictec.2023.110286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 07/07/2023] [Accepted: 07/07/2023] [Indexed: 07/29/2023]
Abstract
ZEN lactone hydrolase (ZHD) can hydrolyze zearalenone (ZEN) to less or non-toxic product, providing an environment-friendly way for food or feeds-containing ZENs detoxification. Here, a newly identified ZHD from Phialophora attinorum, annotated as Zhd11D, was characterized to exhibit highest activity against ZEN at pH 8.0 and 35 ℃ with a specific activity of 304.7 U/mg, which was far higher than most of the reported ZHDs. A nonspecific protein engineering method was introduced through fusing a segment of amphiphilic short peptide S1 at the N-terminus of Zhd11D, resulting in both improved activity (1.5-fold) and thermostability (2-fold at 40 ℃). Biochemical analysis demonstrated that self-aggregation caused by intermolecular interactions between S1 contributed to the improvement of the enzymatic properties of Zhd11D. Additionally, S1-Zhd11D showed a higher hydrolysis rate of ZEN than Zhd11D in peanut oil.
Collapse
Affiliation(s)
- Zhaoxiang Wang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, College of Life Sciences, Hubei University, Wuhan 430062, Hubei, China
| | - Feifan Luo
- State Key Laboratory of Biocatalysis and Enzyme Engineering, College of Life Sciences, Hubei University, Wuhan 430062, Hubei, China; Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, Jiangsu, China
| | - Sijing Jiang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, College of Life Sciences, Hubei University, Wuhan 430062, Hubei, China
| | - Jonathan Nimal Selvaraj
- State Key Laboratory of Biocatalysis and Enzyme Engineering, College of Life Sciences, Hubei University, Wuhan 430062, Hubei, China
| | - Yuling Zhou
- State Key Laboratory of Biocatalysis and Enzyme Engineering, College of Life Sciences, Hubei University, Wuhan 430062, Hubei, China.
| | - Guimin Zhang
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China.
| |
Collapse
|
8
|
Kleber A, Gruber-Dorninger C, Platzer A, Payet C, Novak B. Effect of Fungicide Treatment on Multi-Mycotoxin Occurrence in French Wheat during a 4-Year Period. Toxins (Basel) 2023; 15:443. [PMID: 37505712 PMCID: PMC10467151 DOI: 10.3390/toxins15070443] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 06/13/2023] [Accepted: 06/28/2023] [Indexed: 07/29/2023] Open
Abstract
Wheat represents one of the most widely consumed cereals worldwide. Cultivated in winter and spring, it is vulnerable to an array of different pathogens, including fungi, which are managed largely through the in-field application of fungicides. During this study, a 4-year field investigation (2018-2021) was performed in France, aiming to assess the efficacy of fungicide treatment to reduce mycotoxin contamination in common and durum wheat. Several different commercially available fungicides were applied via sprayers. Concentrations of mycotoxins and fungal metabolites in wheat were determined using a multi-analyte liquid-chromatography-tandem-mass-spectrometry-based method. The highest contamination levels and strongest effects of fungicides were observed in 2018, followed by 2021. A significant fungicide-mediated reduction was observed for the trichothecenes deoxynivalenol, deoxynivalenol-3-glucoside, nivalenol, and nivalenol-3-glucoside. Furthermore, fungicide treatment also reduced levels of culmorin and its hydroxy metabolites 5- and 15-hydroxy-culmorin, as well as aurofusarin. Interestingly, the Alternaria metabolite infectopyron was increased following fungicide treatment. In conclusion, fungicide treatment was effective in reducing mycotoxin levels in wheat. However, as complete prevention of mycotoxin contamination was not achieved, fungicide treatment should always be combined with other pre- and post-harvest mycotoxin mitigation strategies to improve food and feed safety.
Collapse
Affiliation(s)
- Alexandra Kleber
- DSM-BIOMIN Research Center, 3430 Tulln, Austria; (C.G.-D.); (A.P.); (B.N.)
| | | | - Alexander Platzer
- DSM-BIOMIN Research Center, 3430 Tulln, Austria; (C.G.-D.); (A.P.); (B.N.)
| | | | - Barbara Novak
- DSM-BIOMIN Research Center, 3430 Tulln, Austria; (C.G.-D.); (A.P.); (B.N.)
| |
Collapse
|
9
|
Statsyuk NV, Popletaeva SB, Shcherbakova LA. Post-Harvest Prevention of Fusariotoxin Contamination of Agricultural Products by Irreversible Microbial Biotransformation: Current Status and Prospects. BIOTECH 2023; 12:32. [PMID: 37218749 PMCID: PMC10204369 DOI: 10.3390/biotech12020032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 04/28/2023] [Accepted: 04/29/2023] [Indexed: 05/24/2023] Open
Abstract
Biological degradation of mycotoxins is a promising environmentally-friendly alternative to chemical and physical detoxification methods. To date, a lot of microorganisms able to degrade them have been described; however, the number of studies determining degradation mechanisms and irreversibility of transformation, identifying resulting metabolites, and evaluating in vivo efficiency and safety of such biodegradation is significantly lower. At the same time, these data are crucial for the evaluation of the potential of the practical application of such microorganisms as mycotoxin-decontaminating agents or sources of mycotoxin-degrading enzymes. To date, there are no published reviews, which would be focused only on mycotoxin-degrading microorganisms with the proved irreversible transformation of these compounds into less toxic compounds. In this review, the existing information about microorganisms able to efficiently transform the three most common fusariotoxins (zearalenone, deoxinyvalenol, and fumonisin B1) is presented with allowance for the data on the corresponding irreversible transformation pathways, produced metabolites, and/or toxicity reduction. The recent data on the enzymes responsible for the irreversible transformation of these fusariotoxins are also presented, and the promising future trends in the studies in this area are discussed.
Collapse
Affiliation(s)
- Natalia V. Statsyuk
- All-Russian Research Institute of Phytopathology, 143050 Bolshie Vyazemy, Russia (L.A.S.)
| | | | | |
Collapse
|
10
|
Li K, Jia J, Xu Q, Wu N. Whole-genome sequencing and phylogenomic analyses of a novel zearalenone-degrading Bacillus subtilis B72. 3 Biotech 2023; 13:103. [PMID: 36866327 PMCID: PMC9971418 DOI: 10.1007/s13205-023-03517-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Accepted: 01/31/2023] [Indexed: 03/01/2023] Open
Abstract
Bacillus strain B72 was previously isolated as a novel zearalenone (ZEN) degradation strain from the oil field soil in Xinjiang, China. The genome of B72 was sequenced with a 400 bp paired-end using the Illumina HiSeq X Ten platform. De novo genome assembly was performed using SOAPdenovo2 assemblers. Phylogenetic analysis using 16S rRNA gene sequencing demonstrated that B72 is closely related to the novel Bacillus subtilis (B. subtilis) strain DSM 10. A phylogenetic tree based on 31 housekeeping genes, constructed with 19 strains closest at the species level, showed that B72 was closely related to B. subtilis 168, B. licheniformis PT-9, and B. tequilensis KCTC 13622. Detailed phylogenomic analysis using average nucleotide identity (ANI) and genome-to-genome distance calculator (GGDC) demonstrated that B72 might be classified as a novel B. subtilis strain. Our study demonstrated that B72 could degrade 100% of ZEN in minimal medium after 8 h of incubation, which makes it the fastest degrading strain to date. Moreover, we confirmed that ZEN degradation by B72 might involve degrading enzymes produced during the initial period of bacterial growth. Subsequently, functional genome annotation revealed that the laccase-encoding genes yfiH (gene 1743) and cotA (gene 2671) might be related to ZEN degradation in B72. The genome sequence of B. subtilis B72 reported here will provide a reference for genomic research on ZEN degradation in the field of food and feed. Supplementary Information The online version contains supplementary material available at 10.1007/s13205-023-03517-y.
Collapse
Affiliation(s)
- Ke Li
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, 210023 China
| | - Jianyao Jia
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, 210023 China
| | - Qing Xu
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, 210023 China
| | - Na Wu
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, 210023 China
- College of Life Sciences, Nanjing Normal University, Nanjing, 210046 China
| |
Collapse
|
11
|
Hartinger T, Kröger I, Neubauer V, Faas J, Doupovec B, Schatzmayr D, Zebeli Q. Zearalenone and Its Emerging Metabolites Promptly Affect the Rumen Microbiota in Holstein Cows Fed a Forage-Rich Diet. Toxins (Basel) 2023; 15:185. [PMID: 36977076 PMCID: PMC10053043 DOI: 10.3390/toxins15030185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 02/13/2023] [Accepted: 02/26/2023] [Indexed: 03/05/2023] Open
Abstract
The study investigated the short-term effects of a single oral bolus of zearalenone (ZEN) on the rumen microbiota and fermentation patterns in four rumen-cannulated Holstein cows fed a forage diet with daily 2 kg/cow concentrate. During the baseline day, cows received uncontaminated concentrate, followed by ZEN-contaminated concentrate on the second day, and again the uncontaminated concentrate on day three. Free rumen liquid (FRL) and particle-associated rumen liquid (PARL) were collected at different hours post-feeding on all days to analyze the prokaryotic community composition, absolute abundances of bacteria, archaea, protozoa, and anaerobic fungi, as well as short-chain fatty acid (SCFA) profiles. The ZEN reduced the microbial diversity in FRL but not in the PARL fraction. The abundance of protozoa was higher after ZEN exposure in PARL, which may be related to their strong biodegradation capacity that, therefore, promoted protozoal growth. In contrast, α-zearalenol might compromise anaerobic fungi as indicated by reduced abundances in FRL and fairly negative correlations in both fractions. Total SCFA significantly increased in both fractions after ZEN exposure, while the SCFA profile only changed marginally. Concluding, a single ZEN challenge caused changes in the rumen ecosystem soon after intake, including ruminal eukaryotes, that should be the subject of future studies.
Collapse
Affiliation(s)
- Thomas Hartinger
- Institute of Animal Nutrition and Functional Plant Compounds, University of Veterinary Medicine, 1210 Vienna, Austria
| | - Iris Kröger
- Institute of Animal Nutrition and Functional Plant Compounds, University of Veterinary Medicine, 1210 Vienna, Austria
| | - Viktoria Neubauer
- Institute of Animal Nutrition and Functional Plant Compounds, University of Veterinary Medicine, 1210 Vienna, Austria
| | - Johannes Faas
- Biomin Research Center, Biomin Holding GmbH, 3430 Tulln, Austria
| | - Barbara Doupovec
- Biomin Research Center, Biomin Holding GmbH, 3430 Tulln, Austria
| | - Dian Schatzmayr
- Biomin Research Center, Biomin Holding GmbH, 3430 Tulln, Austria
| | - Qendrim Zebeli
- Institute of Animal Nutrition and Functional Plant Compounds, University of Veterinary Medicine, 1210 Vienna, Austria
| |
Collapse
|
12
|
Balló A, Busznyákné Székvári K, Czétány P, Márk L, Török A, Szántó Á, Máté G. Estrogenic and Non-Estrogenic Disruptor Effect of Zearalenone on Male Reproduction: A Review. Int J Mol Sci 2023; 24:ijms24021578. [PMID: 36675103 PMCID: PMC9862602 DOI: 10.3390/ijms24021578] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Revised: 01/03/2023] [Accepted: 01/09/2023] [Indexed: 01/15/2023] Open
Abstract
According to some estimates, at least 70% of feedstuffs and finished feeds are contaminated with one or more mycotoxins and, due to its significant prevalence, both animals and humans are highly likely to be exposed to these toxins. In addition to health risks, they also cause economic issues. From a healthcare point of view, zearalenone (ZEA) and its derivatives have been shown to exert many negative effects. Specifically, ZEA has hepatotoxicity, immunotoxicity, genotoxicity, carcinogenicity, intestinal toxicity, reproductive toxicity and endocrine disruption effects. Of these effects, male reproductive deterioration and processes that lead to this have been reviewed in this study. Papers are reviewed that demonstrate estrogenic effects of ZEA due to its analogy to estradiol and how these effects may influence male reproductive cells such as spermatozoa, Sertoli cells and Leydig cells. Data that employ epigenetic effects of ZEA are also discussed. We discuss literature data demonstrating that reactive oxygen species formation in ZEA-exposed cells plays a crucial role in diminished spermatogenesis; reduced sperm motility, viability and mitochondrial membrane potential; altered intracellular antioxidant enzyme activities; and increased rates of apoptosis and DNA fragmentation; thereby resulting in reduced pregnancy.
Collapse
Affiliation(s)
- András Balló
- Pannon Reproduction Institute, 8300 Tapolca, Hungary
- Urology Clinic, Clinical Centre, Medical School, University of Pécs, 7621 Pécs, Hungary
- National Laboratory on Human Reproduction, University of Pécs, 7624 Pécs, Hungary
| | | | - Péter Czétány
- Urology Clinic, Clinical Centre, Medical School, University of Pécs, 7621 Pécs, Hungary
- National Laboratory on Human Reproduction, University of Pécs, 7624 Pécs, Hungary
| | - László Márk
- National Laboratory on Human Reproduction, University of Pécs, 7624 Pécs, Hungary
- Department of Analytical Biochemistry, Institute of Biochemistry and Medical Chemistry, Medical School, University of Pécs, 7624 Pécs, Hungary
- MTA-PTE Human Reproduction Scientific Research Group, 7624 Pécs, Hungary
| | - Attila Török
- Pannon Reproduction Institute, 8300 Tapolca, Hungary
- National Laboratory on Human Reproduction, University of Pécs, 7624 Pécs, Hungary
| | - Árpád Szántó
- Pannon Reproduction Institute, 8300 Tapolca, Hungary
- National Laboratory on Human Reproduction, University of Pécs, 7624 Pécs, Hungary
| | - Gábor Máté
- Pannon Reproduction Institute, 8300 Tapolca, Hungary
- Urology Clinic, Clinical Centre, Medical School, University of Pécs, 7621 Pécs, Hungary
- National Laboratory on Human Reproduction, University of Pécs, 7624 Pécs, Hungary
- Correspondence:
| |
Collapse
|
13
|
Enzymatic Degradation of Zearalenone in the Gastrointestinal Tract of Pigs, Chickens, and Rainbow Trout. Toxins (Basel) 2023; 15:toxins15010048. [PMID: 36668868 PMCID: PMC9865282 DOI: 10.3390/toxins15010048] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 01/03/2023] [Accepted: 01/04/2023] [Indexed: 01/09/2023] Open
Abstract
The estrogenic mycotoxin zearalenone (ZEN) is a common contaminant of animal feed. Effective strategies for the inactivation of ZEN in feed are required. The ZEN-degrading enzyme zearalenone hydrolase ZenA (EC 3.1.1.-, commercial name ZENzyme®, BIOMIN Holding GmbH, Getzersdorf, Austria) converts ZEN to hydrolyzed ZEN (HZEN), thereby enabling a strong reduction in estrogenicity. In this study, we investigated the efficacy of ZenA added to feed to degrade ZEN in the gastrointestinal tract of three monogastric animal species, i.e., pigs, chickens, and rainbow trout. For each species, groups of animals received (i) feed contaminated with ZEN (chickens: 400 µg/kg, pigs: 200 µg/kg, rainbow trout: 2000 µg/kg), (ii) feed contaminated with ZEN and supplemented with ZenA, or (iii) uncontaminated feed. To investigate the fate of dietary ZEN in the gastrointestinal tract in the presence and absence of ZenA, concentrations of ZEN and ZEN metabolites were analyzed in digesta of chickens and rainbow trout and in feces of pigs. Upon ZenA administration, concentrations of ZEN were significantly decreased and concentrations of the degradation product HZEN were significantly increased in digesta/feces of each investigated animal species, indicating degradation of ZEN by ZenA in the gastrointestinal tract. Moreover, upon addition of ZenA to the diet, the concentration of the highly estrogenic ZEN metabolite α-ZEL was significantly reduced in feces of pigs. In conclusion, ZenA was effective in degrading ZEN to HZEN in the gastrointestinal tract of chickens, pigs, and rainbow trout, and counteracted formation of α-ZEL in pigs. Therefore, ZenA could find application as a ZEN-degrading feed additive for these animal species.
Collapse
|
14
|
Abraham N, Chan ETS, Zhou T, Seah SYK. Microbial detoxification of mycotoxins in food. Front Microbiol 2022; 13:957148. [PMID: 36504774 PMCID: PMC9726736 DOI: 10.3389/fmicb.2022.957148] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 10/26/2022] [Indexed: 11/24/2022] Open
Abstract
Mycotoxins are toxic secondary metabolites produced by certain genera of fungi including but not limited to Fusarium, Aspergillus, and Penicillium. Their persistence in agricultural commodities poses a significant food safety issue owing to their carcinogenic, teratogenic, and immunosuppressive effects. Due to their inherent stability, mycotoxin levels in contaminated food often exceed the prescribed regulatory thresholds posing a risk to both humans and livestock. Although physical and chemical methods have been applied to remove mycotoxins, these approaches may reduce the nutrient quality and organoleptic properties of food. Microbial transformation of mycotoxins is a promising alternative for mycotoxin detoxification as it is more specific and environmentally friendly compared to physical/chemical methods. Here we review the biological detoxification of the major mycotoxins with a focus on microbial enzymes.
Collapse
Affiliation(s)
- Nadine Abraham
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON, Canada,Guelph Research and Development Centre, Agriculture and Agri-Food Canada, Guelph, ON, Canada
| | - Edicon Tze Shun Chan
- Guelph Research and Development Centre, Agriculture and Agri-Food Canada, Guelph, ON, Canada
| | - Ting Zhou
- Guelph Research and Development Centre, Agriculture and Agri-Food Canada, Guelph, ON, Canada
| | - Stephen Y. K. Seah
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON, Canada,*Correspondence: Stephen Y. K. Seah,
| |
Collapse
|
15
|
Fang Y, Zhang Z, Xu W, Zhang W, Guang C, Mu W. Zearalenone lactonase: characteristics, modification, and application. Appl Microbiol Biotechnol 2022; 106:6877-6886. [PMID: 36173450 DOI: 10.1007/s00253-022-12205-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 09/12/2022] [Accepted: 09/22/2022] [Indexed: 11/30/2022]
Abstract
Zearalenone (ZEN) and its derivatives are one of the most contaminated fungal toxins worldwide, posing a severe threat to food security and human life. Traditional physical and chemical detoxifying methods are unsatisfactory due to incomplete detoxification, nutrient loss, and secondary pollutants. In recent years, bioremediation for eliminating fungal toxins has been gradually investigated. ZEN lactone hydrolase (lactonase) has been widely studied because of its high activity, mild conditions, and non-toxic product property. This review comprehensively represents the gene mining, characterization, molecular modification, and application of microbial-derived ZEN lactonases. It is aimed to elucidate the advantages and challenges of ZEN lactonases in industrial application, which also provides perspectives on obtaining innovative and promising biocatalysts for ZEN degradation. KEY POINTS: • A timely and concise review related to enzymatic elimination towards ZEN is shown. • The catalytic conditions and mechanism of ZEN lactonase is presented. • The modification and application of ZEN lactonase are exhibited also.
Collapse
Affiliation(s)
- Yuanyuan Fang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Zhenxia Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Wei Xu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, China.
| | - Wenli Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Cuie Guang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Wanmeng Mu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, China.,International Joint Laboratory On Food Safety, Jiangnan University, Wuxi, 214122, China
| |
Collapse
|
16
|
Zearalenone Promotes LPS-Induced Oxidative Stress, Endoplasmic Reticulum Stress, and Accelerates Bovine Mammary Epithelial Cell Apoptosis. Int J Mol Sci 2022; 23:ijms231810925. [PMID: 36142835 PMCID: PMC9500836 DOI: 10.3390/ijms231810925] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Revised: 09/05/2022] [Accepted: 09/13/2022] [Indexed: 11/29/2022] Open
Abstract
Both zearalenone (ZEA) and lipopolysaccharide (LPS) can induce oxidative stress, and even apoptosis in bovine mammary epithelial cells (MAC-T), but not much attention has been given to the synergistic effect of ZEA and LPS. In this study, we treated MAC-T cells with different concentrations of LPS (1, 10, 50, and 100 μg/mL) and ZEA (5, 15, and 30 μM) to induce cell damage. Previous results show that MAC-T cell viability decreases with increasing LPS concentration. Meanwhile, 1 µg/mL LPS and ZEA were selected for combined treatment in subsequent studies. It was found that co-treatment with ZEA and LPS increases the accumulation of reactive oxygen species (ROS) and malondialdehyde (MDA), decreases mitochondrial membrane potential (MMP), and superoxide dismutase (SOD), and reduces glutathione (GSH). ZEA and LPS are found to activate endoplasmic reticulum (ER) stress by increasing the expression of glucose-regulated protein 78 kDa (GRP78), activating transcription factor 6 (ATF6) and C/EBP homologous protein (CHOP). It increases cell apoptosis by suppressing the expression of the anti-apoptotic protein B-cell lymphoma-2 (Bcl-2), indicated by up-regulation of Bcl2-associated X protein (Bax) and Cysteinyl aspartate-specific proteinases 3 (caspase-3) expression. The above results suggest that the synergistic effect of ZEA and LPS aggravate cytotoxicity.
Collapse
|
17
|
Fang Y, Huang Z, Xu W, Wang C, Sun Y, Zhang W, Guang C, Mu W. Efficient elimination of zearalenone at high processing temperatures by a robust mutant of Gliocladium roseum zearalenone lactonase. Food Control 2022. [DOI: 10.1016/j.foodcont.2022.109222] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
18
|
Sohrabi H, Majidi MR, Arbabzadeh O, Khaaki P, Pourmohammad S, Khataee A, Orooji Y. Recent advances in the highly sensitive determination of zearalenone residues in water and environmental resources with electrochemical biosensors. ENVIRONMENTAL RESEARCH 2022; 204:112082. [PMID: 34555403 DOI: 10.1016/j.envres.2021.112082] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 08/18/2021] [Accepted: 09/16/2021] [Indexed: 06/13/2023]
Abstract
Zearalenone (ZEN), a significant class of mycotoxin which is considered as a xenoestrogen, permits, similar to natural estrogens, it's binding to the receptors of estrogen resulting in various reproductive diseases especially, hormonal misbalance. ZEN has toxic effects on human and animal health as a result of its teratogenicity, carcinogenicity, mutagenicity, nephrotoxicity, genotoxicity, and immunotoxicity. To ensure water and environmental resources safety, precise, rapid, sensitive, and reliable analytical and conventional methods can be progressed for the determination of toxins such as ZEN. Different selective nanomaterial-based compounds are used in conjunction with different analytical detection approaches to achieve this goal. The current review demonstrates the state-of-the-art advances of nanomaterial-based electrochemical sensing assays including various sensing, apta-sensing and, immunosensing studies to the highly sensitive determination of various ZEN families. At first, a concise study of the occurrence, structure, toxicity, legislations, and distribution of ZEN in monitoring has been performed. Then, different conventional and clinical techniques and procedures to sensitive and selective sensing techniques have been reviewed and the efficient comparison of them has been thoroughly discussed. This study has also summarized the salient features and the requirements for applying various sensing and biosensing platforms and diverse immobilization techniques in ZEN detection. Finally, we have defined the performance of several electrochemical sensors applying diverse recognition elements couples with nanomaterials fabricated using various recognition elements coupled with nanomaterials (metal NPs, metal oxide nanoparticles (NPs), graphene, and CNT) the issues limiting development, and the forthcoming tasks in successful construction with the applied nanomaterials.
Collapse
Affiliation(s)
- Hessamaddin Sohrabi
- Department of Analytical Chemistry, Faculty of Chemistry, University of Tabriz, 51666-16471, Tabriz, Iran
| | - Mir Reza Majidi
- Department of Analytical Chemistry, Faculty of Chemistry, University of Tabriz, 51666-16471, Tabriz, Iran
| | - Omid Arbabzadeh
- Faculty of Chemical and Petroleum Engineering, University of Tabriz, 51666-16471, Tabriz, Iran
| | - Pegah Khaaki
- Department of Biology, Faculty of Natural Science, University of Tabriz, 51666-16471, Tabriz, Iran
| | - Sajjad Pourmohammad
- Faculty of Chemical and Petroleum Engineering, University of Tabriz, 51666-16471, Tabriz, Iran
| | - Alireza Khataee
- Research Laboratory of Advanced Water and Wastewater Treatment Processes, Department of Applied Chemistry, Faculty of Chemistry, University of Tabriz, 51666-16471, Tabriz, Iran; Department of Environmental Engineering, Gebze Technical University, 41400, Gebze, Turkey.
| | - Yasin Orooji
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, 321004, China.
| |
Collapse
|
19
|
Barański W, Gajęcka M, Zielonka Ł, Mróz M, Onyszek E, Przybyłowicz KE, Nowicki A, Babuchowski A, Gajęcki MT. Occurrence of Zearalenone and Its Metabolites in the Blood of High-Yielding Dairy Cows at Selected Collection Sites in Various Disease States. Toxins (Basel) 2021; 13:446. [PMID: 34203296 PMCID: PMC8309810 DOI: 10.3390/toxins13070446] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 06/24/2021] [Accepted: 06/25/2021] [Indexed: 11/16/2022] Open
Abstract
Zearalenone (ZEN) and its metabolites, alpha-zearalenol (α-ZEL) and beta-zearalenol (β-ZEL), are ubiquitous in plant materials used as feed components in dairy cattle diets. The aim of this study was to confirm the occurrence of ZEN and its selected metabolites in blood samples collected from different sites in the hepatic portal system (posthepatic-external jugular vein EJV; prehepatic-abdominal subcutaneous vein ASV and median caudal vein MCV) of dairy cows diagnosed with mastitis, ovarian cysts and pyometra. The presence of mycotoxins in the blood plasma was determined with the use of combined separation methods involving immunoaffinity columns, a liquid chromatography system and a mass spectrometry system. The parent compound was detected in all samples collected from diseased cows, whereas α-ZEL and β-ZEL were not identified in any samples, or their concentrations were below the limit of detection (LOD). Zearalenone levels were highest in cows with pyometra, where the percentage share of average ZEN concentrations reached 44%. Blood sampling sites were arranged in the following ascending order based on ZEN concentrations: EJV (10.53 pg/mL, 44.07% of the samples collected from this site), ASV (14.20 pg/mL, 49.59% of the samples) and MCV (26.67 pg/mL, 67.35% of the samples). The results of the study indicate that blood samples for toxicological analyses should be collected from the MCV (prehepatic vessel) of clinically healthy cows and/or cows with subclinical ZEN mycotoxicosis. This sampling site increases the probability of correct diagnosis of subclinical ZEN mycotoxicosis.
Collapse
Affiliation(s)
- Wojciech Barański
- Department of Animal Reproduction with Clinic, Faculty of Veterinary Medicine, University of Warmia and Mazury in Olsztyn, Oczapowskiego 13, 10-718 Olsztyn, Poland; (W.B.); (A.N.)
| | - Magdalena Gajęcka
- Department of Veterinary Prevention and Feed Hygiene, Faculty of Veterinary Medicine, University of Warmia and Mazury in Olsztyn, Oczapowskiego 13, 10-718 Olsztyn, Poland; (Ł.Z.); (M.M.); (M.T.G.)
| | - Łukasz Zielonka
- Department of Veterinary Prevention and Feed Hygiene, Faculty of Veterinary Medicine, University of Warmia and Mazury in Olsztyn, Oczapowskiego 13, 10-718 Olsztyn, Poland; (Ł.Z.); (M.M.); (M.T.G.)
| | - Magdalena Mróz
- Department of Veterinary Prevention and Feed Hygiene, Faculty of Veterinary Medicine, University of Warmia and Mazury in Olsztyn, Oczapowskiego 13, 10-718 Olsztyn, Poland; (Ł.Z.); (M.M.); (M.T.G.)
| | - Ewa Onyszek
- Institute of Dairy Industry Innovation Ltd., Kormoranów 1, 11-700 Mrągowo, Poland; (E.O.); (A.B.)
| | - Katarzyna E. Przybyłowicz
- Department of Human Nutrition, Faculty of Food Sciences, University of Warmia and Mazury in Olsztyn, Słoneczna 45F, 10-719 Olsztyn, Poland;
| | - Arkadiusz Nowicki
- Department of Animal Reproduction with Clinic, Faculty of Veterinary Medicine, University of Warmia and Mazury in Olsztyn, Oczapowskiego 13, 10-718 Olsztyn, Poland; (W.B.); (A.N.)
| | - Andrzej Babuchowski
- Institute of Dairy Industry Innovation Ltd., Kormoranów 1, 11-700 Mrągowo, Poland; (E.O.); (A.B.)
| | - Maciej T. Gajęcki
- Department of Veterinary Prevention and Feed Hygiene, Faculty of Veterinary Medicine, University of Warmia and Mazury in Olsztyn, Oczapowskiego 13, 10-718 Olsztyn, Poland; (Ł.Z.); (M.M.); (M.T.G.)
| |
Collapse
|