1
|
Gačnikar J, Mrkun J, Babič J, Sterniša M, Zakošek Pipan M. Impact of Mycotoxin Metabolites Deepoxy-Deoxynivalenol and Beta-Zearalenol on Bovine Preimplantation Embryo Development in the Presence of Acetonitrile. Vet Sci 2024; 11:267. [PMID: 38922014 PMCID: PMC11209286 DOI: 10.3390/vetsci11060267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 06/01/2024] [Accepted: 06/07/2024] [Indexed: 06/27/2024] Open
Abstract
The quality of animal feed is increasingly affected by weather conditions, high humidity, and damage to grains, which have led to various mycotoxin-producing moulds. The aim of this study was to determine the effects of the combination of deepoxy-deoxynivalenol and beta-zearalenol on the development of preimplantation bovine embryos, the extent to which the presence of both mycotoxin metabolites affects the development of in vitro cultured bovine embryos, or whether the effect of both toxins enhances embryotoxicity. Ovaries were transported from the abattoir to the laboratory and, after maturation and fertilisation, zygotes were placed in an embryo culture medium (IVC) with different mycotoxin metabolite concentrations diluted in acetonitrile. It was found that the blastocyst rate of cleaved embryos was affected by 1 μL acetonitrile in 400 μL medium (0.25%) compared to the group without acetonitrile. For this reason, it was decided to use acetonitrile as a control group, and the desired mycotoxin metabolite concentrations were diluted in the lowest possible amount of acetonitrile (0.5 μL) that could be accurately added to the study groups. There was no statistical difference when the higher mycotoxin metabolite concentrations were added.
Collapse
Affiliation(s)
- J. Gačnikar
- Clinic for Reproduction and Large Animals, Veterinary Faculty, University of Ljubljana, 1000 Ljubljana, Slovenia; (J.M.); (M.Z.P.)
| | - J. Mrkun
- Clinic for Reproduction and Large Animals, Veterinary Faculty, University of Ljubljana, 1000 Ljubljana, Slovenia; (J.M.); (M.Z.P.)
| | - J. Babič
- Institute of Food Safety, Feed and Environment, Veterinary Faculty, University of Ljubljana, 1000 Ljubljana, Slovenia;
| | - M. Sterniša
- Department of Food Science and Technology, Biotechnical Faculty, University of Ljubljana, 1000 Ljubljana, Slovenia;
| | - M. Zakošek Pipan
- Clinic for Reproduction and Large Animals, Veterinary Faculty, University of Ljubljana, 1000 Ljubljana, Slovenia; (J.M.); (M.Z.P.)
| |
Collapse
|
2
|
Saleh I, Zeidan R, Abu-Dieyeh M. The characteristics, occurrence, and toxicological effects of alternariol: a mycotoxin. Arch Toxicol 2024; 98:1659-1683. [PMID: 38662238 PMCID: PMC11106155 DOI: 10.1007/s00204-024-03743-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Accepted: 03/18/2024] [Indexed: 04/26/2024]
Abstract
Alternaria species are mycotoxin-producing fungi known to infect fresh produce and to cause their spoilage. Humans get exposed to fungal secondary metabolites known as mycotoxin via the ingestion of contaminated food. Alternariol (AOH) (C14H10O5) is an isocoumarins produced by different species of Alternaria including Alternaria alternata. AOH is often found in grain, fruits and fruits-based food products with high levels in legumes, nuts, and tomatoes. AOH was first discovered in 1953, and it is nowadays linked to esophagus cancer and endocrine disruption due to its similarity to estrogen. Although considered as an emerging mycotoxin with no regulated levels in food, AOH occurs in highly consumed dietary products and has been detected in various masked forms, which adds to its occurrence. Therefore, this comprehensive review was developed to give an overview on recent literature in the field of AOH. The current study summarizes published data on occurrence levels of AOH in different food products in the last ten years and evaluates those levels in comparison to recommended levels by the regulating entities. Such surveillance facilitates the work of health risk assessors and highlights commodities that are most in need of AOH levels regulation. In addition, the effects of AOH on cells and animal models were summarized in two tables; data include the last two-year literature studies. The review addresses also the main characteristics of AOH and the possible human exposure routes, the populations at risk, and the effect of anthropogenic activities on the widespread of the mycotoxin. The commonly used detection and control methods described in the latest literature are also discussed to guide future researchers to focus on mitigating mycotoxins contamination in the food industry. This review aims mainly to serve as a guideline on AOH for mycotoxin regulation developers and health risk assessors.
Collapse
Affiliation(s)
- Iman Saleh
- Biological Science Program, Department of Biological and Environmental Sciences, College of Art and Science, Qatar University, P.O. Box 2713, Doha, Qatar.
| | - Randa Zeidan
- Biological Science Program, Department of Biological and Environmental Sciences, College of Art and Science, Qatar University, P.O. Box 2713, Doha, Qatar
| | - Mohammed Abu-Dieyeh
- Biological Science Program, Department of Biological and Environmental Sciences, College of Art and Science, Qatar University, P.O. Box 2713, Doha, Qatar
| |
Collapse
|
3
|
Marin DE, Bulgaru VC, Pertea A, Grosu IA, Pistol GC, Taranu I. Alternariol Monomethyl-Ether Induces Toxicity via Cell Death and Oxidative Stress in Swine Intestinal Epithelial Cells. Toxins (Basel) 2024; 16:223. [PMID: 38787075 PMCID: PMC11125839 DOI: 10.3390/toxins16050223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 04/22/2024] [Accepted: 05/09/2024] [Indexed: 05/25/2024] Open
Abstract
Alternariol monomethyl-ether (AME), together with altenuene and alternariol, belongs to the Alternaria mycotoxins group, which can contaminate different substrates, including cereals. The aim of the present study was to obtain a deeper understanding concerning the effects of AME on pig intestinal health using epithelial intestinal cell lines as the data concerning the possible effects of Alternaria toxins on swine are scarce and insufficient for assessing the risk represented by Alternaria toxins for animal health. Our results have shown a dose-related effect on IPEC-1 cell viability, with an IC50 value of 10.5 μM. Exposure to the toxin induced an increase in total apoptotic cells, suggesting that AME induces programmed cell death through apoptosis based on caspase-3/7 activation in IPEC-1 cells. DNA and protein oxidative damage triggered by AME were associated with an alteration of the antioxidant response, as shown by a decrease in the enzymatic activity of catalase and superoxide dismutase. These effects on the oxidative response can be related to an inhibition of the Akt/Nrf2/HO-1 signaling pathway; however, further studies are needed in order to validate these in vitro data using in vivo trials in swine.
Collapse
Affiliation(s)
- Daniela Eliza Marin
- National Research and Development Institute for Biology and Animal Nutrition (INCDBNA-IBNA-Balotesti), Calea Bucuresti nr.1, 077015 Balotesti Ilfov, Romania; (V.C.B.); (A.P.); (I.A.G.); (G.C.P.); (I.T.)
| | | | | | | | | | | |
Collapse
|
4
|
Martins D, Lemos A, Silva J, Rodrigues M, Simões J. Mycotoxins evaluation of total mixed ration (TMR) in bovine dairy farms: An update. Heliyon 2024; 10:e25693. [PMID: 38370215 PMCID: PMC10867658 DOI: 10.1016/j.heliyon.2024.e25693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 01/25/2024] [Accepted: 01/31/2024] [Indexed: 02/20/2024] Open
Abstract
The total mixed ration (TMR) is currently a widespread method to feed dairy cows. It is a mixture of raw fodder and concentrate feed that can be contaminated by several mycotoxins. The main aim of this paper was to provide a critical review on TMR mycotoxin occurrence and its usefulness to monitor and control them on-farm. Aflatoxins, zearalenone, deoxynivalenol, T-2 toxin and fumonisins (regulated mycotoxins) are the most prevalent mycotoxins evaluated in TMR. Nonetheless, several emerging mycotoxins represent a health risk at the animal level regarding their prevalence and level in TMR. Even when measured at low levels, the co-occurrence of mycotoxins is frequent and synergistic effects on animal health are still underevaluated. Similar to the animal feed industry, on-farm plans monitoring mycotoxin feed contamination can be developed as a herd health management program. The estimated daily intake of mycotoxins should be implemented, but thresholds for each mycotoxin are not currently defined in dairy farms.
Collapse
Affiliation(s)
- Daniela Martins
- Department of Veterinary Science, Animal and Veterinary Research Centre (CECAV), Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), School of Agricultural and Veterinary Sciences, University of Trás-os-Montes e Alto Douro, 5000-801, Vila Real, Portugal
| | - Ana Lemos
- Animal Nutrition, DSM-Firmenich, the Netherlands
| | - João Silva
- CapêloVet, Lda, 4755-252, Barcelos, Portugal
| | | | - João Simões
- Department of Veterinary Science, Animal and Veterinary Research Centre (CECAV), Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), School of Agricultural and Veterinary Sciences, University of Trás-os-Montes e Alto Douro, 5000-801, Vila Real, Portugal
| |
Collapse
|
5
|
Janić Hajnal E, Babič J, Pezo L, Banjac V, Filipčev B, Miljanić J, Kos J, Jakovac-Strajn B. Reduction of Alternaria Toxins via the Extrusion Processing of Whole-Grain Red Sorghum Flour. Foods 2024; 13:255. [PMID: 38254556 PMCID: PMC10815308 DOI: 10.3390/foods13020255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 01/08/2024] [Accepted: 01/11/2024] [Indexed: 01/24/2024] Open
Abstract
This study delved into the impact of two extrusion processing parameters-screw speed (SS at 400, 600, 800 RPM) and material moisture content in the extruder barrel (M at 12, 15, 18%) at constant feed rate (50 kg/h)-on reducing the content of alternariol (AOH), alternariol monomethyl ether (AME), tenuazonic acid (TeA), and tentoxin (TEN) in whole-grain red sorghum flour. Ultra-performance liquid chromatography combined with a triple-quadrupole mass spectrometer (UPLC-MS/MS) was employed for the determination of Alternaria toxin levels. The extruder die temperature fluctuated between 136 and 177 °C, with die pressures ranging from 0.16 to 6.23 MPa. The specific mechanical energy spanned from 83.5 to 152.3 kWh/t, the torque varied between 88 and 162.8 Nm, and the average material retention time in the barrel ranged from 5.6 to 13 s. The optimal parameters for reducing the concentration of all Alternaria toxins with a satisfactory quality of the sorghum snacks were: SS = 400 RPM, M = 12%, with a reduction of 61.4, 76.4, 12.1, and 50.8% for AOH, AME, TeA, and TEN, respectively.
Collapse
Affiliation(s)
- Elizabet Janić Hajnal
- Institute of Food Technology, University of Novi Sad, Bulevar Cara Lazara 1, 21000 Novi Sad, Serbia (B.F.); (J.M.); (J.K.)
| | - Janja Babič
- Veterinary Faculty, University of Ljubljana, Gerbičeva 60, 1000 Ljubljana, Slovenia; (J.B.); (B.J.-S.)
| | - Lato Pezo
- Institute of General and Physical Chemistry, University of Belgrade, Studentski Trg 12–16, 11000 Belgrade, Serbia;
| | - Vojislav Banjac
- Institute of Food Technology, University of Novi Sad, Bulevar Cara Lazara 1, 21000 Novi Sad, Serbia (B.F.); (J.M.); (J.K.)
| | - Bojana Filipčev
- Institute of Food Technology, University of Novi Sad, Bulevar Cara Lazara 1, 21000 Novi Sad, Serbia (B.F.); (J.M.); (J.K.)
| | - Jelena Miljanić
- Institute of Food Technology, University of Novi Sad, Bulevar Cara Lazara 1, 21000 Novi Sad, Serbia (B.F.); (J.M.); (J.K.)
| | - Jovana Kos
- Institute of Food Technology, University of Novi Sad, Bulevar Cara Lazara 1, 21000 Novi Sad, Serbia (B.F.); (J.M.); (J.K.)
| | - Breda Jakovac-Strajn
- Veterinary Faculty, University of Ljubljana, Gerbičeva 60, 1000 Ljubljana, Slovenia; (J.B.); (B.J.-S.)
| |
Collapse
|
6
|
Castañares E, Dinolfo MI, Patriarca A, Stenglein SA. SRAP markers as an alternative tool for Alternaria classification. Food Microbiol 2023; 116:104370. [PMID: 37689421 DOI: 10.1016/j.fm.2023.104370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 08/23/2023] [Accepted: 08/24/2023] [Indexed: 09/11/2023]
Abstract
Alternaria is one of the main fungal contaminants of cereal grains worldwide with the potential to produce mycotoxins hazardous to human and animal health. Many studies have been carried out to characterize Alternaria sp.-grp. using traditional morphology or polyphasic approach, but a good correlation between morphological sp.-grp., molecular, and chemotaxonomic groups has not always been achieved. For this reason, this study aimed to investigate the usefulness of a cheaper alternative tool, SRAP markers, in identifying Alternaria sp.-grps. obtained from Argentinean barley grains and to compare it with preliminary characterization using morphological traits, phylogeny, and metabolite profiles. Fifty-three Alternaria isolates from barley grains of the main producing regions of Argentina were analyzed with four combinations of SRAP markers. The UPGMA dendrogram, based on the Simple Matching similarity coefficient, revealed three distinct groups. SRAP markers allowed the separation of Alternaria from Infectoriae sections in agreement with the results of a polyphasic approach previously made. Besides, isolates of A. arborescens sp.-grp. were clustered in a separate group from isolates of A. tenuissima and A. alternata sp.-grp., which were grouped in the same cluster. SRAP markers are a recommended tool for classifying Alternaria isolates because of its simplicity, reliability, and cost-effectiveness compared to other molecular markers.
Collapse
Affiliation(s)
- E Castañares
- Laboratorio de Biología Funcional y Biotecnología (BIOLAB)-CICBA-INBIOTEC-CONICET, Facultad de Agronomía, UNCPBA, Av. República de Italia 780, Azul, 7300, Buenos Aires, Argentina.
| | - M I Dinolfo
- Laboratorio de Biología Funcional y Biotecnología (BIOLAB)-CICBA-INBIOTEC-CONICET, Facultad de Agronomía, UNCPBA, Av. República de Italia 780, Azul, 7300, Buenos Aires, Argentina
| | - A Patriarca
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Química Orgánica, Laboratorio de Microbiología de Alimentos, CONICET, Instituto de Micología y Botánica (INMIBO), Buenos Aires, Argentina; Applied Mycology Group, Environment and AgriFood Theme, Cranfield University, College Road, Bedford, MK43 0AL, United Kingdom
| | - S A Stenglein
- Laboratorio de Biología Funcional y Biotecnología (BIOLAB)-CICBA-INBIOTEC-CONICET, Facultad de Agronomía, UNCPBA, Av. República de Italia 780, Azul, 7300, Buenos Aires, Argentina
| |
Collapse
|
7
|
Mao X, Chen W, Wu H, Shao Y, Zhu Y, Guo Q, Li Y, Xia L. Alternaria Mycotoxins Analysis and Exposure Investigation in Ruminant Feeds. Toxins (Basel) 2023; 15:495. [PMID: 37624252 PMCID: PMC10467096 DOI: 10.3390/toxins15080495] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 07/22/2023] [Accepted: 08/02/2023] [Indexed: 08/26/2023] Open
Abstract
Alternaria mycotoxins are a class of important, agriculture-related hazardous materials, and their contamination in ruminant feeds and products might bring severe toxic effects to animals and even human beings. To control these hazardous compounds, a reliable and sensitive LC-MS/MS (liquid chromatography-tandem mass spectrometry) method was established for simultaneous determination of six target Alternaria mycotoxins in ruminant feeds, including ALT (Altenuene), AME (Alternariol Monomethyl Ether), AOH (Alternariol), ATX-Ι (Altertoxins I), TeA (Tenuazonic Acid), and TEN (Tentoxin). This developed analytical method was used for the determination of the presence of these substances in cattle and sheep feeds in Xinjiang Province, China. The results revealed that Alternaria mycotoxins are ubiquitously detected in feed samples. Especially, AME, AOH, TeA, and TEN are the most frequently found mycotoxins with a positive rate over 40% and a concentration range of 4~551 µg/kg. The proposed method could be applied for exposure investigation of Alternaria mycotoxins in ruminant feeds and for the reduction in the health risk to animals and even consumers.
Collapse
Affiliation(s)
- Xin Mao
- Xinjiang Key Laboratory of New Drug Study and Creation for Herbivorous Animals, College of Veterinary Medicine, Xinjiang Agricultural University, Urumqi 830052, China; (X.M.); (W.C.); (H.W.)
| | - Wanzhao Chen
- Xinjiang Key Laboratory of New Drug Study and Creation for Herbivorous Animals, College of Veterinary Medicine, Xinjiang Agricultural University, Urumqi 830052, China; (X.M.); (W.C.); (H.W.)
| | - Huimin Wu
- Xinjiang Key Laboratory of New Drug Study and Creation for Herbivorous Animals, College of Veterinary Medicine, Xinjiang Agricultural University, Urumqi 830052, China; (X.M.); (W.C.); (H.W.)
| | - Ying Shao
- College of Life Science, Yantai University, Yantai 264000, China; (Y.S.); (Y.Z.)
| | - Ya’ning Zhu
- College of Life Science, Yantai University, Yantai 264000, China; (Y.S.); (Y.Z.)
| | - Qingyong Guo
- Xinjiang Key Laboratory of New Drug Study and Creation for Herbivorous Animals, College of Veterinary Medicine, Xinjiang Agricultural University, Urumqi 830052, China; (X.M.); (W.C.); (H.W.)
| | - Yanshen Li
- College of Life Science, Yantai University, Yantai 264000, China; (Y.S.); (Y.Z.)
| | - Lining Xia
- Xinjiang Key Laboratory of New Drug Study and Creation for Herbivorous Animals, College of Veterinary Medicine, Xinjiang Agricultural University, Urumqi 830052, China; (X.M.); (W.C.); (H.W.)
| |
Collapse
|
8
|
Lin H, Jia B, Wu A. Cytotoxicities of Co-occurring alternariol, alternariol monomethyl ether and tenuazonic acid on human gastric epithelial cells. Food Chem Toxicol 2022; 171:113524. [PMID: 36442738 DOI: 10.1016/j.fct.2022.113524] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 10/11/2022] [Accepted: 11/20/2022] [Indexed: 11/27/2022]
Abstract
Alternariol (AOH), alternariol monomethyl ether (AME) and tenuazonic acid (TeA) are the three major Alternaria toxin contaminants in food. In the present study, we conducted their single and combined toxicity analyses using human gastric epithelial cell line (GES-1) that was first exposed to the toxins when they entered the human body. By comparing the cytotoxicity IC50, we found that compared to several other mycotoxins with limit standards there was cytotoxicity DON > OTA > AME > AOH > ZEN > TeA. Further, we obtained combination index (CI)-isobologram equation by the Chou-Talalay method according to a toxin ratio of 1:1:2 and carried out the combined toxicity analysis of the three binary and ternary compounds, and the results showed that AOH + AME + TeA showed synergistic toxic effects. Based on the co-occurring status, we also carried out the combined toxicity analysis of AME and AOH at different ratios and found antagonistic effects at low cytotoxic concentrations as well as synergistic and additive effects at high concentrations. Also, we found that all three and their combinations caused apoptosis, activation of caspase-3 cleavage, activation of DNA damage pathways ATR-Chk1-P53 and ATM-Chk2-P53. In conclusion, we used GES-1 cells to inform the risk of coaction of AOH, AME, and TeA in dietary exposure.
Collapse
Affiliation(s)
- Huikang Lin
- SIBS-UGENT-SJTU Joint Laboratory of Mycotoxin Research, CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Bingxuan Jia
- SIBS-UGENT-SJTU Joint Laboratory of Mycotoxin Research, CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Aibo Wu
- SIBS-UGENT-SJTU Joint Laboratory of Mycotoxin Research, CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200031, China.
| |
Collapse
|
9
|
Ji X, Xiao Y, Lyu W, Li M, Wang W, Tang B, Wang X, Yang H. Probabilistic Risk Assessment of Combined Exposure to Deoxynivalenol and Emerging Alternaria Toxins in Cereal-Based Food Products for Infants and Young Children in China. Toxins (Basel) 2022; 14:toxins14080509. [PMID: 35893751 PMCID: PMC9330788 DOI: 10.3390/toxins14080509] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Revised: 07/12/2022] [Accepted: 07/21/2022] [Indexed: 02/05/2023] Open
Abstract
Deoxynivalenol (DON) and emerging Alternaria toxins often co-occur in cereal-based products, but the current risk assessment is commonly conducted for only one type of mycotoxin at a time. Compared to adults, infants and young children are more susceptible to mycotoxins through food consumption, especially with cereal-based food products which are the main source of exposure. This study aimed to perform a probabilistic risk assessment of combined exposure to DON and three major Alternaria toxins, namely including alternariol monomethyl ether (AME), alternariol (AOH), and tenuazonic acid (TeA) through consumption of cereal-based foods for Chinese infants and young children. A total of 872 cereal-based food products were randomly collected and tested for the occurrence of DON and three major Alternaria toxins. The results on mycotoxin occurrence showed the DON, TeA, AOH, and AME was detected in 56.4%, 47.5%, 7.5%, and 5.7% of the samples, respectively. Co-contamination of various mycotoxins was observed in 39.9% of the analyzed samples. A preliminary cumulative risk assessment using the models of hazard index (HI) and combined margin of exposure (MoET) was performed on DON and Alternaria toxins that were present in cereal-based food products for infants and young children in China for the first time. The results showed that only 0.2% and 1.5%, respectively, of individuals exceeded the corresponding reference value for DON and TeA, indicating a low health risk. However, in the case of AME and AOH, the proportion of individuals exceeding the reference value was 24.1% and 33.5%, respectively, indicating the potential health risks. In the cumulative risk assessment of AME and AOH, both HI and MoET values indicated a more serious risk than that related to individual exposure. Further research is necessary to reduce the uncertainties that are associated with the toxicities of the Alternaria toxins and cumulative risk assessment methods.
Collapse
Affiliation(s)
- Xiaofeng Ji
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Agro-Product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (X.J.); (Y.X.); (W.L.); (W.W.); (B.T.)
| | - Yingping Xiao
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Agro-Product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (X.J.); (Y.X.); (W.L.); (W.W.); (B.T.)
| | - Wentao Lyu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Agro-Product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (X.J.); (Y.X.); (W.L.); (W.W.); (B.T.)
| | - Minglu Li
- China National Center for Food Safety Risk Assessment, Beijing 100022, China;
| | - Wen Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Agro-Product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (X.J.); (Y.X.); (W.L.); (W.W.); (B.T.)
| | - Biao Tang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Agro-Product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (X.J.); (Y.X.); (W.L.); (W.W.); (B.T.)
| | - Xiaodan Wang
- China National Center for Food Safety Risk Assessment, Beijing 100022, China;
- Correspondence: (X.W.); (H.Y.)
| | - Hua Yang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Agro-Product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (X.J.); (Y.X.); (W.L.); (W.W.); (B.T.)
- Correspondence: (X.W.); (H.Y.)
| |
Collapse
|
10
|
Determination of Fumonisins in Grains and Poultry Feedstuffs in Croatia: A 16-Year Study. Toxins (Basel) 2022; 14:toxins14070444. [PMID: 35878182 PMCID: PMC9318733 DOI: 10.3390/toxins14070444] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 06/24/2022] [Accepted: 06/28/2022] [Indexed: 02/04/2023] Open
Abstract
Fumonisins are a group of closely related mycotoxins produced by Fusarium, Alternaria alternata and Aspergillus species. Their occurrence is correlated with various factors during growth, processing and storage. Fumonisins occurrence data in the literature mainly include the B group of fumonisins (FB1 & FB2) in raw materials, showing high frequency of positive samples in a wide range of concentrations. In this study, a total of 933 grains (63.7%) and poultry feed (36.3%) samples, collected in the 16-year period (2006–2021), were analysed with commercial enzyme-linked-immunosorbent assay for detection of three fumonisins (FB1, FB2 & FB3). All positive and suspect samples were confirmed with high-performance-liquid-chromatography method with fluorescence detection. Overall, we have determined high occurrence of FBs in grains and poultry feed in all tested years, while the lowest occurrence was determined in 2019, followed by 2009 and 2008. Although, contamination levels varied from year-to-year, majority of analyzed samples in all tested years were around 1 mg/kg, while the maximum values varied from 3 mg/kg to 22.23 mg/kg. This study highlights the importance of regular monitoring of raw materials and understanding of the fate of FBs in the food chain in order to avoid undesirable health effects in animals and accompanied economic losses.
Collapse
|
11
|
Groestlinger J, Seidl C, Varga E, Del Favero G, Marko D. Combinatory Exposure to Urolithin A, Alternariol, and Deoxynivalenol Affects Colon Cancer Metabolism and Epithelial Barrier Integrity in vitro. Front Nutr 2022; 9:882222. [PMID: 35811943 PMCID: PMC9263571 DOI: 10.3389/fnut.2022.882222] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 04/15/2022] [Indexed: 12/13/2022] Open
Abstract
The human gastrointestinal tract is an important site of nutrient absorption and a crucial barrier against xenobiotics. It regularly faces “chemical cocktails” composed of food constituents, their human and microbial metabolites, and foodborne contaminants, such as mycotoxins. Hence, the colonic epithelium adapts to dietary molecules tuning its immune response, structural integrity, and metabolism to maintain intestinal homeostasis. While gut microbiota metabolites of berry ellagitannins, such as urolithin A (Uro A) might contribute to physiological epithelial barrier integrity, foodborne co-contaminating mycotoxins like alternariol (AOH) and deoxynivalenol (DON) could hamper epithelial function. Hence, we investigated the response of differentiated Caco-2 cells (clone C2BBe1) in vitro to the three compounds alone or in binary mixtures. In virtue of the possible interactions of Uro A, AOH, and DON with the aryl hydrocarbon receptor (AhR) pathway, potential effects on phase-I-metabolism enzymes and epithelial structural integrity were taken as endpoints for the evaluation. Finally, Liquid chromatography tandem mass spectrometry measurements elucidated the absorption, secretion, and metabolic capacity of the cells under single and combinatory exposure scenarios. Uro A and AOH as single compounds, and as a binary mixture, were capable to induce CYP1A1/1A2/1B1 enzymes triggered by the AhR pathway. In light of its ribosome inhibiting capacity, the trichothecene suppressed the effects of both dibenzo-α-pyrones. In turn, cellular responsiveness to Uro A and AOH could be sustained when co-exposed to DON-3-sulfate, instead of DON. Colonic epithelial structural integrity was rather maintained after incubation with Uro A and AOH: this was reinforced in the combinatory exposure scenario and disrupted by DON, an effect, opposed in combination. Passage through the cells as well as the metabolism of Uro A and AOH were rather influenced by co-exposure to DON, than by interaction with each other. Therefore, we conclude that although single foodborne bioactive substances individually could either support or disrupt the epithelial structure and metabolic capacity of colon cancer, exposure to chemical mixtures changes the experimental outcome and calls for the need of combinatory investigations for proper risk assessment.
Collapse
Affiliation(s)
- Julia Groestlinger
- Department of Food Chemistry and Toxicology, Faculty of Chemistry, University of Vienna, Vienna, Austria
| | - Carina Seidl
- Department of Food Chemistry and Toxicology, Faculty of Chemistry, University of Vienna, Vienna, Austria
| | - Elisabeth Varga
- Department of Food Chemistry and Toxicology, Faculty of Chemistry, University of Vienna, Vienna, Austria
| | - Giorgia Del Favero
- Department of Food Chemistry and Toxicology, Faculty of Chemistry, University of Vienna, Vienna, Austria
- Core Facility Multimodal Imaging, Faculty of Chemistry, University of Vienna, Vienna, Austria
- *Correspondence: Giorgia Del Favero,
| | - Doris Marko
- Department of Food Chemistry and Toxicology, Faculty of Chemistry, University of Vienna, Vienna, Austria
- Doris Marko,
| |
Collapse
|
12
|
Nan M, Xue H, Bi Y. Contamination, Detection and Control of Mycotoxins in Fruits and Vegetables. Toxins (Basel) 2022; 14:309. [PMID: 35622556 PMCID: PMC9143439 DOI: 10.3390/toxins14050309] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 04/18/2022] [Accepted: 04/24/2022] [Indexed: 01/09/2023] Open
Abstract
Mycotoxins are secondary metabolites produced by pathogenic fungi that colonize fruits and vegetables either during harvesting or during storage. Mycotoxin contamination in fruits and vegetables has been a major problem worldwide, which poses a serious threat to human and animal health through the food chain. This review systematically describes the major mycotoxigenic fungi and the produced mycotoxins in fruits and vegetables, analyzes recent mycotoxin detection technologies including chromatography coupled with detector (i.e., mass, ultraviolet, fluorescence, etc.) technology, electrochemical biosensors technology and immunological techniques, as well as summarizes the degradation and detoxification technologies of mycotoxins in fruits and vegetables, including physical, chemical and biological methods. The future prospect is also proposed to provide an overview and suggestions for future mycotoxin research directions.
Collapse
Affiliation(s)
- Mina Nan
- College of Science, Gansu Agricultural University, Lanzhou 730070, China;
- Basic Experiment Teaching Center, Gansu Agricultural University, Lanzhou 730070, China
| | - Huali Xue
- College of Science, Gansu Agricultural University, Lanzhou 730070, China;
| | - Yang Bi
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, China
| |
Collapse
|
13
|
Distinction of Alternaria Sect. Pseudoalternaria Strains among Other Alternaria Fungi from Cereals. J Fungi (Basel) 2022; 8:jof8050423. [PMID: 35628679 PMCID: PMC9142887 DOI: 10.3390/jof8050423] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 04/18/2022] [Accepted: 04/19/2022] [Indexed: 02/04/2023] Open
Abstract
Species of the genus Alternaria are ubiquitous and frequently isolated from various plants, including crops. There are two phylogenetically and morphologically close Alternaria sections: the relatively well-known Infectoriae and the rarely mentioned Pseudoalternaria. Currently, the latter includes at least seven species that are less studied and sometimes misidentified. To perform precise identification, two primers (APsF and APsR) were designed and a sect. Pseudoalternaria-specific PCR method was developed. Thirty-five Russian A. infectoria-like strains were then examined. Five strains were found to be the members of the sect. Pseudoalternaria. Additionally, specificity of the previously developed primer set (Ain3F and Ain4R) was checked. It was found to be highly specific for sect. Infectoriae and did not amplify sect. Pseudoalternaria DNA. Identification of strains of the sect. Pseudoalternaria was supported and refined by phylogenetic reconstruction based on analysis of two loci, the glyceraldehyde-3-phosphate dehydrogenase gene (gpd), and the plasma membrane ATPase gene (ATP). These fungi belonged to Alternaria kordkuyana and A. rosae, which were the first detection of those taxa for the Eastern Europe. Alternaria kordkuyana was isolated from cereal seeds and eleuthero leaves. Alternaria rosae was obtained from oat seed. All strains of sect. Pseudoalternaria were not able to produce alternariol mycotoxin, as well as the majority of A. sect. Infectoriae strains.
Collapse
|
14
|
Janić Hajnal E, Babič J, Pezo L, Banjac V, Čolović R, Kos J, Krulj J, Pavšič-Vrtač K, Jakovac-Strajn B. Effects of extrusion process on Fusarium and Alternaria mycotoxins in whole grain triticale flour. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2021.112926] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
15
|
Orina AS, Gavrilova OP, Gogina NN, Gannibal PB, Gagkaeva TY. Natural Occurrence of Alternaria Fungi and Associated Mycotoxins in Small-Grain Cereals from The Urals and West Siberia Regions of Russia. Toxins (Basel) 2021; 13:toxins13100681. [PMID: 34678974 PMCID: PMC8538951 DOI: 10.3390/toxins13100681] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 09/20/2021] [Accepted: 09/23/2021] [Indexed: 01/04/2023] Open
Abstract
Alternaria fungi dominate the grain microbiota in many regions of the world; therefore, the detection of species that are able to produce mycotoxins has received much attention. A total of 178 grain samples of wheat, barley and oat obtained from the Urals and West Siberia regions of Russia in 2017–2019 were included in the study. Grain contamination with Alternaria fungi belonging to sections Alternaria and Infectoriae was analysed using qPCR with specific primers. The occurrence of four mycotoxins produced by Alternaria, AOH, AME, TEN, and TeA, was defined by HPLC-MS/MS. Alternaria DNA was found in all analysed grain samples. The prevalence of DNA of Alternaria sect. Alternaria fungi (range 53 × 10−4–21,731 × 10−4 pg/ng) over the DNA of Alternaria sect. Infectoriae (range 11 × 10−4‒4237 × 10−4 pg/ng) in the grain samples was revealed. Sixty-two percent of grain samples were contaminated by at least two Alternaria mycotoxins. The combination of TEN and TeA was found most often. Eight percent of grain samples were contaminated by all four mycotoxins, and only 3% of samples were free from the analysed secondary toxic metabolites. The amounts varied in a range of 2–53 µg/kg for AOH, 3–56 µg/kg for AME, 3–131 µg/kg for TEN and 9–15,000 µg/kg for TeA. To our knowledge, a new global maximum level of natural contamination of wheat grain with TeA was detected. A positive correlation between the amount of DNA from Alternaria sect. Alternaria and TeA was observed. The significant effects of cereal species and geographic origin of samples on the amounts of DNA and mycotoxins of Alternaria spp. in grain were revealed. Barley was the most heavily contaminated with fungi belonging to both sections. The content of AOH in oat grain was, on average, higher than that found in wheat and barley. The content of TEN in the grain of barley was lower than that in wheat and similar to that in oat. The content of TeA did not depend on the cereal crop. The effect of weather conditions (summer temperature and rainfall) on the final fungal and mycotoxin contamination of grain was discussed. The frequent co-occurrence of different Alternaria fungi and their mycotoxins in grain indicates the need for further studies investigating this issue.
Collapse
Affiliation(s)
- Aleksandra S. Orina
- Laboratory of Mycology and Phytopathology, All-Russian Institute of Plant Protection, 196608 St. Petersburg, Russia; (O.P.G.); (P.B.G.); (T.Y.G.)
- Correspondence: ; Tel.: +7-812-333-3764
| | - Olga P. Gavrilova
- Laboratory of Mycology and Phytopathology, All-Russian Institute of Plant Protection, 196608 St. Petersburg, Russia; (O.P.G.); (P.B.G.); (T.Y.G.)
| | - Nadezhda N. Gogina
- Laboratory of Biochemical Analysis, All-Russian Scientific Research and Technological Institute of Poultry, 141311 Sergiev Posad, Russia;
| | - Philipp B. Gannibal
- Laboratory of Mycology and Phytopathology, All-Russian Institute of Plant Protection, 196608 St. Petersburg, Russia; (O.P.G.); (P.B.G.); (T.Y.G.)
| | - Tatiana Yu. Gagkaeva
- Laboratory of Mycology and Phytopathology, All-Russian Institute of Plant Protection, 196608 St. Petersburg, Russia; (O.P.G.); (P.B.G.); (T.Y.G.)
| |
Collapse
|