1
|
Jin Z, Huang G, Song Y, Zheng X, Zhao K. Unlocking the potential of chitosan in immunoassay sensor. Carbohydr Polym 2025; 350:123024. [PMID: 39647939 DOI: 10.1016/j.carbpol.2024.123024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 11/12/2024] [Accepted: 11/14/2024] [Indexed: 12/10/2024]
Abstract
Using new materials to improve detection accuracy and efficiency is important to broaden the application of immunoassay sensors. Among numerous materials for improving sensors, chitosan, as a natural polysaccharide, has excellent biocompatibility, mechanical adjustability, stimulation sensitivity and porous structure, which holds significant potential for enhancing the performance of immunoassay sensors. However, at present, there are few systematic reviews on the application of chitosan in immune sensors. In this paper, the principle of immunoassay is discussed systematically, we reviewed the recent development of chitosan enhancement strategies in various immunoassay sensors, including surface plasmon resonance immunoassay sensors, colorimetric immunoassay sensors, electrochemical immunoassay sensor, electrochemical luminescence immunoassay sensors are reviewed. Focused on the theoretical basis of improving sensor performance in immunoassay by use chitosan, as well as the various functions and applications of chitosan, and discussed how to solve the challenges of immunoassay sensors by using chitosan and the future research trend. By providing a robust foundation for the development of more efficient detection platforms, it provides insights for advancing the use of chitosan in the detection of complex biological samples. This is crucial for promoting the widespread application of immunoassay sensors with high performance in clinical diagnosis, environmental monitoring and food safety.
Collapse
Affiliation(s)
- Zheng Jin
- Zhejiang Provincial Key Laboratory of Plant Evolutionary Ecology and Conservation, Taizhou Key Laboratory of Biomedicine and Advanced Dosage Forms, School of Life Sciences, Taizhou University, Zhejiang, Taizhou 318000, China
| | - Guodong Huang
- Zhejiang Provincial Key Laboratory of Plant Evolutionary Ecology and Conservation, Taizhou Key Laboratory of Biomedicine and Advanced Dosage Forms, School of Life Sciences, Taizhou University, Zhejiang, Taizhou 318000, China; Department of Biology and Medicine, College of Life Science and Medicine, Zhejiang Sci-Tech University, Zhejiang, Hangzhou 310018, China
| | - Yang Song
- Taizhou Vocational and Technical College, Zhejiang, Taizhou 318000, China
| | - Xin Zheng
- Department of Orthopedics, Municipal Hospital Affiliated to Taizhou University, Zhejiang, Taizhou 318000, China.
| | - Kai Zhao
- Zhejiang Provincial Key Laboratory of Plant Evolutionary Ecology and Conservation, Taizhou Key Laboratory of Biomedicine and Advanced Dosage Forms, School of Life Sciences, Taizhou University, Zhejiang, Taizhou 318000, China.
| |
Collapse
|
2
|
Rocha P, Rebelo P, Pacheco JG, Geraldo D, Bento F, Leão-Martins JM, Delerue-Matos C, Nouws HPA. Electrochemical molecularly imprinted polymer sensor for simple and fast analysis of tetrodotoxin in seafood. Talanta 2025; 282:127002. [PMID: 39383719 DOI: 10.1016/j.talanta.2024.127002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 09/25/2024] [Accepted: 10/04/2024] [Indexed: 10/11/2024]
Abstract
Tetrodotoxin (TTX) is a marine biotoxin whose biosynthesis is associated with the pufferfish. Its distribution is primarily focused in Asian and tropical marine areas. Currently, this group of toxins is classified as emerging in Europe, and its presence could be related to climate change. This incidence has prompted the European Union, with the European Food Safety Authority, to establish control and monitoring mechanisms for TTX in marine products in Europe. In this context, the development of analytical tools capable of ensuring the safety of food products, especially seafood and fish, is a crucial task. This study describes the development of a molecularly imprinted polymer (MIP) based electrochemical sensor for the analysis of TTX. The MIP was synthesized through the electropolymerization of a functional monomer, ortho-phenylenediamine in the presence of a dummy template, voglibose. The MIP sensor was constructed on a screen-printed gold electrode and characterized by cyclic voltammetry. Differential pulse voltammetry, using a redox probe ([Fe(CN)6]3-/4-), was used in the analysis protocol. The developed sensor exhibited a linear response between 5.0 μg mL-1 and 25.0 μg mL-1, with a limit of detection of 1.14 μg mL-1. Its high imprinting efficiency conferred outstanding selectivity towards TTX. The sensor's applicability was confirmed through recovery assays on spiked mussel samples, achieving recoveries of 81.0 %, 110.2 %, and 102.5 % for external standard addition at 30.0, 44.0, and 60.0 μg kg-1, respectively, with relative standard deviations below 15 %. These results are comparable to those obtained using Hydrophilic Interaction Liquid Chromatography coupled with Tandem Mass Spectrometry, a validated method carried out by the European Reference Laboratory for Marine Biotoxins. Thus, the MIP sensor represents a portable, simple, and fast tool with essential analytical functionalities for the sampling phase and pre-selection of laboratory samples for analysis.
Collapse
Affiliation(s)
- P Rocha
- REQUIMTE/LAQV, Instituto Superior de Engenharia do Porto, Instituto Politécnico do Porto, Rua Dr. António Bernardino de Almeida 431, 4249-015 Porto, Portugal; Centro de Química, Universidade do Minho, Campus de Gualtar, 4710-057 Braga, Portugal; Departamento de Química Analítica y Alimentaria, Faculdade de Química, Campus Universitario de Vigo As Lagoas Marcosende, Universidade de Vigo, 36310 Vigo, Spain
| | - P Rebelo
- REQUIMTE/LAQV, Instituto Superior de Engenharia do Porto, Instituto Politécnico do Porto, Rua Dr. António Bernardino de Almeida 431, 4249-015 Porto, Portugal
| | - J G Pacheco
- REQUIMTE/LAQV, Instituto Superior de Engenharia do Porto, Instituto Politécnico do Porto, Rua Dr. António Bernardino de Almeida 431, 4249-015 Porto, Portugal
| | - D Geraldo
- Centro de Química, Universidade do Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| | - F Bento
- Centro de Química, Universidade do Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| | - J M Leão-Martins
- Departamento de Química Analítica y Alimentaria, Faculdade de Química, Campus Universitario de Vigo As Lagoas Marcosende, Universidade de Vigo, 36310 Vigo, Spain
| | - C Delerue-Matos
- REQUIMTE/LAQV, Instituto Superior de Engenharia do Porto, Instituto Politécnico do Porto, Rua Dr. António Bernardino de Almeida 431, 4249-015 Porto, Portugal
| | - H P A Nouws
- REQUIMTE/LAQV, Instituto Superior de Engenharia do Porto, Instituto Politécnico do Porto, Rua Dr. António Bernardino de Almeida 431, 4249-015 Porto, Portugal.
| |
Collapse
|
3
|
Mafe AN, Büsselberg D. Impact of Metabolites from Foodborne Pathogens on Cancer. Foods 2024; 13:3886. [PMID: 39682958 DOI: 10.3390/foods13233886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Revised: 11/28/2024] [Accepted: 11/29/2024] [Indexed: 12/18/2024] Open
Abstract
Foodborne pathogens are microorganisms that cause illness through contamination, presenting significant risks to public health and food safety. This review explores the metabolites produced by these pathogens, including toxins and secondary metabolites, and their implications for human health, particularly concerning cancer risk. We examine various pathogens such as Salmonella sp., Campylobacter sp., Escherichia coli, and Listeria monocytogenes, detailing the specific metabolites of concern and their carcinogenic mechanisms. This study discusses analytical techniques for detecting these metabolites, such as chromatography, spectrometry, and immunoassays, along with the challenges associated with their detection. This study covers effective control strategies, including food processing techniques, sanitation practices, regulatory measures, and emerging technologies in pathogen control. This manuscript considers the broader public health implications of pathogen metabolites, highlighting the importance of robust health policies, public awareness, and education. This review identifies research gaps and innovative approaches, recommending advancements in detection methods, preventive strategies, and policy improvements to better manage the risks associated with foodborne pathogens and their metabolites.
Collapse
Affiliation(s)
- Alice N Mafe
- Department of Biological Sciences, Faculty of Sciences, Taraba State University, Main Campus, Jalingo 660101, Taraba State, Nigeria
| | - Dietrich Büsselberg
- Weill Cornell Medicine-Qatar, Education City, Qatar Foundation, Doha Metropolitan Area P.O. Box 22104, Qatar
| |
Collapse
|
4
|
Hua MZ, Liu J, Roopesh MS, Lu X. Microfluidic Optical Aptasensor for Small Molecules Based on Analyte-Tuned Growth of Gold Nanoseeds and Machine Learning-Enhanced Spectrum Analysis: Rapid Detection of Mycotoxins. ACS Sens 2024. [PMID: 39509543 DOI: 10.1021/acssensors.4c02739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2024]
Abstract
Natural toxins, mainly small molecules, are a category of chemical hazards in agri-food systems that pose threats to both public health and food security. Current standard methods for monitoring these toxins, predominantly based on liquid chromatography-mass spectrometry, are costly, labor-intensive, and complex. This study presents the development of a novel microfluidic optical aptasensor for rapid detection of small molecules based on analyte-tuned growth of gold nanoseeds combined with machine learning-enhanced spectrum analysis. We discovered and optimized a previously unreported growth pattern of aptamer-coated nanoparticles in the presence of different concentrations of analyte, enabling the detection of a major mycotoxin in food. The entire analysis was miniaturized on a customized microfluidic platform, allowing for automated spectral acquisition with precise liquid manipulation. A machine learning model, based on random forest with feature engineering, was developed and evaluated for spectrum analysis, significantly enhancing the prediction of mycotoxin concentrations. This approach extended the detection limit determined by the conventional method (∼72 ppb with high variation) to a wider range of 10 ppb to 100 ppm with high accuracy (overall mean absolute percentage error of 5.7%). The developed analytical tool provides a promising solution for detecting small molecules and monitoring chemical hazards in agri-food systems and the environment.
Collapse
Affiliation(s)
- Marti Z Hua
- Department of Food Science and Agricultural Chemistry, McGill University Macdonald Campus, Sainte-Anne-de-Bellevue, Quebec H9X 3V9, Canada
| | - Jinxin Liu
- Department of Food Science and Agricultural Chemistry, McGill University Macdonald Campus, Sainte-Anne-de-Bellevue, Quebec H9X 3V9, Canada
| | - M S Roopesh
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta T6G 2P5, Canada
| | - Xiaonan Lu
- Department of Food Science and Agricultural Chemistry, McGill University Macdonald Campus, Sainte-Anne-de-Bellevue, Quebec H9X 3V9, Canada
| |
Collapse
|
5
|
Park H, Chung H, Choi S, Bahn YS, Son J. Evaluation of exposure to cyanogenic glycosides and potential hydrogen cyanide release in commercially available foods among the Korean population. Food Chem 2024; 456:139872. [PMID: 38865818 DOI: 10.1016/j.foodchem.2024.139872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Revised: 05/24/2024] [Accepted: 05/26/2024] [Indexed: 06/14/2024]
Abstract
The release of hydrogen cyanide (HCN) after food ingestion can pose a serious health risk to consumers. This study aimed to simultaneously quantify four cyanogenic glycosides (lotaustralin, prunasin, taxiphyllin, and dhurrin) using liquid chromatography-tandem mass spectrometry. The analysis scope extended beyond agricultural products to various consumer foods to estimate dietary exposure to cyanogenic glycosides and assess its risk levels. The major exposure sources are cassava chips (lotaustralin), apples (seeds) (prunasin and dhurrin), and Prunus mume axis (taxiphyllin). In addition to quantifying specific cyanogenic glycosides, this study proposed the development of a preliminary risk assessment framework based on the dietary exposure assessment and the calculation of theoretical levels of HCN derived from cyanogenic glycoside concentrations. In the absence of established guidelines for the permissible intake of foods containing cyanogenic glycosides, this study provides initial guidance for assessing the risks associated with a range of commonly consumed foods.
Collapse
Affiliation(s)
- Hana Park
- Doping Control Center, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea; Department of Biotechnology, Yonsei University, College of Life Science and Biotechnology, Seoul 03722, Republic of Korea.
| | - Hyun Chung
- KnA co. Ltd., Yongin-si 16942, Republic of Korea.
| | - Shinai Choi
- KnA co. Ltd., Yongin-si 16942, Republic of Korea.
| | - Yong-Sun Bahn
- Department of Biotechnology, Yonsei University, College of Life Science and Biotechnology, Seoul 03722, Republic of Korea.
| | - Junghyun Son
- Doping Control Center, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea.
| |
Collapse
|
6
|
Candido FS, Sartori AV, da Nobrega AW. A miniaturized QuEChERS and UPLC-MS/MS method for the determination of mycotoxins in cashew nuts. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 2024; 41:1158-1170. [PMID: 39008629 DOI: 10.1080/19440049.2024.2376156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 06/19/2024] [Accepted: 06/29/2024] [Indexed: 07/17/2024]
Abstract
This study aimed to develop and validate a multi-mycotoxin analysis method applied to cashew nuts by employing a miniaturized QuEChERS method followed by determination by ultra-performance liquid chromatography tandem mass spectrometry (UHPLC-MS/MS). Satisfactory recoveries for the concentrations 1, 10 and 30 ng g-1, ranging from 66% (fumonisin B1) to 110% (ochratoxin A) and relative standard deviations lower than 9% (fumonisin B2) were obtained for the target compounds. Limits of quantification ranged from 0.004 ng g-1 (sterigmatocystin) to 0.59 ng g-1 (alternariol). The applicability of the analytical method was verified by analyzing 30 cashew nut samples from the city of Rio de Janeiro, RJ, southeastern Brazil. Aflatoxins M1, G2, G1, B2, B1, ochratoxin A and sterigmatocystin were detected, respectively, in 27%, 10%, 17%, 30%, 30%, 30% and 50% of the analyzed samples, at maximum concentrations of 0.56, 0.67, 1.43, 2.02, 4.93, 4.81, and 0.35 ng g-1. The maximum limit established by Brazilian legislation for aflatoxins was not exceeded by any of the analyzed samples.
Collapse
Affiliation(s)
- Felipe Stanislau Candido
- Instituto Nacional de Controle de Qualidade em Saúde, Fundação Oswaldo CruzRio de Janeiro, Brazil
| | - Andre Victor Sartori
- Instituto Nacional de Controle de Qualidade em Saúde, Fundação Oswaldo CruzRio de Janeiro, Brazil
| | | |
Collapse
|
7
|
Cafeo G, Irrera E, Russo M, Dugo P. Extraction and Chromatographic Approaches for Coumarin, Furocoumarin, and Polymethoxyflavone Characterization in Foods. Foods 2024; 13:2517. [PMID: 39200445 PMCID: PMC11353578 DOI: 10.3390/foods13162517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 08/08/2024] [Accepted: 08/09/2024] [Indexed: 09/02/2024] Open
Abstract
Oxygen heterocyclic compounds play a beneficial role in plants, and their presence in foods, such as Citrus fruits, cinnamon, carrots, and parsley, has been documented in recent years. Published research articles reported several extractions and chromatographic techniques for their determination. The aim of this review was to take into consideration the research articles published from 2016 to 2024 in which the authors developed extraction and chromatographic analysis methods of oxygen heterocyclic compounds in foods. The objective of this review was to assist researchers in choosing the best approach for their future work by identifying all the possible approaches to characterize coumarins, furocoumarins, and polymethoxyflavones in foodstuffs.
Collapse
Affiliation(s)
- Giovanna Cafeo
- Messina Institute of Technology c/o Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, Former Veterinary School, University of Messina, Viale G. Palatucci snc, 98168 Messina, Italy; (G.C.); (E.I.); (P.D.)
| | - Elisa Irrera
- Messina Institute of Technology c/o Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, Former Veterinary School, University of Messina, Viale G. Palatucci snc, 98168 Messina, Italy; (G.C.); (E.I.); (P.D.)
| | - Marina Russo
- Messina Institute of Technology c/o Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, Former Veterinary School, University of Messina, Viale G. Palatucci snc, 98168 Messina, Italy; (G.C.); (E.I.); (P.D.)
| | - Paola Dugo
- Messina Institute of Technology c/o Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, Former Veterinary School, University of Messina, Viale G. Palatucci snc, 98168 Messina, Italy; (G.C.); (E.I.); (P.D.)
- Chromaleont s.r.l., c/o Messina Institute of Technology c/o Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, Former Veterinary School, University of Messina, Viale G. Palatucci snc, 98168 Messina, Italy
| |
Collapse
|
8
|
Xu Y, Jia X, Yang S, Cao M, He B, Ren W, Suo Z. Simultaneous Determination of Aflatoxin B1 and Ochratoxin A in Cereals by a Novel Electrochemical Aptasensor Using Metal-Organic Framework as Signal Carrier. Foods 2024; 13:2177. [PMID: 39063260 PMCID: PMC11276064 DOI: 10.3390/foods13142177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 07/05/2024] [Accepted: 07/08/2024] [Indexed: 07/28/2024] Open
Abstract
A novel electrochemical aptasensor was prepared for the simultaneous determination of aflatoxin B1 (AFB1) and ochratoxin A (OTA). Composites of Au nanoparticles and polyethyleneimine-reduced graphene oxide (AuNPs/PEI-RGO) with good electrical conductivity and high specific surface area were employed as the supporting substrate, demonstrating the ability to provide more binding sites for aptamers and accelerate the electron transfer. Aptamers were immobilized on a AuNPs/PEI-RGO surface to specifically recognize AFB1 and OTA. A metal-organic framework of UiO-66-NH2 served as the signal carrier to load metal ions of Cu2+ and Pb2+, which facilitated the generation of independent current peaks and effectively improved the electrochemical signals. The prepared aptasensor exhibited sensitive current responses for AFB1 and OTA with a linear range of 0.01 to 1000 ng/mL, with detection limits of 6.2 ng/L for AFB1 and 3.7 ng/L for OTA, respectively. The aptasensor was applied to detect AFB1 and OTA in cereal samples, achieving results comparable with HPLC-MS, with recovery results from 92.5% to 104.1%. With these merits of high sensitivity and good selectivity and stability, the prepared aptasensor proved to be a powerful tool for evaluating contaminated cereals.
Collapse
Affiliation(s)
- Yiwei Xu
- School of Food Science and Technology, National Engineering Research Center of Wheat and Corn Further Processing, Henan University of Technology, Zhengzhou 450001, China; (X.J.); (M.C.); (W.R.); (Z.S.)
| | - Xupeng Jia
- School of Food Science and Technology, National Engineering Research Center of Wheat and Corn Further Processing, Henan University of Technology, Zhengzhou 450001, China; (X.J.); (M.C.); (W.R.); (Z.S.)
| | - Sennan Yang
- Henan Institute of Food and Salt Industry Inspection Technology, Zhengzhou 450003, China
| | - Mengrui Cao
- School of Food Science and Technology, National Engineering Research Center of Wheat and Corn Further Processing, Henan University of Technology, Zhengzhou 450001, China; (X.J.); (M.C.); (W.R.); (Z.S.)
| | - Baoshan He
- School of Food Science and Technology, National Engineering Research Center of Wheat and Corn Further Processing, Henan University of Technology, Zhengzhou 450001, China; (X.J.); (M.C.); (W.R.); (Z.S.)
| | - Wenjie Ren
- School of Food Science and Technology, National Engineering Research Center of Wheat and Corn Further Processing, Henan University of Technology, Zhengzhou 450001, China; (X.J.); (M.C.); (W.R.); (Z.S.)
| | - Zhiguang Suo
- School of Food Science and Technology, National Engineering Research Center of Wheat and Corn Further Processing, Henan University of Technology, Zhengzhou 450001, China; (X.J.); (M.C.); (W.R.); (Z.S.)
| |
Collapse
|
9
|
Yin Y, Sun W, Wang X, Chen J, Zeng H, Hao S, Ren L, Yong L, Luo C, Zou X. The screening method for 39 phytotoxins and mycotoxins in blood and urine with liquid chromatography-high resolution mass spectrometry. J Chromatogr B Analyt Technol Biomed Life Sci 2024; 1241:124173. [PMID: 38821004 DOI: 10.1016/j.jchromb.2024.124173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 05/11/2024] [Accepted: 05/25/2024] [Indexed: 06/02/2024]
Abstract
BACKGROUND Poisonings caused by plant toxins and mycotoxins occur frequently, which do great harm to human health and social public health safety. When a poisoning incident occurs, biological samples are commonly be used to conduct the detection of toxic substances and their metabolites for targeted clinical treatment and incident analysis. OBJECTIVE To establish an efficient and accurate analysis method of 39 phytotoxins and mycotoxins in blood and urine by high performance liquid chromatography quadrupole tandem orbitrap mass spectrometry (HPLC-Orbitrap MS). METHOD After 3 mL of methanol being added to 1 mL blood and urine respectively for extraction and protein precipitation, the supernatant was injected into HPLC-Orbitrap MS for analysis. The phytotoxins and mycotoxins were separated by Hypersil GOLD PFP column with gradient elution using methanol-5 mmol/L ammonium acetate as mobile phase. The data were collected in ESI positive ion mode using Full MS/dd-MS2 for mass spectrometry detection. RESULT The mass database of 39 phytotoxins and mycotoxins was developed, and accurate qualitative analysis can be obtained by matching with the database using the proposed identification criteria. Limit of detections (LODs) were 1.34 × 10-4 ∼ 1.92 ng/mL and 1.92 × 10-4 ∼ 9.80 ng/mL for blood and urine samples, respectively. Limits of quantification (LOQ) of toxins in blood and urine ranged from 4.47 × 10-4 ∼ 6.32 ng/mL and 6.39 × 10-4 ∼ 32.67 ng/mL, respectively. Intra-day relative standard deviations (RSDs) were 0.79 % ∼ 10.90 %, and inter-day RSDs were 1.08 % ∼ 18.93 %. The recoveries can reach 90 % ∼ 110 % with matrix matching calibration curves. CONCLUSION The established method is simple and rapid to operate, which can complete the sample analysis within 30 min, providing technical support for clinical poisoning treatment and public health poisoning analysis.
Collapse
Affiliation(s)
- Yuqi Yin
- Department of Public Health Laboratory Science, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu 610041, People's Republic of China
| | - Weiyang Sun
- Department of Public Health Laboratory Science, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu 610041, People's Republic of China
| | - Xuan Wang
- Department of Public Health Laboratory Science, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu 610041, People's Republic of China
| | - Jiayue Chen
- Department of Public Health Laboratory Science, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu 610041, People's Republic of China
| | - Hongyan Zeng
- Department of Public Health Laboratory Science, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu 610041, People's Republic of China
| | - Sifan Hao
- Department of Public Health Laboratory Science, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu 610041, People's Republic of China
| | - Lin Ren
- Sichuan Centre for Disease Control and Prevention, Chengdu 610041, People's Republic of China
| | - Li Yong
- Sichuan Centre for Disease Control and Prevention, Chengdu 610041, People's Republic of China.
| | - Chunying Luo
- Chengdu Centre for Disease Control and Prevention, Chengdu 610047, People's Republic of China.
| | - Xiaoli Zou
- Department of Public Health Laboratory Science, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu 610041, People's Republic of China; Food Safety Monitoring and Risk Assessment Key Laboratory of Sichuan Province, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu 610041, People's Republic of China.
| |
Collapse
|
10
|
Lemmink IB, Straub LV, Bovee TFH, Mulder PPJ, Zuilhof H, Salentijn GI, Righetti L. Recent advances and challenges in the analysis of natural toxins. ADVANCES IN FOOD AND NUTRITION RESEARCH 2024; 110:67-144. [PMID: 38906592 DOI: 10.1016/bs.afnr.2024.05.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/23/2024]
Abstract
Natural toxins (NTs) are poisonous secondary metabolites produced by living organisms developed to ward off predators. Especially low molecular weight NTs (MW<∼1 kDa), such as mycotoxins, phycotoxins, and plant toxins, are considered an important and growing food safety concern. Therefore, accurate risk assessment of food and feed for the presence of NTs is crucial. Currently, the analysis of NTs is predominantly performed with targeted high pressure liquid chromatography tandem mass spectrometry (HPLC-MS/MS) methods. Although these methods are highly sensitive and accurate, they are relatively expensive and time-consuming, while unknown or unexpected NTs will be missed. To overcome this, novel on-site screening methods and non-targeted HPLC high resolution mass spectrometry (HRMS) methods have been developed. On-site screening methods can give non-specialists the possibility for broad "scanning" of potential geographical regions of interest, while also providing sensitive and specific analysis at the point-of-need. Non-targeted chromatography-HRMS methods can detect unexpected as well as unknown NTs and their metabolites in a lab-based approach. The aim of this chapter is to provide an insight in the recent advances, challenges, and perspectives in the field of NTs analysis both from the on-site and the laboratory perspective.
Collapse
Affiliation(s)
- Ids B Lemmink
- Laboratory of Organic Chemistry, Wageningen University & Research, Wageningen, The Netherlands; Wageningen Food Safety Research, Wageningen University & Research, Wageningen, The Netherlands
| | - Leonie V Straub
- Laboratory of Organic Chemistry, Wageningen University & Research, Wageningen, The Netherlands; Wageningen Food Safety Research, Wageningen University & Research, Wageningen, The Netherlands
| | - Toine F H Bovee
- Wageningen Food Safety Research, Wageningen University & Research, Wageningen, The Netherlands
| | - Patrick P J Mulder
- Wageningen Food Safety Research, Wageningen University & Research, Wageningen, The Netherlands
| | - Han Zuilhof
- Laboratory of Organic Chemistry, Wageningen University & Research, Wageningen, The Netherlands; School of Pharmaceutical Sciences and Technology, Tianjin University, Tianjin, P.R. China
| | - Gert Ij Salentijn
- Laboratory of Organic Chemistry, Wageningen University & Research, Wageningen, The Netherlands; Wageningen Food Safety Research, Wageningen University & Research, Wageningen, The Netherlands.
| | - Laura Righetti
- Laboratory of Organic Chemistry, Wageningen University & Research, Wageningen, The Netherlands; Wageningen Food Safety Research, Wageningen University & Research, Wageningen, The Netherlands.
| |
Collapse
|
11
|
Huang JY, Liu Q, Zhu H, Lin SF, Yang KX, He HL, Gu XG, Shen YH, Qin L. A fluorescent terbium-metal-organic framework material for high-sensitivity detection of vomitoxin and oxytetracycline hydrochloride in water. LUMINESCENCE 2024; 39:e4743. [PMID: 38692854 DOI: 10.1002/bio.4743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 03/06/2024] [Accepted: 03/21/2024] [Indexed: 05/03/2024]
Abstract
A unique luminescent lanthanide metal-organic framework (LnMOF)-based fluorescence detection platform was utilized to achieve sensitive detection of vomitoxin (VT) and oxytetracycline hydrochloride (OTC-HCL) without the use of antibodies or biomolecular modifications. The sensor had a fluorescence quenching constant of 9.74 × 106 M-1 and a low detection limit of 0.68 nM for vomitoxin. Notably, this is the first example of a Tb-MOF sensor for fluorescence detection of vomitoxin. We further investigated its response to two mycotoxins, aflatoxin B1 and ochratoxin A, and found that their Stern-Volmer fluorescence quenching constants were lower than those of VT. In addition, the fluorescence sensor realized sensitive detection of OTC-HCL with a detection limit of 0.039 μM. In conclusion, the method has great potential as a sensitive and simple technique to detect VT and OTC-HCL in water.
Collapse
Affiliation(s)
- Jia-Yi Huang
- School of Chemistry and Chemical Engineering, Hefei University of Technology, Hefei, P. R. China
| | - Qiang Liu
- School of Chemistry and Chemical Engineering, Hefei University of Technology, Hefei, P. R. China
| | - Hao Zhu
- School of Chemistry and Chemical Engineering, Hefei University of Technology, Hefei, P. R. China
| | - Shuo-Feng Lin
- School of Chemistry and Chemical Engineering, Hefei University of Technology, Hefei, P. R. China
| | - Ke-Xin Yang
- School of Chemistry and Chemical Engineering, Hefei University of Technology, Hefei, P. R. China
| | - Hua-Li He
- School of Chemistry and Chemical Engineering, Hefei University of Technology, Hefei, P. R. China
| | - Xun-Gang Gu
- Anhui Aochuang Environment Testing Co., Ltd, Fuyang, Anhui, P. R. China
| | - Yong-Hui Shen
- Anhui Aochuang Environment Testing Co., Ltd, Fuyang, Anhui, P. R. China
| | - Ling Qin
- School of Chemistry and Chemical Engineering, Hefei University of Technology, Hefei, P. R. China
| |
Collapse
|
12
|
Johnson NAN, Adade SYSS, Haruna SA, Ekumah JN, Ma Y. Quantitative assessment of phytochemicals in chickpea beverages using NIR spectroscopy. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 307:123623. [PMID: 37989004 DOI: 10.1016/j.saa.2023.123623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 09/17/2023] [Accepted: 11/04/2023] [Indexed: 11/23/2023]
Abstract
The prospects of near-infrared (NIR) spectroscopy combined with effective variable selection algorithms for quantifying phytochemical compounds in chickpea beverages were investigated in this study. As reference measurement analysis, the phytochemicals were extracted and identified via high-performance liquid chromatography. Multivariate algorithms were then applied, analyzed, and evaluated using correlation coefficients of validation set (Rp), root mean square error of prediction (RMSEP), and residual predictive deviations (RPDs). Accordingly, the competitive adaptive reweighted sampling-partial least squares (CARS-PLS) model achieved superior performance for biochanin A (Rp = 0.933, RPD = 3.63), chlorogenic acid (Rp = 0.928, RPD = 3.52), p-coumaric acid (Rp = 0.900, RPD = 2.37), and stigmasterol (Rp = 0.932, RPD = 3.15), respectively. Hence, this study demonstrated that NIR spectroscopy paired with CARS-PLS could be used for nondestructive quantitative prediction of phytochemicals in chickpea beverages during manufacture and storage.
Collapse
Affiliation(s)
- Nana Adwoa Nkuma Johnson
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, PR China; School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang, 202013, Jiangsu, China
| | - Selorm Yao-Say Solomon Adade
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, PR China; School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang, 202013, Jiangsu, China; Department of Nutrition and Dietetics, Ho Teaching Hospital, Ho, Ghana.
| | - Suleiman A Haruna
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang, 202013, Jiangsu, China; Department of Food Science and Technology, Kano University of Science andTechnology, Wudil, P.M.B 3244 Kano, Kano State, Nigeria
| | - John-Nelson Ekumah
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang, 202013, Jiangsu, China; Department of Nutrition and Food Science, College of Basic and Applied Sciences, University of Ghana, P. O. Box LG 134, Legon, Ghana
| | - Yongkun Ma
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang, 202013, Jiangsu, China.
| |
Collapse
|
13
|
Mahmoudi S, Chaichi MJ, Shamsipur M, Nazari OL, Samadi Mayodi AR. Determination of Atropine by HPLC in Plant of Datura by Liquid-Liquid Extraction and Magnet Solid-Phase Extraction. J Chromatogr Sci 2024; 62:182-190. [PMID: 37316168 DOI: 10.1093/chromsci/bmad041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 04/03/2023] [Indexed: 06/16/2023]
Abstract
Atropine is a tropane alkaloid found in abundance in Datura plant. We used two liquid-liquid extraction methods and magnet solid-phase extraction to compare the amount of atropine in these two types of plants (Datura innoxia and Datura stramonium). The surface magnetic nanoparticle Fe3O4 correction with an amine and dextrin, and finally, magnetic solid-phase extraction Fe3O4@SiO2-NH2-dextrin (MNPs-dextrin), was prepared. We determined the effect of significant parameters in the removal step and optimization of atropine measurements with half-fractional factorial design (25-1) and response surface methodology via central composite design. The optimum conditions are for desorption solvent = 0.5 mL methanol and desorption time of 5 min. We obtained an extraction recovery of 87.63% with a relative standard deviation of 4.73% via six frequented measurements on a 1 μg L-1 atropine standard solution based on the optimum condition. Preconcentration factors for MNPs are 81, limit of detection = 0.76 μg L-1 and limit of quantitation = 2.5 μg L-1.
Collapse
Affiliation(s)
- Shaida Mahmoudi
- Department of Analytical Chemistry, Faculty of Chemistry, University of Mazandaran, Babolsar 474161-3534, Iran
- Department of Analytical Chemistry, Faculty of Chemistry, University of Razi, Kermanshah 671441-4971, Iran
| | - Mohamad Javad Chaichi
- Department of Analytical Chemistry, Faculty of Chemistry, University of Mazandaran, Babolsar 474161-3534, Iran
| | - Mojtaba Shamsipur
- Department of Analytical Chemistry, Faculty of Chemistry, University of Razi, Kermanshah 671441-4971, Iran
| | - Ome Leila Nazari
- Department of Analytical Chemistry, Faculty of Chemistry, University of Mazandaran, Babolsar 474161-3534, Iran
| | - Abdol Rauf Samadi Mayodi
- Department of Analytical Chemistry, Faculty of Chemistry, University of Mazandaran, Babolsar 474161-3534, Iran
| |
Collapse
|
14
|
Ahuja V, Singh A, Paul D, Dasgupta D, Urajová P, Ghosh S, Singh R, Sahoo G, Ewe D, Saurav K. Recent Advances in the Detection of Food Toxins Using Mass Spectrometry. Chem Res Toxicol 2023; 36:1834-1863. [PMID: 38059476 PMCID: PMC10731662 DOI: 10.1021/acs.chemrestox.3c00241] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 10/30/2023] [Accepted: 11/08/2023] [Indexed: 12/08/2023]
Abstract
Edibles are the only source of nutrients and energy for humans. However, ingredients of edibles have undergone many physicochemical changes during preparation and storage. Aging, hydrolysis, oxidation, and rancidity are some of the major changes that not only change the native flavor, texture, and taste of food but also destroy the nutritive value and jeopardize public health. The major reasons for the production of harmful metabolites, chemicals, and toxins are poor processing, inappropriate storage, and microbial spoilage, which are lethal to consumers. In addition, the emergence of new pollutants has intensified the need for advanced and rapid food analysis techniques to detect such toxins. The issue with the detection of toxins in food samples is the nonvolatile nature and absence of detectable chromophores; hence, normal conventional techniques need additional derivatization. Mass spectrometry (MS) offers high sensitivity, selectivity, and capability to handle complex mixtures, making it an ideal analytical technique for the identification and quantification of food toxins. Recent technological advancements, such as high-resolution MS and tandem mass spectrometry (MS/MS), have significantly improved sensitivity, enabling the detection of food toxins at ultralow levels. Moreover, the emergence of ambient ionization techniques has facilitated rapid in situ analysis of samples with lower time and resources. Despite numerous advantages, the widespread adoption of MS in routine food safety monitoring faces certain challenges such as instrument cost, complexity, data analysis, and standardization of methods. Nevertheless, the continuous advancements in MS-technology and its integration with complementary techniques hold promising prospects for revolutionizing food safety monitoring. This review discusses the application of MS in detecting various food toxins including mycotoxins, marine biotoxins, and plant-derived toxins. It also explores the implementation of untargeted approaches, such as metabolomics and proteomics, for the discovery of novel and emerging food toxins, enhancing our understanding of potential hazards in the food supply chain.
Collapse
Affiliation(s)
- Vishal Ahuja
- University
Institute of Biotechnology, Chandigarh University, Mohali, Punjab 140413, India
- University
Centre for Research & Development, Chandigarh
University, Mohali, Punjab 140413, India
| | - Amanpreet Singh
- Department
of Chemistry, University Institute of Science, Chandigarh University, Mohali, Punjab 140413, India
| | - Debarati Paul
- Amity
Institute of Biotechnology, AUUP, Noida, Uttar Pradesh 201313, India
| | - Diptarka Dasgupta
- Material
Resource Efficiency Division, CSIR-Indian
Institute of Petroleum, Dehradun 248005, India
| | - Petra Urajová
- Laboratory
of Algal Biotechnology-Centre Algatech, Institute of Microbiology of the Czech Academy of Sciences, Třeboň 379
01, Czech Republic
| | - Sounak Ghosh
- Laboratory
of Algal Biotechnology-Centre Algatech, Institute of Microbiology of the Czech Academy of Sciences, Třeboň 379
01, Czech Republic
| | - Roshani Singh
- Laboratory
of Algal Biotechnology-Centre Algatech, Institute of Microbiology of the Czech Academy of Sciences, Třeboň 379
01, Czech Republic
| | - Gobardhan Sahoo
- Laboratory
of Algal Biotechnology-Centre Algatech, Institute of Microbiology of the Czech Academy of Sciences, Třeboň 379
01, Czech Republic
| | - Daniela Ewe
- Laboratory
of Algal Biotechnology-Centre Algatech, Institute of Microbiology of the Czech Academy of Sciences, Třeboň 379
01, Czech Republic
| | - Kumar Saurav
- Laboratory
of Algal Biotechnology-Centre Algatech, Institute of Microbiology of the Czech Academy of Sciences, Třeboň 379
01, Czech Republic
| |
Collapse
|
15
|
Dib AA, Assaf JC, Debs E, Khatib SE, Louka N, Khoury AE. A comparative review on methods of detection and quantification of mycotoxins in solid food and feed: a focus on cereals and nuts. Mycotoxin Res 2023; 39:319-345. [PMID: 37523055 DOI: 10.1007/s12550-023-00501-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 07/13/2023] [Accepted: 07/14/2023] [Indexed: 08/01/2023]
Abstract
Many emerging factors and circumstances urge the need to develop and optimize the detection and quantification techniques of mycotoxins in solid food and feed. The diversity of mycotoxins, which have different properties and affinities, makes the standardization of the analytical procedures and the adoption of a single protocol that covers the attributes of all mycotoxins a tedious or even an impossible mission. Several modifications and improvements have been undergone in order to optimize the performance of these methods including the extraction solvents, the extraction methods, the clean-up procedures, and the analytical techniques. The techniques range from the rapid screening methods, which lack sensitivity and specificity such as TLC, to a spectrum of more advanced protocols, namely, ELISA, HPLC, and GC-MS and LC-MS/MS. This review aims at assessing the current studies related to these analytical techniques of mycotoxins in solid food and feed. It discusses and evaluates, through a critical approach, various sample treatment techniques, and provides an in-depth examination of different mycotoxin detection methods. Furthermore, it includes a comparison of their actual accuracy and a thorough analysis of the observed benefits and drawbacks.
Collapse
Affiliation(s)
- Alaa Abou Dib
- Centre d'Analyses Et de Recherche (CAR), Faculté Des Sciences, Unité de Recherche Technologies Et Valorisation Agro-Alimentaire (UR-TVA), Université Saint-Joseph de Beyrouth, Campus Des Sciences Et TechnologiesMar Roukos, Matn, 1104-2020, Lebanon
- Department of Food Sciences and Technology, Faculty of Arts and Sciences, Bekaa Campus, Lebanese International University, Khiyara, 1108, Bekaa, Lebanon
| | - Jean Claude Assaf
- Department of Chemical Engineering, Faculty of Engineering, University of Balamand, P.O. Box 100, Tripoli, Lebanon
| | - Espérance Debs
- Department of Biology, Faculty of Arts and Sciences, University of Balamand, P.O. Box 100, Tripoli, 1300, Lebanon
| | - Sami El Khatib
- Department of Food Sciences and Technology, Faculty of Arts and Sciences, Bekaa Campus, Lebanese International University, Khiyara, 1108, Bekaa, Lebanon
- Center for Applied Mathematics and Bioinformatics, Gulf University for Science and Technology, Hawally, Kuwait
| | - Nicolas Louka
- Centre d'Analyses Et de Recherche (CAR), Faculté Des Sciences, Unité de Recherche Technologies Et Valorisation Agro-Alimentaire (UR-TVA), Université Saint-Joseph de Beyrouth, Campus Des Sciences Et TechnologiesMar Roukos, Matn, 1104-2020, Lebanon
| | - André El Khoury
- Centre d'Analyses Et de Recherche (CAR), Faculté Des Sciences, Unité de Recherche Technologies Et Valorisation Agro-Alimentaire (UR-TVA), Université Saint-Joseph de Beyrouth, Campus Des Sciences Et TechnologiesMar Roukos, Matn, 1104-2020, Lebanon.
| |
Collapse
|
16
|
Opuni KF, Kretchy JP, Agyabeng K, Boadu JA, Adanu T, Ankamah S, Appiah A, Amoah GB, Baidoo M, Kretchy IA. Contamination of herbal medicinal products in low-and-middle-income countries: A systematic review. Heliyon 2023; 9:e19370. [PMID: 37674839 PMCID: PMC10477504 DOI: 10.1016/j.heliyon.2023.e19370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 08/15/2023] [Accepted: 08/21/2023] [Indexed: 09/08/2023] Open
Abstract
The use of herbal medicinal products (HMPs) has grown significantly across low-and-middle-income countries (LMICs). Consequently, the safety of these products due to contamination is a significant public health concern. This systematic review aimed to determine the prevalence, types, and levels of contaminants in HMPs from LMICs. A search was performed in seven online databases, i.e., Africa journal online (AJOL), Cumulative Index to Nursing and Allied Health Literature (CINAHL), Directory of Open Access Journals (DOAJ), Health Inter-Network Access to Research Initiative (HINARI), World Health Organization Global Index Medicus (WHO GIM), Scopus, and PubMed using appropriate search queries and reported as per the "Preferred Reporting Items for Systematic Reviews and Meta-Analyses" (PRISMA) guidelines. Ninety-one peer-reviewed articles published from 1982 to 2021 from 28 different countries across four continents were included in the study. Although metals, microbial, mycotoxins, pesticides, and residual solvents were the reported contaminants in the 91 articles, metals (56.0%, 51/91), microbial (27.5%, 25/91), and mycotoxins (18.7%, 17/91) were the most predominant. About 16.4% (1236/7518) of the samples had their contaminant levels above the regulatory limits. Samples tested for microbial contaminants had the highest proportion (46.4%, 482/1039) of contaminants exceeding the regulatory limit, followed by mycotoxins (25.8%, 109/423) and metals (14.3%, 591/4128). The proportion of samples that had their average non-essential metal contaminant levels above the regulatory limit was (57.6%, 377/655), 18.3% (88/480), 10.7% (24/225), and 11.3% (29/257) for Pb, Cd, Hg, and As, respectively. The commonest bacteria species found were Escherichia coli (52.3%, 10/19) and Salmonella species (42.1%, 8/19). This review reported that almost 90% of Candida albicans and more than 80% of moulds exceeded the required regulatory limits. HMP consumption poses profound health implications to consumers and patients. Therefore, designing and/or implementing policies that effectively regulate HMPs to minimize the health hazards related to their consumption while improving the quality of life of persons living in LMICs are urgently needed.
Collapse
Affiliation(s)
- Kwabena F.M. Opuni
- Department of Pharmaceutical Chemistry, School of Pharmacy, University of Ghana, P.O. Box LG43, Legon, Accra, Ghana
| | - James-Paul Kretchy
- Department of Public Health, School of Medicine and Health Sciences, Central University, P. O. Box 2305, Miotso, Accra, Ghana
| | - Kofi Agyabeng
- Department of Biostatistics, School of Public Health, University of Ghana, P. O. Box LG13, Legon, Accra, Ghana
| | - Joseph A. Boadu
- Department of Pharmaceutical Chemistry, School of Pharmacy, University of Ghana, P.O. Box LG43, Legon, Accra, Ghana
| | - Theodosia Adanu
- Balme Library, University of Ghana, P.O. Box LG24, Legon, Accra, Ghana
| | - Samuel Ankamah
- Balme Library, University of Ghana, P.O. Box LG24, Legon, Accra, Ghana
| | - Alexander Appiah
- Department of Pharmaceutical Chemistry, School of Pharmacy, University of Ghana, P.O. Box LG43, Legon, Accra, Ghana
| | - Geralda B. Amoah
- Department of Pharmaceutical Chemistry, School of Pharmacy, University of Ghana, P.O. Box LG43, Legon, Accra, Ghana
| | - Mariam Baidoo
- Department of Pharmaceutical Chemistry, School of Pharmacy, University of Ghana, P.O. Box LG43, Legon, Accra, Ghana
| | - Irene A. Kretchy
- Department of Pharmacy Practice and Clinical Pharmacy, School of Pharmacy, University of Ghana, P.O. Box LG43, Legon, Accra, Ghana
| |
Collapse
|
17
|
Nagendla NK, Muralidharan K, Raju M, Mohan H, Selvakumar P, Bhandi MM, Mudiam MKR, Ramalingam V. Comprehensive metabolomic analysis of Mangifera indica leaves using UPLC-ESI-Q-TOF-MS E for cell differentiation: An in vitro and in vivo study. Food Res Int 2023; 171:112993. [PMID: 37330843 DOI: 10.1016/j.foodres.2023.112993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 05/14/2023] [Accepted: 05/16/2023] [Indexed: 06/19/2023]
Abstract
The comprehensive metabolic profiling was performed in the leaf extracts of Mangifera indica and assessed for their significant therapeutic application in tissue engineering and regenerative medicine in both in vitro and in vivo studies. About 147 compounds were identified in the ethyl acetate and methanol extracts of M. indica using MS/MS fragmentation analysis and the selected compounds were quantified using LC-QqQ-MS analysis. The in vitro cytotoxic activity showed that the M. indica extracts enhance the proliferation of mouse myoblast cells in concentration-dependent manner. As well, the extracts of M. indica induce the myotube formation by generating oxidative stress in the C2C12 cells was confirmed. The western blot analysis clearly showed that the M. indica induce myogenic differentiation by upregulating the myogenic marker proteins such as PI3K, Akt, mTOR, MyoG, and MyoD. The in vivo studies showed that the extracts expedites the acute wound repair by formation of crust, wound closure and improves the blood perfusion towards the wound area. Together, the leaves of M. indica can be used as excellent therapeutic agent for tissue repair and wound healing applications.
Collapse
Affiliation(s)
- Narendra Kumar Nagendla
- Department of Analytical & Structural Chemistry, CSIR-Indian Institute of Chemical Technology, Hyderabad 500 007, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201 002, India
| | - Kathirvel Muralidharan
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201 002, India; Applied Biology Division, CSIR-Indian Institute of Chemical Technology, Hyderabad 500 007, India
| | - Malothu Raju
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201 002, India; Department of Natural Products and Medicinal Chemistry, CSIR-Indian Institute of Chemical Technology, Hyderabad 500 007, India
| | - Harshavardhan Mohan
- Department of Chemistry, Research Institute of Physics and Chemistry, Jeonbuk National University, Jeonju 54896, Republic of Korea
| | - Piramanayagam Selvakumar
- Applied Biology Division, CSIR-Indian Institute of Chemical Technology, Hyderabad 500 007, India
| | - Murali Mohan Bhandi
- Department of Analytical & Structural Chemistry, CSIR-Indian Institute of Chemical Technology, Hyderabad 500 007, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201 002, India
| | - Mohana Krishna Reddy Mudiam
- Department of Analytical & Structural Chemistry, CSIR-Indian Institute of Chemical Technology, Hyderabad 500 007, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201 002, India.
| | - Vaikundamoorthy Ramalingam
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201 002, India; Department of Natural Products and Medicinal Chemistry, CSIR-Indian Institute of Chemical Technology, Hyderabad 500 007, India.
| |
Collapse
|
18
|
Zhou T, Ji W, Fan H, Zhang L, Wan X, Fan Z, Liu GL, Peng Q, Huang L. A Metasurface Plasmonic Analysis Platform Combined with Gold Nanoparticles for Ultrasensitive Quantitative Detection of Small Molecules. BIOSENSORS 2023; 13:681. [PMID: 37504080 PMCID: PMC10377222 DOI: 10.3390/bios13070681] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 05/22/2023] [Accepted: 05/25/2023] [Indexed: 07/29/2023]
Abstract
Food safety related to drug residues in food has become a widespread public concern. Small-molecule drug residue analysis often relies on mass spectrometry, thin-layer chromatography, or enzyme-linked immunosorbent assays (ELISA). Some of these techniques have limited sensitivity and accuracy, while others are time-consuming, costly, and rely on specialized equipment that requires skilled operation. Therefore, the development of a sensitive, fast, and easy-to-operate biosensor could provide an accessible alternative to conventional small-molecule analysis. Here, we developed a nanocup array-enhanced metasurface plasmon resonance (MetaSPR) chip coupled with gold nanoparticles (AuNPs) (MSPRAN) to detect small molecules. As sulfamethazine drug residues in poultry eggs may cause health issues, we selected this as a model to evaluate the feasibility of using MSPRAN for small-molecule detection. The MSPRAN biosensor employed competitive immunoassay technology for sulfamethazine detection. The limit of detection was calculated as 73 pg/mL, with sensitivity approximately twice that of previously reported detection methods. Additionally, the recovery rate of the biosensor, tested in egg samples, was similar to that measured using ELISA. Overall, this newly developed MSPRAN biosensor platform for small-molecule detection provides fast and reliable results, facile operation, and is relatively cost-effective for application in food safety testing, environmental monitoring, or clinical diagnostics.
Collapse
Affiliation(s)
- Taohong Zhou
- Hubei Provincial Institute for Food Supervision and Test, Wuhan 430075, China
| | - Weihao Ji
- Hubei Provincial Institute for Food Supervision and Test, Wuhan 430075, China
| | - Hongli Fan
- College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Li Zhang
- Hubei Provincial Institute for Food Supervision and Test, Wuhan 430075, China
- Key Laboratory of Detection Technology of Focus Chemical Hazards in Animal-Derived Food for State Market Regulation, Wuhan 430075, China
- Hubei Provincial Engineering and Technology Research Center for Food Quality and Safety Test, Wuhan 430075, China
| | - Xugang Wan
- Hubei Provincial Institute for Food Supervision and Test, Wuhan 430075, China
- Key Laboratory of Detection Technology of Focus Chemical Hazards in Animal-Derived Food for State Market Regulation, Wuhan 430075, China
- Hubei Provincial Engineering and Technology Research Center for Food Quality and Safety Test, Wuhan 430075, China
| | - Zhiyong Fan
- Hubei Provincial Institute for Food Supervision and Test, Wuhan 430075, China
- Key Laboratory of Detection Technology of Focus Chemical Hazards in Animal-Derived Food for State Market Regulation, Wuhan 430075, China
- Hubei Provincial Engineering and Technology Research Center for Food Quality and Safety Test, Wuhan 430075, China
| | - Gang Logan Liu
- College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Qingzhi Peng
- Hubei Provincial Institute for Food Supervision and Test, Wuhan 430075, China
- Key Laboratory of Detection Technology of Focus Chemical Hazards in Animal-Derived Food for State Market Regulation, Wuhan 430075, China
- Hubei Provincial Engineering and Technology Research Center for Food Quality and Safety Test, Wuhan 430075, China
| | - Liping Huang
- College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
- Liangzhun (Wuhan) Life Technology Co., Ltd., 666 Gaoxin Avenue, Wuhan 430070, China
| |
Collapse
|
19
|
Pohanka M. Immunosensors for Assay of Toxic Biological Warfare Agents. BIOSENSORS 2023; 13:402. [PMID: 36979614 PMCID: PMC10046508 DOI: 10.3390/bios13030402] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 03/17/2023] [Accepted: 03/19/2023] [Indexed: 06/18/2023]
Abstract
An immunosensor for the assay of toxic biological warfare agents is a biosensor suitable for detecting hazardous substances such as aflatoxin, botulinum toxin, ricin, Shiga toxin, and others. The application of immunosensors is used in outdoor assays, point-of-care tests, as a spare method for more expensive devices, and even in the laboratory as a standard analytical method. Some immunosensors, such as automated flow-through analyzers or lateral flow tests, have been successfully commercialized as tools for toxins assay, but the research is ongoing. New devices are being developed, and the use of advanced materials and assay techniques make immunosensors highly competitive analytical devices in the field of toxic biological warfare agents assay. This review summarizes facts about current applications and new trends of immunosensors regarding recent papers in this area.
Collapse
Affiliation(s)
- Miroslav Pohanka
- Faculty of Military Health Sciences, University of Defense, Trebesska 1575, CZ-50001 Hradec Kralove, Czech Republic
| |
Collapse
|
20
|
Detection of T-2 Toxin in Wheat and Maize with a Portable Mass Spectrometer. Toxins (Basel) 2023; 15:toxins15030222. [PMID: 36977113 PMCID: PMC10052129 DOI: 10.3390/toxins15030222] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 03/09/2023] [Accepted: 03/14/2023] [Indexed: 03/18/2023] Open
Abstract
T-2 toxin is a mycotoxin routinely found as a contaminant of cereal grains worldwide. A portable mass spectrometer was adapted to enable the detection of T-2 toxin in wheat and maize by APCI-MS. In order to facilitate rapid testing, a rapid cleanup was used. The method was able to detect T-2 toxin in soft white wheat, hard red wheat, and yellow dent maize and could be used to screen for T-2 at levels above 0.2 mg/kg. The HT-2 toxin was only detectable at very high levels (>0.9 mg/kg). Based on these results, the sensitivity was not sufficient to allow the application of the screening method to these commodities at levels recommended by the European Commission. With a cut-off level of 0.107 mg/kg, the method correctly classified nine of ten reference samples of wheat and maize. The results suggest that portable MS detection of T-2 toxin is feasible. However, additional research will be needed to develop an application sensitive enough to meet regulatory requirements.
Collapse
|
21
|
Advantages of Multiplexing Ability of the Orbitrap Mass Analyzer in the Multi-Mycotoxin Analysis. Toxins (Basel) 2023; 15:toxins15020134. [PMID: 36828448 PMCID: PMC9965799 DOI: 10.3390/toxins15020134] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 01/31/2023] [Accepted: 02/03/2023] [Indexed: 02/11/2023] Open
Abstract
In routine measurements, the length of the analysis time and nfumber of samples analysed during a time unit are crucial parameters, which are especially important for the food analysis, particularly in the case of mycotoxin determinations. High-resolution equipment, including time-of-flight or Orbitrap analyzators, can provide stable instrumental background for high-throughput analyses. In this report, a short, 1 min MS-based multi-mycotoxin method was developed with the application of a short column as a reduced chromatographic separation, taking advantages of the multiplexing and high-resolution capability of the QExactive Orbitrap MS possessing sub-1 ppm mass accuracy. The performance of the method was evaluated regarding selectivity, LOD, LOQ, linearity, matrix effect, and recovery, and compared to a UHPLC-MS/MS method. The final multiplexing method was able to quantify 11 mycotoxins in defined ranges (aflatoxins (corn, 2.8-600 μg/kg; wheat, 1.5-350 μg/kg), deoxynivalenol (corn, 640-9600 μg/kg; wheat, 128-3500 μg/kg), fumonisins (corn, 20-1500 μg/kg; wheat, 30-3500 μg/kg), HT-2 (corn, 64-5200 μg/kg; wheat, 61-3500 μg/kg), T-2 (corn, 10-800 μg/kg; wheat, 4-250 μg/kg), ochratoxin (corn, 4.7-600 μg/kg; wheat, 1-1000 μg/kg), zearalenone (corn, 64-4800 μg/kg; wheat, 4-500 μg/kg)) within one minute in corn and wheat matrices at the MRL levels stated by the European Union.
Collapse
|
22
|
Development of a Novel LC-MS/MS Multi-Method for the Determination of Regulated and Emerging Food Contaminants Including Tenuazonic Acid, a Chromatographically Challenging Alternaria Toxin. Molecules 2023; 28:molecules28031468. [PMID: 36771134 PMCID: PMC9921091 DOI: 10.3390/molecules28031468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 01/31/2023] [Accepted: 01/31/2023] [Indexed: 02/05/2023] Open
Abstract
The regulation of food contaminants in the European Union (EU) is comprehensive, and there are several compounds in the register or being added to the recommendation list. Recently, European standard methods for analysis have also been issued. The quick analysis of different groups of analytes in one sample requires a number of methods and the simultaneous use of various instruments. The aim of the present study was to develop a method that could analyze several groups of food contaminants: in this case, 266 pesticides, 12 mycotoxins, 14 alkaloid toxins, and 3 Alternaria toxins. The main advantage of the herein described approach over other methods is the simultaneous analysis of tenuazonic acid (TEA) and other relevant food contaminants. The developed method unites the newly published standard methods such as EN 15662:2018, EN 17194:2019, EN 17256:2019, EN 17425:2021, EN 17521:2021, which describes the analysis of both regulated and emerging contaminants. The developed method is based on a QuEChERS sample preparation, followed by LC-MS/MS analysis under alkaline mobile phase conditions. The pH of the aqueous eluent was set to 8.3, which resulted in baseline separation among ergot alkaloids and their corresponding epimers, a symmetric chromatographic peak shape for analyzing TEA and fit-for-purpose sensitivity for MS/MS detection in both positive and negative ionization modes. Those compounds, which possess the corresponding isotopically labeled internal standards (ISTD), allowed for direct quantification by the developed method and no further confirmation was necessary. This was proven by satisfactory analyses of a number of quality control (QC), proficiency test (PT), and validation samples.
Collapse
|
23
|
Rütten A, Kirchner T, Musiol-Kroll EM. Overview on Strategies and Assays for Antibiotic Discovery. Pharmaceuticals (Basel) 2022; 15:1302. [PMID: 36297414 PMCID: PMC9607151 DOI: 10.3390/ph15101302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 10/12/2022] [Accepted: 10/14/2022] [Indexed: 11/23/2022] Open
Abstract
The increase in antibiotic resistance poses a major threat to global health. Actinomycetes, the Gram-positive bacteria of the order Actinomycetales, are fertile producers of bioactive secondary metabolites, including antibiotics. Nearly two-thirds of antibiotics that are used for the treatment of bacterial infections were originally isolated from actinomycetes strains belonging to the genus Streptomyces. This emphasizes the importance of actinomycetes in antibiotic discovery. However, the identification of a new antimicrobial compound and the exploration of its mode of action are very challenging tasks. Therefore, different approaches that enable the "detection" of an antibiotic and the characterization of the mechanisms leading to the biological activity are indispensable. Beyond bioinformatics tools facilitating the identification of biosynthetic gene clusters (BGCs), whole cell-screenings-in which cells are exposed to actinomycete-derived compounds-are a common strategy applied at the very early stage in antibiotic drug development. More recently, target-based approaches have been established. In this case, the drug candidates were tested for interactions with usually validated targets. This review focuses on the bioactivity-based screening methods and provides the readers with an overview on the most relevant assays for the identification of antibiotic activity and investigation of mechanisms of action. Moreover, the article includes examples of the successful application of these methods and suggestions for improvement.
Collapse
Affiliation(s)
- Anika Rütten
- Interfaculty Institute of Microbiology and Infection Medicine (IMIT), Microbiology/Biotechnology, University of Tübingen, Auf der Morgenstelle 28, 72076 Tübingen, Germany
- Cluster of Excellence ‘Controlling Microbes to Fight Infections’ (CMFI), University of Tübingen, Auf der Morgenstelle 28, 72076 Tübingen, Germany
| | - Teresa Kirchner
- Interfaculty Institute of Microbiology and Infection Medicine (IMIT), Microbiology/Biotechnology, University of Tübingen, Auf der Morgenstelle 28, 72076 Tübingen, Germany
- Cluster of Excellence ‘Controlling Microbes to Fight Infections’ (CMFI), University of Tübingen, Auf der Morgenstelle 28, 72076 Tübingen, Germany
| | - Ewa Maria Musiol-Kroll
- Interfaculty Institute of Microbiology and Infection Medicine (IMIT), Microbiology/Biotechnology, University of Tübingen, Auf der Morgenstelle 28, 72076 Tübingen, Germany
- Cluster of Excellence ‘Controlling Microbes to Fight Infections’ (CMFI), University of Tübingen, Auf der Morgenstelle 28, 72076 Tübingen, Germany
| |
Collapse
|
24
|
Acuña-Gutiérrez C, Jiménez VM, Müller J. Occurrence of mycotoxins in pulses. Compr Rev Food Sci Food Saf 2022; 21:4002-4017. [PMID: 35876644 DOI: 10.1111/1541-4337.13008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 06/03/2022] [Accepted: 06/27/2022] [Indexed: 01/28/2023]
Abstract
Pulses, dry grains of the Fabaceae family used for food and feed, are particularly important agricultural products with increasing commercial and nutritional relevance. Similar to other plant commodities, pulses can be affected by fungi in the field and during postharvest. Some of these fungi produce mycotoxins, which can seriously threaten human and animal health by causing acute poisoning and chronic effects. In this review, information referring to the analysis and occurrence of these compounds in pulses is summarized. An overview of the aims pursued, and of the methodologies employed for mycotoxin analysis in the different reports is presented, followed by a comprehensive review of relevant articles on mycotoxins in pulses, categorized according to the geographical region, among other considerations. Moreover, special attention was given to the effect of climatic conditions on microorganism infestation and mycotoxin accumulation. Furthermore, the limited literature available was considered to look for possible correlations between the degree of fungal infection and the mycotoxin incidence in pulses. In addition, the potential effect of certain phenolic compounds on reducing fungi infestation and mycotoxin accumulation was reviewed with examples on beans. Emphasis was also given to a specific group of mycotoxins, the phomopsins, that mainly impact lupin. Finally, the negative consequences of mycotoxin accumulation on the physiology and development of contaminated seeds and seedlings are presented, focusing on the few reports available on pulses. Given the agricultural and nutritional potential that pulses offer for human well-being, their promotion should be accompanied by attention to food safety issues, and mycotoxins might be among the most serious threats. Practical Application: According to the manuscript template available in the website, this section is for "JFS original research manuscripts ONLY; optional". Since we are publishing in CRFSFS this requirement will not be done.
Collapse
Affiliation(s)
- Catalina Acuña-Gutiérrez
- Institute of Agricultural Engineering Tropics and Subtropics Group (440e), University of Hohenheim, Stuttgart, Germany.,CIGRAS, Universidad de Costa Rica, San Pedro, Costa Rica
| | - Víctor M Jiménez
- CIGRAS, Universidad de Costa Rica, San Pedro, Costa Rica.,IIA, Universidad de Costa Rica, San Pedro, Costa Rica
| | - Joachim Müller
- Institute of Agricultural Engineering Tropics and Subtropics Group (440e), University of Hohenheim, Stuttgart, Germany
| |
Collapse
|
25
|
Maragos CM, Barnett K, Morgan L, Vaughan MM, Sieve KK. Measurement of Fumonisins in Maize Using a Portable Mass Spectrometer. Toxins (Basel) 2022; 14:523. [PMID: 36006185 PMCID: PMC9412256 DOI: 10.3390/toxins14080523] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 07/28/2022] [Accepted: 07/29/2022] [Indexed: 12/03/2022] Open
Abstract
Fumonisins are a group of mycotoxins that routinely contaminate maize. Their presence is monitored at multiple stages from harvest to final product. Immunoassays are routinely used to screen commodities in the field while laboratory-based methods, such as mass spectrometry (MS), are used for confirmation. The use of a portable mass spectrometer unlocks the potential to conduct confirmatory analyses outside of traditional laboratories. Herein, a portable mass spectrometer was used to measure fumonisins in maize. Samples were extracted with aqueous methanol, cleaned up on an immunoaffinity column, and tested with the portable MS. The limits of detection were 0.15, 0.19, and 0.28 mg/kg maize for fumonisins B1 (FB1), FB2/FB3, and total fumonisins, respectively. The corresponding limits of quantitation in maize were 0.33, 0.59, and 0.74 mg/kg. Recoveries ranged from 93.6% to 108.6%. However, RSDs ranged from 12.0 to 29.8%. The method was applied to the detection of fumonisins in 64 samples of maize collected as part of the Illinois Department of Agriculture's monitoring program. Good correlations were observed between the portable MS and a laboratory-based LC-MS method (r2 from 0.9132 to 0.9481). Results suggest the portable MS can be applied to the measurement of fumonisins in maize at levels relevant to international regulations.
Collapse
Affiliation(s)
- Chris M. Maragos
- Mycotoxin Prevention and Applied Microbiology Research Unit, National Center for Agricultural Utilization Research, Agricultural Research Service, USDA, 1815 N University, Peoria, IL 61604, USA; (M.M.V.); (K.K.S.)
| | - Kristin Barnett
- Agricultural Products Inspection, Illinois Department of Agriculture, 801 E. Sangamon Avenue, Springfield, IL 62702, USA; (K.B.); (L.M.)
| | - Luke Morgan
- Agricultural Products Inspection, Illinois Department of Agriculture, 801 E. Sangamon Avenue, Springfield, IL 62702, USA; (K.B.); (L.M.)
| | - Martha M. Vaughan
- Mycotoxin Prevention and Applied Microbiology Research Unit, National Center for Agricultural Utilization Research, Agricultural Research Service, USDA, 1815 N University, Peoria, IL 61604, USA; (M.M.V.); (K.K.S.)
| | - Kristal K. Sieve
- Mycotoxin Prevention and Applied Microbiology Research Unit, National Center for Agricultural Utilization Research, Agricultural Research Service, USDA, 1815 N University, Peoria, IL 61604, USA; (M.M.V.); (K.K.S.)
| |
Collapse
|