1
|
Green D. Hematology products from snake venoms. Thromb Res 2025; 245:109215. [PMID: 39566351 DOI: 10.1016/j.thromres.2024.109215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 10/17/2024] [Accepted: 11/14/2024] [Indexed: 11/22/2024]
Abstract
Venoms have primarily been used to prepare antivenoms for the treatment of snake bites, but they have constituents that might serve other medical needs. These include metalloproteinases, serine proteases, phospholipases, and C-type lectin-like proteins. Some of the products that have been prepared from venoms are procoagulants employed as topical hemostatics, and either applied directly to bleeding wounds or used as adjuncts to surgical procedures to assist in controlling blood loss. Venoms are also a valuable source of laboratory reagents helpful in diagnosing specific coagulation factor deficiencies, identifying lupus anticoagulants, or managing therapeutic anticoagulation. In addition, the unique properties of certain venom components have led to their use as antithrombotic agents. This review describes how snake venoms have provided insight into coagulation mechanisms and generated products to improve human health. Venomous snakes are dangerous but we must learn to safely share our planet with them, not least because studies of their venoms might lead to the discovery of valuable biomolecules.
Collapse
Affiliation(s)
- David Green
- Division of Hematology/Oncology, Department of Medicine, Feinberg School of Medicine of Northwestern University, Chicago, IL, USA.
| |
Collapse
|
2
|
Liu C, Zhang K, Zhang S, Li X, Sun H, Ma L. Maggot Kinase and Natural Thrombolytic Proteins. ACS OMEGA 2024; 9:21768-21779. [PMID: 38799322 PMCID: PMC11112594 DOI: 10.1021/acsomega.4c01663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 04/22/2024] [Accepted: 04/25/2024] [Indexed: 05/29/2024]
Abstract
Thrombolytic enzymes constitute a class of proteases with antithrombotic functions. Derived from natural products and abundant in nature, certain thrombolytic enzymes, such as urokinase, earthworm kinase, and streptokinase, have been widely used in the clinical treatment of vascular embolic diseases. Fly maggots, characterized by their easy growth and low cost, are a traditional Chinese medicine recorded in the Compendium of Materia Medica. These maggots can also be used as raw material for the extraction and preparation of thrombolytic enzymes (maggot kinase). In this review, we assembled global research reports on natural thrombolytic enzymes through a literature search and reviewed the functions and structures of natural thrombolytic enzymes to provide a reference for natural thrombophilic drug screening and development.
Collapse
Affiliation(s)
- Can Liu
- Key
Laboratory for Northern Urban Agriculture of Ministry of Agriculture
and Rural Affairs of China, Beijing University
of Agriculture, Beijing 102206, PR China
| | - Kaixin Zhang
- Key
Laboratory for Northern Urban Agriculture of Ministry of Agriculture
and Rural Affairs of China, Beijing University
of Agriculture, Beijing 102206, PR China
| | - Shihao Zhang
- Key
Laboratory for Northern Urban Agriculture of Ministry of Agriculture
and Rural Affairs of China, Beijing University
of Agriculture, Beijing 102206, PR China
| | - Xin Li
- Key
Laboratory for Northern Urban Agriculture of Ministry of Agriculture
and Rural Affairs of China, Beijing University
of Agriculture, Beijing 102206, PR China
| | - Huiting Sun
- Key
Laboratory for Northern Urban Agriculture of Ministry of Agriculture
and Rural Affairs of China, Beijing University
of Agriculture, Beijing 102206, PR China
| | - Lanqing Ma
- Key
Laboratory for Northern Urban Agriculture of Ministry of Agriculture
and Rural Affairs of China, Beijing University
of Agriculture, Beijing 102206, PR China
- Beijing
Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing University of Agriculture, Beijing 102206, PR China
| |
Collapse
|
3
|
Phan P, Deshwal A, McMahon TA, Slikas M, Andrews E, Becker B, Kumar TKS. A Review of Rattlesnake Venoms. Toxins (Basel) 2023; 16:2. [PMID: 38276526 PMCID: PMC10818703 DOI: 10.3390/toxins16010002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 12/08/2023] [Accepted: 12/12/2023] [Indexed: 01/27/2024] Open
Abstract
Venom components are invaluable in biomedical research owing to their specificity and potency. Many of these components exist in two genera of rattlesnakes, Crotalus and Sistrurus, with high toxicity and proteolytic activity variation. This review focuses on venom components within rattlesnakes, and offers a comparison and itemized list of factors dictating venom composition, as well as presenting their known characteristics, activities, and significant applications in biosciences. There are 64 families and subfamilies of proteins present in Crotalus and Sistrurus venom. Snake venom serine proteases (SVSP), snake venom metalloproteases (SVMP), and phospholipases A2 (PLA2) are the standard components in Crotalus and Sistrurus venom. Through this review, we highlight gaps in the knowledge of rattlesnake venom; there needs to be more information on the venom composition of three Crotalus species and one Sistrurus subspecies. We discuss the activity and importance of both major and minor components in biomedical research and drug development.
Collapse
Affiliation(s)
- Phuc Phan
- Department of Chemistry and Biochemistry, University of Arkansas, Fayetteville, AR 72701, USA;
| | - Anant Deshwal
- Department of Biology, Bradley University, Peoria, IL 61625, USA; (T.A.M.); (M.S.); (E.A.)
| | - Tyler Anthony McMahon
- Department of Biology, Bradley University, Peoria, IL 61625, USA; (T.A.M.); (M.S.); (E.A.)
| | - Matthew Slikas
- Department of Biology, Bradley University, Peoria, IL 61625, USA; (T.A.M.); (M.S.); (E.A.)
| | - Elodie Andrews
- Department of Biology, Bradley University, Peoria, IL 61625, USA; (T.A.M.); (M.S.); (E.A.)
| | - Brian Becker
- Department of Biological Sciences, University of Arkansas, Fayetteville, AR 72701, USA;
| | | |
Collapse
|
4
|
Alcachupas A, Bellosillo K, Catolico WR, Davis MC, Diaz A, Doyongan YK, Eduarte R, Gersava E, Intrepido MB, Laluma MGK, Lavalle CC, Millan J. Thrombolytic Effects of Philippine Pit Viper (Trimeresurus flavomaculatus) Venom in Human Blood In Vitro and Ferric Chloride-Induced Cardiac Thrombosis on Swiss Webster Mice In Vivo. Cureus 2023; 15:e40856. [PMID: 37489211 PMCID: PMC10363375 DOI: 10.7759/cureus.40856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/23/2023] [Indexed: 07/26/2023] Open
Abstract
INTRODUCTION Thrombosis is one of the leading causes of mortality worldwide. Thrombolytic agents are used to reduce this burden. Studies pointed out that certain proteins in the venom of several snake species may have potential thrombolytic properties. Trimeresurus flavomaculatus, known as the Philippine pit viper, is found along damp localities in the Philippines. Venoms of closely related species have been shown to exhibit thrombolytic effects in vitro and in vivo. However, no extensive studies yet have been conducted about the thrombolytic effect of T. flavomaculatus venom. Thus, this two-phased study aimed to determine the thrombolytic effect of T. flavomaculatus venom on human blood and ferric chloride-induced cardiac thrombosis in mice. METHODOLOGY Phase 1 was done using clot lysis method to measure thrombolytic activity in vitro. Venom dilutions of 3:4, 1:2, 2:3, and 1:0, positive control (streptokinase), and negative control (normal saline solution) were inoculated to different samples of human blood. Phase 2 measured the thrombolytic activity in vivo. Ferric chloride-saturated filter paper was applied over the cardiac wall for the induction of thrombus formation. Venom dilutions of 1:64, 1:16, 1:4, and 1:1, positive control (streptokinase), and negative control (normal saline solution) were then injected through the dorsal tail vein of mice. After 1 hour, the cardiac tissues were excised for histologic examination. RESULTS Phase 1 results showed that the venom had significant thrombolytic activity in vitro. Dilutions of 1:0 and 3:4 had no significant differences with streptokinase in vitro. Phase 2 results showed significant lysis in vivo at 1:1, 1:4, and 1:64 venom dilutions. CONCLUSION The results indicated that T. flavomaculatus has a potential thrombolytic activity both in vitro and in vivo.
Collapse
Affiliation(s)
| | | | | | - Mark Cullen Davis
- College of Medicine, West Visayas State University, Iloilo City, PHL
| | - Alyssa Diaz
- College of Medicine, West Visayas State University, Iloilo City, PHL
| | | | - Reczy Eduarte
- College of Medicine, West Visayas State University, Iloilo City, PHL
| | - Emerald Gersava
- College of Medicine, West Visayas State University, Iloilo City, PHL
| | | | | | | | - Jeffrey Millan
- College of Medicine, West Visayas State University, Iloilo City, PHL
| |
Collapse
|
5
|
Trim CM, Byrne LJ, Trim SA. Utilisation of compounds from venoms in drug discovery. PROGRESS IN MEDICINAL CHEMISTRY 2021; 60:1-66. [PMID: 34147202 DOI: 10.1016/bs.pmch.2021.01.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Difficult drug targets are becoming the normal course of business in drug discovery, sometimes due to large interacting surfaces or only small differences in selectivity regions. For these, a different approach is merited: compounds lying somewhere between the small molecule and the large antibody in terms of many properties including stability, biodistribution and pharmacokinetics. Venoms have evolved over millions of years to be complex mixtures of stable molecules derived from other somatic molecules, the stability comes from the pressure to be ready for delivery at a moment's notice. Snakes, spiders, scorpions, jellyfish, wasps, fish and even mammals have evolved independent venom systems with complex mixtures in their chemical arsenal. These venom-derived molecules have been proven to be useful tools, such as for the development of antihypotensive angiotensin converting enzyme (ACE) inhibitors and have also made successful drugs such as Byetta® (Exenatide), Integrilin® (Eptifibatide) and Echistatin. Only a small percentage of the available chemical space from venoms has been investigated so far and this is growing. In a new era of biological therapeutics, venom peptides present opportunities for larger target engagement surface with greater stability than antibodies or human peptides. There are challenges for oral absorption and target engagement, but there are venom structures that overcome these and thus provide substrate for engineering novel molecules that combine all desired properties. Venom researchers are characterising new venoms, species, and functions all the time, these provide great substrate for solving the challenges presented by today's difficult targets.
Collapse
Affiliation(s)
- Carol M Trim
- Faculty of Science, Engineering and Social Sciences, Natural and Applied Sciences, School of Psychology and Life Sciences, Canterbury Christ Church University, Canterbury, Kent, United Kingdom
| | - Lee J Byrne
- Faculty of Science, Engineering and Social Sciences, Natural and Applied Sciences, School of Psychology and Life Sciences, Canterbury Christ Church University, Canterbury, Kent, United Kingdom
| | | |
Collapse
|
6
|
Snake Venom Components: Tools and Cures to Target Cardiovascular Diseases. Molecules 2021; 26:molecules26082223. [PMID: 33921462 PMCID: PMC8070158 DOI: 10.3390/molecules26082223] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 04/08/2021] [Accepted: 04/09/2021] [Indexed: 12/31/2022] Open
Abstract
Cardiovascular diseases (CVDs) are considered as a major cause of death worldwide. Therefore, identifying and developing therapeutic strategies to treat and reduce the prevalence of CVDs is a major medical challenge. Several drugs used for the treatment of CVDs, such as captopril, emerged from natural products, namely snake venoms. These venoms are complex mixtures of bioactive molecules, which, among other physiological networks, target the cardiovascular system, leading to them being considered in the development and design of new drugs. In this review, we describe some snake venom molecules targeting the cardiovascular system such as phospholipase A2 (PLA2), natriuretic peptides (NPs), bradykinin-potentiating peptides (BPPs), cysteine-rich secretory proteins (CRISPs), disintegrins, fibrinolytic enzymes, and three-finger toxins (3FTXs). In addition, their molecular targets, and mechanisms of action—vasorelaxation, inhibition of platelet aggregation, cardioprotective activities—are discussed. The dissection of their biological effects at the molecular scale give insights for the development of future snake venom-derived drugs.
Collapse
|
7
|
Bordon KDCF, Cologna CT, Fornari-Baldo EC, Pinheiro-Júnior EL, Cerni FA, Amorim FG, Anjolette FAP, Cordeiro FA, Wiezel GA, Cardoso IA, Ferreira IG, de Oliveira IS, Boldrini-França J, Pucca MB, Baldo MA, Arantes EC. From Animal Poisons and Venoms to Medicines: Achievements, Challenges and Perspectives in Drug Discovery. Front Pharmacol 2020; 11:1132. [PMID: 32848750 PMCID: PMC7396678 DOI: 10.3389/fphar.2020.01132] [Citation(s) in RCA: 151] [Impact Index Per Article: 30.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Accepted: 07/13/2020] [Indexed: 12/16/2022] Open
Abstract
Animal poisons and venoms are comprised of different classes of molecules displaying wide-ranging pharmacological activities. This review aims to provide an in-depth view of toxin-based compounds from terrestrial and marine organisms used as diagnostic tools, experimental molecules to validate postulated therapeutic targets, drug libraries, prototypes for the design of drugs, cosmeceuticals, and therapeutic agents. However, making these molecules applicable requires extensive preclinical trials, with some applications also demanding clinical trials, in order to validate their molecular target, mechanism of action, effective dose, potential adverse effects, as well as other fundamental parameters. Here we go through the pitfalls for a toxin-based potential therapeutic drug to become eligible for clinical trials and marketing. The manuscript also presents an overview of the current picture for several molecules from different animal venoms and poisons (such as those from amphibians, cone snails, hymenopterans, scorpions, sea anemones, snakes, spiders, tetraodontiformes, bats, and shrews) that have been used in clinical trials. Advances and perspectives on the therapeutic potential of molecules from other underexploited animals, such as caterpillars and ticks, are also reported. The challenges faced during the lengthy and costly preclinical and clinical studies and how to overcome these hindrances are also discussed for that drug candidates going to the bedside. It covers most of the drugs developed using toxins, the molecules that have failed and those that are currently in clinical trials. The article presents a detailed overview of toxins that have been used as therapeutic agents, including their discovery, formulation, dosage, indications, main adverse effects, and pregnancy and breastfeeding prescription warnings. Toxins in diagnosis, as well as cosmeceuticals and atypical therapies (bee venom and leech therapies) are also reported. The level of cumulative and detailed information provided in this review may help pharmacists, physicians, biotechnologists, pharmacologists, and scientists interested in toxinology, drug discovery, and development of toxin-based products.
Collapse
Affiliation(s)
- Karla de Castro Figueiredo Bordon
- Laboratory of Animal Toxins, Department of BioMolecular Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
| | - Camila Takeno Cologna
- Laboratory of Animal Toxins, Department of BioMolecular Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
| | | | - Ernesto Lopes Pinheiro-Júnior
- Laboratory of Animal Toxins, Department of BioMolecular Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
| | - Felipe Augusto Cerni
- Laboratory of Animal Toxins, Department of BioMolecular Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
| | - Fernanda Gobbi Amorim
- Postgraduate Program in Pharmaceutical Sciences, Vila Velha University, Vila Velha, Brazil
| | | | - Francielle Almeida Cordeiro
- Laboratory of Animal Toxins, Department of BioMolecular Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
| | - Gisele Adriano Wiezel
- Laboratory of Animal Toxins, Department of BioMolecular Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
| | - Iara Aimê Cardoso
- Laboratory of Animal Toxins, Department of BioMolecular Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
| | - Isabela Gobbo Ferreira
- Laboratory of Animal Toxins, Department of BioMolecular Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
| | - Isadora Sousa de Oliveira
- Laboratory of Animal Toxins, Department of BioMolecular Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
| | | | | | - Mateus Amaral Baldo
- Health and Science Institute, Paulista University, São José do Rio Pardo, Brazil
| | - Eliane Candiani Arantes
- Laboratory of Animal Toxins, Department of BioMolecular Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
| |
Collapse
|
8
|
Koh CY, Kini RM. Exogenous Factors from Venomous and Hematophagous Animals in Drugs and Diagnostic Developments for Cardiovascular and Neurovascular Diseases. Cardiovasc Hematol Disord Drug Targets 2019; 19:90-94. [PMID: 31385761 DOI: 10.2174/1871529x1902190619123603] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Cho Yeow Koh
- Department of Medicine, National University of Singapore, Singapore
| | - R Manjunatha Kini
- Department of Biological Sciences, National University of Singapore, Singapore
| |
Collapse
|
9
|
Estevão-Costa MI, Sanz-Soler R, Johanningmeier B, Eble JA. Snake venom components in medicine: From the symbolic rod of Asclepius to tangible medical research and application. Int J Biochem Cell Biol 2018; 104:94-113. [PMID: 30261311 DOI: 10.1016/j.biocel.2018.09.011] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Revised: 09/03/2018] [Accepted: 09/19/2018] [Indexed: 12/21/2022]
Abstract
Both mythologically and logically, snakes have always fascinated man. Snakes have attracted both awe and fear not only because of the elegant movement of their limbless bodies, but also because of the potency of their deadly venoms. Practically, in 2017, the world health organization (WHO) listed snake envenomation as a high priority neglected disease, as snakes inflict up to 2.7 million poisonous bites, around 100.000 casualties, and about three times as many invalidities on man. The venoms of poisonous snakes are a cocktail of potent compounds which specifically and avidly target numerous essential molecules with high efficacy. The individual effects of all venom toxins integrate into lethal dysfunctions of almost any organ system. It is this efficacy and specificity of each venom component, which after analysis of its structure and activity may serve as a potential lead structure for chemical imitation. Such toxin mimetics may help in influencing a specific body function pharmaceutically for the sake of man's health. In this review article, we will give some examples of snake venom components which have spurred the development of novel pharmaceutical compounds. Moreover, we will provide examples where such snake toxin-derived mimetics are in clinical use, trials, or consideration for further pharmaceutical exploitation, especially in the fields of hemostasis, thrombosis, coagulation, and metastasis. Thus, it becomes clear why a snake captured its symbolic place at the Asclepius rod with good reason still nowadays.
Collapse
Affiliation(s)
- Maria-Inacia Estevão-Costa
- Institute of Physiological Chemistry and Pathobiochemistry, University of Münster, Waldeyerstr. 15, 48149, Münster, Germany
| | - Raquel Sanz-Soler
- Institute of Physiological Chemistry and Pathobiochemistry, University of Münster, Waldeyerstr. 15, 48149, Münster, Germany
| | - Benjamin Johanningmeier
- Institute of Physiological Chemistry and Pathobiochemistry, University of Münster, Waldeyerstr. 15, 48149, Münster, Germany
| | - Johannes A Eble
- Institute of Physiological Chemistry and Pathobiochemistry, University of Münster, Waldeyerstr. 15, 48149, Münster, Germany.
| |
Collapse
|
10
|
Metalloproteases Affecting Blood Coagulation, Fibrinolysis and Platelet Aggregation from Snake Venoms: Definition and Nomenclature of Interaction Sites. Toxins (Basel) 2016; 8:toxins8100284. [PMID: 27690102 PMCID: PMC5086644 DOI: 10.3390/toxins8100284] [Citation(s) in RCA: 114] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2016] [Revised: 09/21/2016] [Accepted: 09/22/2016] [Indexed: 01/08/2023] Open
Abstract
Snake venom metalloproteases, in addition to their contribution to the digestion of the prey, affect various physiological functions by cleaving specific proteins. They exhibit their activities through activation of zymogens of coagulation factors, and precursors of integrins or receptors. Based on their structure–function relationships and mechanism of action, we have defined classification and nomenclature of functional sites of proteases. These metalloproteases are useful as research tools and in diagnosis and treatment of various thrombotic and hemostatic conditions. They also contribute to our understanding of molecular details in the activation of specific factors involved in coagulation, platelet aggregation and matrix biology. This review provides a ready reference for metalloproteases that interfere in blood coagulation, fibrinolysis and platelet aggregation.
Collapse
|
11
|
Evaluation of the in vivo thrombolytic activity of a metalloprotease from Bothrops atrox venom using a model of venous thrombosis. Toxicon 2015; 109:18-25. [PMID: 26556655 DOI: 10.1016/j.toxicon.2015.11.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2015] [Revised: 10/29/2015] [Accepted: 11/04/2015] [Indexed: 11/20/2022]
Abstract
BACKGROUND Due to the importance of blood coagulation and platelet aggregation in brain- and cardiovascular diseases, snake venom proteins that interfere in these processes have received significant attention in recent years considering their potential to be used as models for new drugs. OBJECTIVES This study aimed at the evaluation of the in vivo thrombolytic activity of Batroxase, a P-I metalloprotease from Bothrops atrox venom. METHODS In vivo thrombolytic activity of Batroxase was tested on a model of venous thrombosis in rats, with partial stenosis of the inferior vena cava, and vessel wall injury with ferric chloride at 10% for 5 min. After formation of the thrombus, increasing amounts of Batroxase were administered intravenously. The prescription medication Alteplase (tissue-type plasminogen activator) was used as positive control for thrombolytic activity, while saline was used as negative control. Bleeding time was assessed with a tail bleeding assay. RESULTS Batroxase presented thrombolytic activity in vivo in a concentration-dependent manner, with 12 mg/kg of the metalloprotease causing a thrombus reduction of 80%, a thrombolytic activity very similar to the one observed for the positive control Alteplase (85%). The tail bleeding time was not altered by the administration of Batroxase, while it increased 3.5 times with Alteplase. Batroxase presented fibrinolytic and fibrinogenolytic activities in vitro, which were inhibited by alpha 2-macroglobulin. CONCLUSION Batroxase presents thrombolytic activity in vivo, thus demonstrating a possible therapeutic potential. The inactivation of the metalloprotease by alpha 2-macroglobulin may reduce its activity, but also its potential side effects, as seen for bleeding time.
Collapse
|
12
|
Southern copperhead venom enhances tissue-type plasminogen activator induced fibrinolysis but does not directly lyse human plasma thrombi. J Thromb Thrombolysis 2015; 42:33-7. [DOI: 10.1007/s11239-015-1287-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
13
|
Kim JY, Lee SB, Kwon KR, Choi SH. Isolation and Characterization of a 32-kDa Fibrinolytic Enzyme (FE-32kDa) from Gloydius blomhoffii siniticus Venom: Fibrinolytic Enzyme from Gloydius blomhoffii siniticus Venom. J Pharmacopuncture 2015; 17:44-50. [PMID: 25780689 PMCID: PMC4331989 DOI: 10.3831/kpi.2014.17.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2013] [Accepted: 01/29/2014] [Indexed: 11/23/2022] Open
Abstract
Objectives: This study was undertaken to isolate a fibrinolytic enzyme from the snake venom of Gloydius blomhoffii siniticus and to investigate its enzymatic characteristics and hemorrhagic activity as a potential pharmacopuncture agent. Methods: The fibrinolytic enzyme was isolated by using chromatography, sodium dodecyl sulfate-polyacrylamide gel electrophoresis, and fibrin plate assay. The characteristics of the enzyme were investigated using fibrin plate assay, protein hydrolysis analysis, and hemorrhage assay. Its amino acid composition was determined. Results: The fibrinolytic enzyme with the molecular weight of 32kDa (FE-32kDa) from Gloydius blomhoffii siniticus showed a fibrin hydrolysis zone at the concentration of 0.2 mg/mL in the fibrin plate assay. The fibrin hydrolysis activity of the enzyme was inhibited completely by ethylenediaminetetraacetic acid (EDTA), ethyleneglycoltetraacetic acid (EGTA), and 1, 10-phenanthroline, thiothreitol and cysteine, and partially by phenylmethanesulfonylfluoride (PMSF). Metal ions such as Fe2+ and Hg2+ inhibited the fibrin hydrolysis completely, but Zn2+ enhanced it. FE-32kDa hydrolyzed α-chain but did not hydrolyze β-chain and γ-chain of fibrinogen. High-molecular-weight polypeptides of gelatin were hydrolyzed partially into low-molecular-weight polypeptides, but the extent of hydrolysis was limited. FE-32kDa induced hemorrhage beneath back skin of mice at the dose of 2 μg. Conclusions: FE-32kDa is a α-fibrin(ogen)olytic metalloprotease that requires Zn2+ for fibrinolytic activity and causes hemorrhage, suggesting that the enzyme is not appropriate for use as a clinical pharmacopuncture.
Collapse
Affiliation(s)
- Joung-Yoon Kim
- Division of Animal Science and Biotechnology, Sangji University, Wonju, Korea
| | - Seung-Bae Lee
- Division of Animal Science and Biotechnology, Sangji University, Wonju, Korea
| | - Ki Rok Kwon
- Research Center, Korean Pharmacopuncture Institute, Seoul, Korea
| | - Suk-Ho Choi
- Division of Animal Science and Biotechnology, Sangji University, Wonju, Korea
| |
Collapse
|
14
|
Saviola AJ, Peichoto ME, Mackessy SP. Rear-fanged snake venoms: an untapped source of novel compounds and potential drug leads. TOXIN REV 2014. [DOI: 10.3109/15569543.2014.942040] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
15
|
Chernyshenko V, Platonova T, Makogonenko Y, Rebriev A, Mikhalovska L, Chernyshenko T, Komisarenko S. Fibrin(ogen)olytic and platelet modulating activity of a novel protease from the Echis multisquamatis snake venom. Biochimie 2014; 105:76-83. [PMID: 25046629 DOI: 10.1016/j.biochi.2014.06.015] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2013] [Accepted: 06/16/2014] [Indexed: 11/20/2022]
Abstract
The variety of enzymes including serine proteases that possess fibrin(ogen)olytic and platelet modulating activity have been discovered in different snake venoms. In our work the fibrin(ogen)olytic and platelet modulating activity of a new protease from Echis multisquamatis snake venom was studied. It was shown that purified enzyme cleaved the ВβR42-A43 bond of fibrinogen during first contact with the substrate following much slower hydrolysis of C-terminus of fibrinogen Aα-chain. Protease hydrolysed fibrin clot too, but at much slower rate and cleaved both C-terminus of Aα-chain and ВβR42-A43 bond of Bβ-chain simultaneously. Preincubation of fibrinogen with protease dramatically elongated thrombin clotting time and the clot formed from a mixture of native fibrinogen and fibrinogen desВβ(1-42)2 digested by plasmin much faster than a native fibrin clot. The protease did not activate platelets nor cause changes in their shape and granularity, but it reduced platelets aggregation induced by ADP.
Collapse
Affiliation(s)
| | | | | | - Andriy Rebriev
- Palladin Institute of Biochemistry NAS of Ukraine, Ukraine
| | | | | | | |
Collapse
|
16
|
Gasanov SE, Dagda RK, Rael ED. Snake Venom Cytotoxins, Phospholipase A 2s, and Zn 2+-dependent Metalloproteinases: Mechanisms of Action and Pharmacological Relevance. JOURNAL OF CLINICAL TOXICOLOGY 2014; 4:1000181. [PMID: 24949227 PMCID: PMC4060629 DOI: 10.4172/2161-0495.1000181] [Citation(s) in RCA: 96] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Snake venom toxins are responsible for causing severe pathology and toxicity following envenomation including necrosis, apoptosis, neurotoxicity, myotoxicity, cardiotoxicity, profuse hemorrhage, and disruption of blood homeostasis. Clinically, snake venom toxins therefore represent a significant hazard to snakebite victims which underscores the need to produce more efficient anti-venom. Some snake venom toxins, however, have great potential as drugs for treating human diseases. In this review, we discuss the biochemistry, structure/function, and pathology induced by snake venom toxins on human tissue. We provide a broad overview of cobra venom cytotoxins, catalytically active and inactive phospholipase A2s (PLA2s), and Zn2+-dependent metalloproteinases. We also propose biomedical applications whereby snake venom toxins can be employed for treating human diseases. Cobra venom cytotoxins, for example, may be utilized as anti-cancer agents since they are efficient at destroying certain types of cancer cells including leukemia. Additionally, increasing our understanding of the molecular mechanism(s) by which snake venom PLA2s promote hydrolysis of cell membrane phospholipids can give insight into the underlying biomedical implications for treating autoimmune disorders that are caused by dysregulated endogenous PLA2 activity. Lastly, we provide an exhaustive overview of snake venom Zn2+-dependent metalloproteinases and suggest ways by which these enzymes can be engineered for treating deep vein thrombosis and neurodegenerative disorders.
Collapse
Affiliation(s)
- Sardar E Gasanov
- Applied Mathematics and Informatics Department, Moscow State University Branch, 22 A. Timur Avenue, Tashkent 100060, Uzbekistan
- Science Department, Tashkent Ulugbek International School, 5-A J. Shoshiy Street, Tashkent 100100, Uzbekistan
| | - Ruben K Dagda
- Pharmacology Department, University of Nevada School of Medicine, 1664 North Virginia St., Reno, NV 89557, USA
| | - Eppie D Rael
- Department of Biological Sciences, University of Texas at El Paso, 500 West University Avenue, El Paso, TX 79968, USA
| |
Collapse
|
17
|
Connectivity maps for biosimilar drug discovery in venoms: The case of Gila Monster Venom and the anti-diabetes drug Byetta®. Toxicon 2013; 69:160-7. [DOI: 10.1016/j.toxicon.2013.03.018] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2012] [Revised: 02/11/2013] [Accepted: 03/22/2013] [Indexed: 11/24/2022]
|
18
|
Choi SH, Lee SB. Isolation from Gloydius blomhoffii siniticus Venom of a Fibrin(ogen)olytic Enzyme Consisting of Two Heterogenous Polypeptides. J Pharmacopuncture 2013; 16:46-54. [PMID: 25780668 PMCID: PMC4331964 DOI: 10.3831/kpi.2013.16.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2013] [Accepted: 04/09/2013] [Indexed: 11/26/2022] Open
Abstract
Objective: This study was undertaken to isolate a fibrin(ogen)olytic enzyme from the snake venom of Gloydius blomhoffii siniticus and to investigate the enzymatic characteristics and hemorrhagic activity of the isolated enzyme as a potential pharmacopuncture agent. Methods: The fibrinolytic enzyme was isolated by using chromatography, sodium dodecyl sulfatepolyacrylamide gel electrophoresis, and fibrin plate assay. The characteristics of the enzyme were determined by using fibrin plate assay, protein hydrolysis analysis, and hemorrhage assay. Its amino acid composition was determined. Results: The fibrin(ogen)olytic enzyme with the molecular weight of 27 kDa (FE-27kDa) isolated from G. b. siniticus venom consisted of two heterogenous disulfide bond-linked polypeptides with the molecular weights of 15 kDa and 18 kDa. When more than 20 μg of FE-27kDa was applied on the fibrin plate, fibrinolysis zone was formed as indicating its fibrinolytic activity. The fibrinolytic activity was inhibited completely by phenylmethanesulfonylfluoride (PMSF) and ethylenediaminetetraacetic acid (EDTA) and partially by thiothreitol and cysteine. Metal ions such as Hg2+ and Fe2+ inhibited the fibrinolytic activity completely, but Mn2+ did not. FE-27kDa preferentially hydrolyzed α- chain of fibrinogen and slowly hydrolyzed β- chain, but did not hydrolyze γ- chain. High-molecular-weight polypeptides of gelatin were hydrolyzed partially into polypeptides with molecular weights of more than 45 kDa. A dosage of more than 10 μg of FE- 27kDa per mouse was required to induce hemorrhage beneath the skin. Conclusion: FE-27kDa was a serine proteinase consisting of two heterogeneous polypeptides, hydrolyzed fibrin, fibrinogen, and gelatin, and caused hemorrhage beneath the skin of mouse. This study suggests that the potential of FE-27kDa as pharmacopuncture agent should be limited due to low fibrinolytic activity and a possible side effect of hemorrhage.
Collapse
Affiliation(s)
- Suk-Ho Choi
- Division of Animal Resources and Life Science, Sangji University, Wonju, Korea
| | - Seung-Bae Lee
- Division of Animal Resources and Life Science, Sangji University, Wonju, Korea
| |
Collapse
|
19
|
Abstract
Recent proteomic analyses of snake venoms show that metalloproteinases represent major components in most of the Crotalid and Viperid venoms. In this chapter we discuss the multiple activities of the SVMPs. In addition to hemorrhagic activity, members of the SVMP family also have fibrin(ogen)olytic activity, act as prothrombin activators, activate blood coagulation factor X, possess apoptotic activity, inhibit platelet aggregation, are pro-inflammatory and inactivate blood serine proteinase inhibitors. Clearly the SVMPs have multiple functions in addition to their well-known hemorrhagic activity. The realization that there are structural variations in the SVMPs and the early studies that led to their classification represents an important event in our understanding of the structural forms of the SVMPs. The SVMPs were subdivided into the P-I, P-II and P-III protein classes. The noticeable characteristic that distinguished the different classes was their size (molecular weight) differences and domain structure: Class I (P-I), the small SVMPs, have molecular masses of 20-30 kDa, contain only a pro domain and the proteinase domain; Class II (P-II), the medium size SVMPs, molecular masses of 30-60 kDa, contain the pro domain, proteinase domain and disintegrin domain; Class III (P-III), the large SVMPs, have molecular masses of 60-100 kDa, contain pro, proteinase, disintegrin-like and cysteine-rich domain structure. Another significant advance in the SVMP field was the characterization of the crystal structure of the first P-I class SVMP. The structures of other P-I SVMPs soon followed and the structures of P-III SVMPs have also been determined. The active site of the metalloproteinase domain has a consensus HEXXHXXGXXHD sequence and a Met-turn. The "Met-turn" structure contains a conserved Met residue that forms a hydrophobic basement for the three zinc-binding histidines in the consensus sequence.
Collapse
Affiliation(s)
- Francis S Markland
- University of Southern California, Keck School of Medicine, Cancer Research Laboratory #106, 1303 N. Mission Rd., Los Angeles, CA 90033, USA.
| | | |
Collapse
|
20
|
Girón ME, Rodríguez-Acosta A, Salazar AM, Sánchez EE, Galán J, Ibarra C, Guerrero B. Isolation and characterization of two new non-hemorrhagic metalloproteinases with fibrinogenolytic activity from the mapanare (Bothrops colombiensis) venom. Arch Toxicol 2012; 87:197-208. [PMID: 22918489 DOI: 10.1007/s00204-012-0914-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2012] [Accepted: 07/24/2012] [Indexed: 10/28/2022]
Abstract
Colombienases are acidic, low molecular weight metalloproteinases (Mr of 23,074.31 Da colombienase-1 and 23,078.80 Da colombienase-2; pI of 6.0 and 6.2, respectively) isolated from Bothrops colombiensis snake venom. The chromatographic profile in RP-HPLC and its partial sequence confirmed its high homogeneity. Both colombienases present fibrino(geno)lytic activity, but did not show any hemorrhagic, amidolytic, plasminogen activator or coagulant activities, and no effect on platelet aggregation induced by collagen or ADP. Both enzymes were strongly active on fibrinogen Aα chains followed by the Bβ chains, and colombienases-2, at high doses, also degraded the γ chains. This activity was stable at temperatures ranging between 4 and 37 °C, with a maximum activity at 25 °C, and at pHs between 7 and 9. The homology demonstrated by the comparison of sequences, with zinc-dependent metalloproteinases, as well as the metal chelant effects on, confirmed that the colombienases were metalloproteinases, particularly to α-fibrinogenases belonging to the P-I class of SVPMs (20-30 kDa), which contain only the single-domain proteins. The biological characteristics of the colombienases confer a therapeutic potential, since they contain a high fibrino(geno)lytic activity, devoid of hemorrhagic activity. These metalloproteinases might be explored as thrombolytic agents given that they dissolve fibrin clots or prevent their formation.
Collapse
Affiliation(s)
- María E Girón
- Laboratorio de Inmunoquímica y Ultraestructura, Instituto Anatómico de la Universidad Central de Venezuela, Caracas, Venezuela
| | | | | | | | | | | | | |
Collapse
|