1
|
Long J, Liu D, Qiao W, Wang Y, Miao Y, Baosai H. Response of Elymus nutans Griseb. seedling physiology and endogenous hormones to drought and salt stress. Sci Rep 2024; 14:17810. [PMID: 39090163 PMCID: PMC11294584 DOI: 10.1038/s41598-024-68894-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 07/29/2024] [Indexed: 08/04/2024] Open
Abstract
Elymus nutans Griseb. (E. nutans), a pioneer plant for the restoration of high quality pasture and vegetation, is widely used to establish artificial grasslands and ecologically restore arid and salinized soils. To investigate the effects of drought stress and salt stress on the physiology and endogenous hormones of E. nutans seedlings, this experiment configured the same environmental water potential (0 (CK), - 0.04, - 0.14, - 0.29, - 0.49, - 0.73, and - 1.02 MPa) of PEG-6000 and NaCl stress to investigate the effects of drought stress and salt stress, respectively, on E. nutans seedlings under the same environmental water potential. The results showed that although the physiological indices and endogenous hormones of the E. nutans seedlings responded differently to drought stress and salt stress under the same environmental water potential, the physiological indices of E. nutans shoots and roots were comprehensively evaluated using the genus function method, and the physiological indices of the E. nutans seedlings under the same environmental water potential exhibited better salt tolerance than drought tolerance. The changes in endogenous hormones of the E. nutans seedlings under drought stress were analyzed to find that treatment with gibberellic acid (GA3), gibberellin A7 (GA7), 6-benzyladenine (6-BA), 6-(y,y-dimethylallylaminopurine) (2.IP), trans-zeatin (TZ), kinetin (KT), dihydrozeatin (DHZ), indole acetic acid (IAA), and 2,6-dichloroisonicotininc acid (INA) was more effective than those under drought stress. By analyzing the amplitude of changes in the endogenous hormones in E. nutans seedlings, the amplitude of changes in the contents of GA3, GA7, 6-BA, 2.IP, TZ, KT, DHZ, IAA, isopentenyl adenosine (IPA), indole-3-butyric acid (IBA), naphthalene acetic acid (NAA), and abscisic acid was larger in drought stress compared with salt stress, which could be because the endogenous hormones are important for the drought tolerance of E. nutans itself. The amplitude of the changes in the contents of DHZ, TZR, salicylic acid, and jasmonic acid was larger in salt stress compared with drought stress. Changes in the content of melatonin were larger in salt stress compared with drought stress, which could indicate that endogenous hormones and substances are important for the salt tolerance of E. nutans itself.
Collapse
Affiliation(s)
- Jianting Long
- Xizang Agricultural and Animal Husbandry University, Tibet, Linzhi, 860000, China
| | - Dandan Liu
- Xizang Agricultural and Animal Husbandry University, Tibet, Linzhi, 860000, China
| | - Wei Qiao
- Xizang Agricultural and Animal Husbandry University, Tibet, Linzhi, 860000, China
| | - Yanwei Wang
- Xizang Agricultural and Animal Husbandry University, Tibet, Linzhi, 860000, China
| | - Yanjun Miao
- Xizang Agricultural and Animal Husbandry University, Tibet, Linzhi, 860000, China.
| | - Henna Baosai
- Xizang Agricultural and Animal Husbandry University, Tibet, Linzhi, 860000, China.
| |
Collapse
|
2
|
Xing Y, Zhang P, Zhang W, Yu C, Luo Z. Continuous cropping of potato changed the metabolic pathway of root exudates to drive rhizosphere microflora. Front Microbiol 2024; 14:1318586. [PMID: 38249485 PMCID: PMC10797025 DOI: 10.3389/fmicb.2023.1318586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 12/04/2023] [Indexed: 01/23/2024] Open
Abstract
For potato production, continuous cropping (CC) could lead to autotoxicity buildup and microflora imbalance in the field soil, which may result in failure of crops and reduction in yield. In this study, non-targeted metabolomics (via liquid chromatography with tandem mass spectrometry (LC-MS/MS)) combined with metagenomic profiling (via high-throughput amplicon sequencing) were used to evaluate correlations between metabolomics of potato root exudates and communities of bacteria and fungi around potato plants to illustrate the impacts of CC. Potato plants were grown in soil collected from fields with various CC years (0, 1, 4, and 7 years). Metabolomic analysis showed that the contents and types of potential autotoxins in potato root exudates increased significantly in CC4 and CC7 plants (i.e., grown in soils with 4 and 7 years of CC). The differentially expressed metabolites were mainly produced via alpha-linolenic acid metabolism in plant groups CC0 and CC1 (i.e., no CC or 1 year CC). The metabolomics of the groups CC4 and CC7 became dominated by styrene degradation, biosynthesis of siderophore group non-ribosomal peptides, phenylpropanoid biosynthesis, and biosynthesis of various plant secondary metabolites. Continuous cropping beyond 4 years significantly changed the bacterial and fungal communities in the soil around the potato crops, with significant reduction of beneficial bacteria and accumulation of harmful fungi. Correlations between DEMs and microflora biomarkers were established with strong significances. These results suggested that continuous cropping of potato crops changed their metabolism as reflected in the plant root exudates and drove rhizosphere microflora to directions less favorable to plant growth, and it needs to be well managed to assure potato yield.
Collapse
Affiliation(s)
- Yanhong Xing
- College of Resources and Environmental Sciences, Gansu Agricultural University, Lanzhou, China
| | - Pingliang Zhang
- Dryland Agriculture Institute, Gansu Academy of Agricultural Sciences, Lanzhou, China
| | - Wenming Zhang
- College of Resources and Environmental Sciences, Gansu Agricultural University, Lanzhou, China
| | - Chenxu Yu
- Department of Agriculture and Biosystem Engineering, Iowa State University, Ames, IA, United States
| | - Zhuzhu Luo
- College of Resources and Environmental Sciences, Gansu Agricultural University, Lanzhou, China
| |
Collapse
|
3
|
Choudhary S, Khan S, Rustagi S, Rajpal VR, Khan NS, Kumar N, Thomas G, Pandey A, Hamurcu M, Gezgin S, Zargar SM, Khan MK. Immunomodulatory Effect of Phytoactive Compounds on Human Health: A Narrative Review Integrated with Bioinformatics Approach. Curr Top Med Chem 2024; 24:1075-1100. [PMID: 38551050 DOI: 10.2174/0115680266274272240321065039] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 02/08/2024] [Accepted: 02/16/2024] [Indexed: 07/16/2024]
Abstract
BACKGROUND Immunomodulation is the modification of immune responses to control disease progression. While the synthetic immunomodulators have proven efficacy, they are coupled with toxicity and other adverse effects, and hence, the efforts were to identify natural phytochemicals with immunomodulatory potential. OBJECTIVE To understand the immunomodulatory properties of various phytochemicals and investigate them in Echinacea species extracts using an in silico approach. METHODOLOGY Several scientific database repositories were searched using different keywords: "Phytochemicals," "Alkaloids," "Polyphenols," "Flavonoids," "Lectins," "Glycosides," "Tannins," "Terpenoids," "Sterols," "Immunomodulators," and "Human Immune System" without any language restriction. Additionally, the study specifically investigated the immunomodulatory properties of Echinacea species extracts using gene expression analysis of GSE12259 from NCBI-GEO through the Bioconductor package GEOquery and limma. RESULTS A total of 182 studies were comprehensively analyzed to understand immunomodulatory phytochemicals. The in silico analysis highlighted key biological processes (positive regulation of cytokine production, response to tumor necrosis factor) and molecular functions (cytokine receptor binding, receptor-ligand activity, and cytokine activity) among Echinacea species extracts contributing to immune responses. Further, it also indicated the association of various metabolic pathways, i.e., pathways in cancer, cytokine-cytokine receptor interaction, NF-kappa B, PI3K-Akt, TNF, MAPK, and NOD-like receptor signaling pathways, with immune responses. The study revealed various hub targets, including CCL20, CCL4, GCH1, SLC7A11, SOD2, EPB41L3, TNFAIP6, GCLM, EGR1, and FOS. CONCLUSION The present study presents a cumulative picture of phytochemicals with therapeutic benefits. Additionally, the study also reported a few novel genes and pathways in Echinacea extracts by re-analyzing GSE 12259 indicating its anti-inflammatory, anti-viral, and immunomodulatory properties.
Collapse
Affiliation(s)
| | - Sheeba Khan
- Department of Food Technology, Sam Higginbottom University of Agriculture Technology and Sciences, Prayagraj, 21107, India
| | - Shivani Rustagi
- Department of Food Processing and Technology, Gautam Buddha University, Greater Noida, 201312, India
| | - Vijay Rani Rajpal
- Department of Botany, Hansraj College, University of Delhi, Delhi, 110007, India
| | - Noor Saba Khan
- ICMR-National Institute of Pathology, New Delhi, 110091, India
| | - Neeraj Kumar
- ICMR-National Institute of Pathology, New Delhi, 110091, India
| | - George Thomas
- Department of Molecular and Cellular Engineering, Sam Higginbottom University of Agriculture Technology and Sciences, Prayagraj, 21107, India
| | - Anamika Pandey
- Department of Soil Science and Plant Nutrition, Faculty of Agriculture, Selcuk University, Konya, 42079, Turkey
| | - Mehmet Hamurcu
- Department of Soil Science and Plant Nutrition, Faculty of Agriculture, Selcuk University, Konya, 42079, Turkey
| | - Sait Gezgin
- Department of Soil Science and Plant Nutrition, Faculty of Agriculture, Selcuk University, Konya, 42079, Turkey
| | - Sajad Majeed Zargar
- Proteomics Laboratory, Division of Plant Biotechnology, Sher-e-Kashmir University of Agricultural Sciences and Technology of Kashmir (SKUAST-K), Srinagar, 190025, India
| | - Mohd Kamran Khan
- Department of Soil Science and Plant Nutrition, Faculty of Agriculture, Selcuk University, Konya, 42079, Turkey
| |
Collapse
|
4
|
Zhang L, Chen Y, Zhou Z, Wang Z, Fu L, Zhang L, Xu C, Loor JJ, Wang G, Zhang T, Dong X. Vitamin C injection improves antioxidant stress capacity through regulating blood metabolism in post-transit yak. Sci Rep 2023; 13:10233. [PMID: 37353533 PMCID: PMC10290073 DOI: 10.1038/s41598-023-36779-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 06/09/2023] [Indexed: 06/25/2023] Open
Abstract
Transportation stress is one of the most serious issues in the management of yak. Previous studies have demonstrated that transport stress is caused by a pro-oxidant state in the animal resulting from an imbalance between pro-oxidant and antioxidant status. In this context, vitamin C has the ability to regulate reactive oxygen species (ROS) synthesis and alleviate oxidative stress. Although this effect of vitamin C is useful in pigs, goats and cattle, the effect of vitamin C on the mitigation of transport stress in yaks is still unclear. The purpose of this study was to better assess the metabolic changes induced by the action of vitamin C in yaks under transportation stress, and whether these changes can influence antioxidant status. After the yaks arrived at the farm, control or baseline blood samples were collected immediately through the jugular vein (VC_CON). Then, 100 mg/kg VC was injected intramuscularly, and blood samples were collected on the 10th day before feeding in the morning (VC). Relative to the control group, the VC injection group had higher levels of VC. Compared with VC_CON, VC injection significantly (P < 0.05) decreased the blood concentrations of ALT, AST, T-Bil, D-Bil, IDBIL, UREA, CRP and LDH. However, VC injection led to greater (P < 0.05) AST/ALT and CREA-S relative to VC_CON. There was no difference (P > 0.05) in GGT, ALP, TBA, TP, ALBII, GLO, A/G, TC, TG, HDL-C, LDL-C, GLU and L-lactate between VC_CON and VC. The injection of VC led to greater (P < 0.05) concentration of MDA, but did not alter (P > 0.05) the serum concentrations of LPO and ROS. The injection of VC led to greater (P < 0.05) serum concentrations of POD, CAT and GSH-PX. In contrast, lower (P < 0.05) serum concentrations of SOD, POD and TPX were observed in VC relative to VC_CON. No difference (P > 0.05) in GSH, GSH-ST and GR was observed between VC_CON and VC. Compared with the control group, metabolomics using liquid chromatography tandem-mass spectrometry identified 156 differential metabolites with P < 0.05 and a variable importance in projection (VIP) score > 1.5 in the VC injection group. The injection of VC resulted in significant changes to the intracellular amino acid metabolism of glutathione, glutamate, cysteine, methionine, glycine, phenylalanine, tyrosine, tryptophan, alanine and aspartate. Overall, our study indicated that VC injections were able to modulate antioxidant levels by affecting metabolism to resist oxidative stress generated during transport.
Collapse
Affiliation(s)
- Li Zhang
- Chongqing Academy of Animal Sciences, Rongchang, 402460, China
| | - Yi Chen
- Chongqing Engineering Laboratory of Nano/Micro Biomedical Detection; Chongqing Key Laboratory of Nano/Micro Composite Material and Device, College of Metallurgy and Materials Engineering, Chongqing University of Science and Technology, Chongqing, 401331, China
| | - Ziyao Zhou
- Chongqing Academy of Animal Sciences, Rongchang, 402460, China
- The Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, China
| | - Zhiyu Wang
- The Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, China
| | - Lin Fu
- Chongqing Academy of Animal Sciences, Rongchang, 402460, China
| | - Lijun Zhang
- Tibet Leowuqi Animal Husbandry Station, Changdu Tibet, 855600, China
| | - Changhui Xu
- Tibet Leowuqi Animal Husbandry Station, Changdu Tibet, 855600, China
| | - Juan J Loor
- Mammalian NutriPhysioGenomics, Department of Animal Sciences and Division of Nutritional Sciences, University of Illinois, Urbana, 61801, USA
| | - Gaofu Wang
- Chongqing Academy of Animal Sciences, Rongchang, 402460, China
| | - Tao Zhang
- Chongqing Engineering Laboratory of Nano/Micro Biomedical Detection; Chongqing Key Laboratory of Nano/Micro Composite Material and Device, College of Metallurgy and Materials Engineering, Chongqing University of Science and Technology, Chongqing, 401331, China.
| | - Xianwen Dong
- Chongqing Academy of Animal Sciences, Rongchang, 402460, China.
| |
Collapse
|
5
|
Álvarez-Rodríguez S, Alvite CM, Reigosa MJ, Sánchez-Moreiras AM, Araniti F. Application of Indole-Alkaloid Harmaline Induces Physical Damage to Photosystem II Antenna Complexes in Adult Plants of Arabidopsis thaliana (L.) Heynh. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:6073-6086. [PMID: 37026701 PMCID: PMC10119982 DOI: 10.1021/acs.jafc.3c00531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 03/22/2023] [Accepted: 03/23/2023] [Indexed: 06/19/2023]
Abstract
Finding herbicides with new and multiple modes of action is a solution to stop the increase in resistant weed species. Harmaline, a natural alkaloid with proven phytotoxic potential, was tested on Arabidopsis adult plants by watering and spraying; watering resulted as the more effective treatment. Harmaline altered several photosynthetic parameters, reducing the efficiency of the light- (ΦII) and dark-adapted (Fv/Fm) PSII, suggesting physical damages in photosystem II, although dissipation of the energy in excess under the form of heat was not compromised as demonstrated by the significant increase in ΦNPQ. Metabolomic alterations, such as osmoprotectant accumulation and reduction in sugars' content, also indicate a reduction of photosynthetic efficiency and suggest early senescence and water status alteration induced by harmaline. Data suggest that harmaline might be considered a new phytotoxic molecule interesting for further studies.
Collapse
Affiliation(s)
- Sara Álvarez-Rodríguez
- Departamento
de Bioloxía Vexetal e Ciencias do Solo, Facultade de Bioloxía, Universidade de Vigo, Campus Lagoas-Marcosende s/n, 36310, Vigo, Spain
| | - Carla M. Alvite
- Departamento
de Bioloxía Vexetal e Ciencias do Solo, Facultade de Bioloxía, Universidade de Vigo, Campus Lagoas-Marcosende s/n, 36310, Vigo, Spain
| | - Manuel J. Reigosa
- Departamento
de Bioloxía Vexetal e Ciencias do Solo, Facultade de Bioloxía, Universidade de Vigo, Campus Lagoas-Marcosende s/n, 36310, Vigo, Spain
| | - Adela M. Sánchez-Moreiras
- Departamento
de Bioloxía Vexetal e Ciencias do Solo, Facultade de Bioloxía, Universidade de Vigo, Campus Lagoas-Marcosende s/n, 36310, Vigo, Spain
| | - Fabrizio Araniti
- Dipartimento
di Scienze Agrarie e Ambientali - Produzione, Territorio, Agroenergia, Università Statale di Milano, Via Celoria n° 2, 20133 Milano, Italy
| |
Collapse
|
6
|
Álvarez-Rodríguez S, López-González D, Reigosa MJ, Araniti F, Sánchez-Moreiras AM. Ultrastructural and hormonal changes related to harmaline-induced treatment in Arabidopsis thaliana (L.) Heynh. root meristem. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2022; 179:78-89. [PMID: 35325658 DOI: 10.1016/j.plaphy.2022.03.022] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 03/11/2022] [Accepted: 03/16/2022] [Indexed: 06/14/2023]
Abstract
Harmaline is an indole alkaloid with demonstrated phytotoxicity and recognized pharmacological applications. However, no information is available concerning its mode of action on plant metabolism. Therefore, the present work evaluated bioherbicide mode of action of harmaline on plant metabolism of Arabidopsis thaliana (L.) Heynh. Harmaline induced a strong inhibitory activity on root growth of treated seedlings, reaching IC50 and IC80 values of 14 and 29 μM, respectively. Treated roots were shorter and thicker than control and were characterized by a shorter root meristem size and an increase of root hairs production. Harmaline induced ultrastructural changes such as increment of cell wall thickness, higher density and condensation of mitochondria and vacuolization, appearance of cell wall deposits, increment of Golgi secretory activity and higher percentage of aberrant nuclei. The ethylene inhibitor AgNO3 reversed high root hair appearance and increment of root thickness, and pTCSn::GFP transgenic line showed fluorescence cytokinin signal in stele zone after harmaline treatment that was absent in control, whereas the auxin signal in the transgenic line DR5 was significantly reduced by the treatment. All these results suggest that the mode of action of harmaline could be involving auxin, ethylene and cytokinin synergic/antagonistic action.
Collapse
Affiliation(s)
- Sara Álvarez-Rodríguez
- Departamento de Bioloxía Vexetal e Ciencias do Solo, Facultade de Bioloxía, Universidade de Vigo, Campus Lagoas-Marcosende s/n, 36310, Vigo, Spain
| | - David López-González
- Departamento de Bioloxía Vexetal e Ciencias do Solo, Facultade de Bioloxía, Universidade de Vigo, Campus Lagoas-Marcosende s/n, 36310, Vigo, Spain
| | - Manuel J Reigosa
- Departamento de Bioloxía Vexetal e Ciencias do Solo, Facultade de Bioloxía, Universidade de Vigo, Campus Lagoas-Marcosende s/n, 36310, Vigo, Spain
| | - Fabrizio Araniti
- Dipartimento di Scienze Agrarie e Ambientali - Produzione, Territorio, Agroenergia, Università Statale di Milano, Via Celoria nº2, 20133, Milano, Italy
| | - Adela M Sánchez-Moreiras
- Departamento de Bioloxía Vexetal e Ciencias do Solo, Facultade de Bioloxía, Universidade de Vigo, Campus Lagoas-Marcosende s/n, 36310, Vigo, Spain.
| |
Collapse
|
7
|
Shen S, Ma G, Xu G, Li D, Jin G, Yang S, Clements DR, Chen A, Wen L, Zhang F, Ye M. Allelochemicals Identified From Sweet Potato ( Ipomoea batatas) and Their Allelopathic Effects on Invasive Alien Plants. FRONTIERS IN PLANT SCIENCE 2022; 13:823947. [PMID: 35498714 PMCID: PMC9040068 DOI: 10.3389/fpls.2022.823947] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Accepted: 03/14/2022] [Indexed: 06/14/2023]
Abstract
Sweet potato [Ipomoea batatas (L.) Lam] is grown as important cash and food crop worldwide and has been shown to exhibit allelopathic effects on other plants. However, its metabolome has not been studied extensively, particularly with respect to the production of phytotoxic bioactive secondary products. In this study, the chemical composition of petroleum ether extract of sweet potato was characterized, and the morphological and physiological effects of some individual components against four invasive alien weeds Bidens pilosa L., Galinsoga parviflora Cav., Lolium multiflorum Lam., and Phalaris minor Retz. were determined. Twenty-one components were identified by GS-MS, constituting 96.08% of petroleum ether extract in sweet potato. The major components were palmitic acid (PA) (17.48%), ethyl linoleate (EL) (13.19%), linoleic acid (LA) (12.55%), ethyl palmitate (EP) (11.77%), ethyl linolenate (ELL) (8.29%) oleic acid (5.82%), ethyl stearate (4.19%), and 3-methylphenol acetate (3.19%). The five most abundant compounds exhibited strong inhibition activity against the four invasive weeds tested. The highest inhibition rates were seen for LA, followed by PA and EP, respectively. Catalase (CAT), malondialdehyde (MDA), and peroxidase (POD) content of L. multiflorum were increased by the three allelochemicals, i.e., LA, PA and EP, but superoxide dismutase (SOD), chlorophyll-a and chlorophyll-b levels declined. Overall, the combined impact of all five compounds could be quite effective in suppressing the invasive weeds of concern.
Collapse
Affiliation(s)
- Shicai Shen
- Key Laboratory of Prevention and Control of Biological Invasions, Ministry of Agriculture and Rural Affairs of China, Agricultural Environment and Resource Research Institute, Yunnan Academy of Agricultural Sciences, Kunming, China
- Key Laboratory of Green Prevention and Control of Agricultural Transboundary Pests of Yunnan Province, Agricultural Environment and Resource Research Institute, Yunnan Academy of Agricultural Sciences, Kunming, China
| | - Guangzong Ma
- Key Laboratory of Prevention and Control of Biological Invasions, Ministry of Agriculture and Rural Affairs of China, Agricultural Environment and Resource Research Institute, Yunnan Academy of Agricultural Sciences, Kunming, China
- Key Laboratory of Green Prevention and Control of Agricultural Transboundary Pests of Yunnan Province, Agricultural Environment and Resource Research Institute, Yunnan Academy of Agricultural Sciences, Kunming, China
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, China
| | - Gaofeng Xu
- Key Laboratory of Prevention and Control of Biological Invasions, Ministry of Agriculture and Rural Affairs of China, Agricultural Environment and Resource Research Institute, Yunnan Academy of Agricultural Sciences, Kunming, China
- Key Laboratory of Green Prevention and Control of Agricultural Transboundary Pests of Yunnan Province, Agricultural Environment and Resource Research Institute, Yunnan Academy of Agricultural Sciences, Kunming, China
| | - Diyu Li
- Key Laboratory of Prevention and Control of Biological Invasions, Ministry of Agriculture and Rural Affairs of China, Agricultural Environment and Resource Research Institute, Yunnan Academy of Agricultural Sciences, Kunming, China
- Key Laboratory of Green Prevention and Control of Agricultural Transboundary Pests of Yunnan Province, Agricultural Environment and Resource Research Institute, Yunnan Academy of Agricultural Sciences, Kunming, China
| | - Guimei Jin
- Key Laboratory of Prevention and Control of Biological Invasions, Ministry of Agriculture and Rural Affairs of China, Agricultural Environment and Resource Research Institute, Yunnan Academy of Agricultural Sciences, Kunming, China
- Key Laboratory of Green Prevention and Control of Agricultural Transboundary Pests of Yunnan Province, Agricultural Environment and Resource Research Institute, Yunnan Academy of Agricultural Sciences, Kunming, China
| | - Shaosong Yang
- Key Laboratory of Prevention and Control of Biological Invasions, Ministry of Agriculture and Rural Affairs of China, Agricultural Environment and Resource Research Institute, Yunnan Academy of Agricultural Sciences, Kunming, China
- Key Laboratory of Green Prevention and Control of Agricultural Transboundary Pests of Yunnan Province, Agricultural Environment and Resource Research Institute, Yunnan Academy of Agricultural Sciences, Kunming, China
| | | | - Aidong Chen
- Key Laboratory of Prevention and Control of Biological Invasions, Ministry of Agriculture and Rural Affairs of China, Agricultural Environment and Resource Research Institute, Yunnan Academy of Agricultural Sciences, Kunming, China
- Key Laboratory of Green Prevention and Control of Agricultural Transboundary Pests of Yunnan Province, Agricultural Environment and Resource Research Institute, Yunnan Academy of Agricultural Sciences, Kunming, China
| | - Lina Wen
- Key Laboratory of Prevention and Control of Biological Invasions, Ministry of Agriculture and Rural Affairs of China, Agricultural Environment and Resource Research Institute, Yunnan Academy of Agricultural Sciences, Kunming, China
- Key Laboratory of Green Prevention and Control of Agricultural Transboundary Pests of Yunnan Province, Agricultural Environment and Resource Research Institute, Yunnan Academy of Agricultural Sciences, Kunming, China
| | - Fudou Zhang
- Key Laboratory of Prevention and Control of Biological Invasions, Ministry of Agriculture and Rural Affairs of China, Agricultural Environment and Resource Research Institute, Yunnan Academy of Agricultural Sciences, Kunming, China
- Key Laboratory of Green Prevention and Control of Agricultural Transboundary Pests of Yunnan Province, Agricultural Environment and Resource Research Institute, Yunnan Academy of Agricultural Sciences, Kunming, China
| | - Min Ye
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, China
| |
Collapse
|